mirror of
https://github.com/DS4SD/docling.git
synced 2025-12-09 05:08:14 +00:00
feat: leverage new list modeling, capture default markers (#1856)
* chore: update docling-core & regenerate test data Signed-off-by: Panos Vagenas <pva@zurich.ibm.com> * update backends to leverage new list modeling Signed-off-by: Panos Vagenas <pva@zurich.ibm.com> * repin docling-core Signed-off-by: Panos Vagenas <pva@zurich.ibm.com> * ensure availability of latest docling-core API Signed-off-by: Panos Vagenas <pva@zurich.ibm.com> --------- Signed-off-by: Panos Vagenas <pva@zurich.ibm.com>
This commit is contained in:
@@ -937,7 +937,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- -\"C\" cell a new table cell that either has or does not have cell content",
|
||||
"text": "-\"C\" cell a new table cell that either has or does not have cell content",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -960,7 +960,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- -\"L\" cell left-looking cell , merging with the left neighbor cell to create a span",
|
||||
"text": "-\"L\" cell left-looking cell , merging with the left neighbor cell to create a span",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -983,7 +983,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- -\"U\" cell up-looking cell , merging with the upper neighbor cell to create a span",
|
||||
"text": "-\"U\" cell up-looking cell , merging with the upper neighbor cell to create a span",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -1006,7 +1006,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- -\"X\" cell cross cell , to merge with both left and upper neighbor cells",
|
||||
"text": "-\"X\" cell cross cell , to merge with both left and upper neighbor cells",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -1029,7 +1029,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- -\"NL\" new-line , switch to the next row.",
|
||||
"text": "-\"NL\" new-line , switch to the next row.",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -1149,7 +1149,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 1. Left-looking cell rule : The left neighbour of an \"L\" cell must be either another \"L\" cell or a \"C\" cell.",
|
||||
"text": "1. Left-looking cell rule : The left neighbour of an \"L\" cell must be either another \"L\" cell or a \"C\" cell.",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -1172,7 +1172,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 2. Up-looking cell rule : The upper neighbour of a \"U\" cell must be either another \"U\" cell or a \"C\" cell.",
|
||||
"text": "2. Up-looking cell rule : The upper neighbour of a \"U\" cell must be either another \"U\" cell or a \"C\" cell.",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -1218,7 +1218,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- The left neighbour of an \"X\" cell must be either another \"X\" cell or a \"U\" cell, and the upper neighbour of an \"X\" cell must be either another \"X\" cell or an \"L\" cell.",
|
||||
"text": "The left neighbour of an \"X\" cell must be either another \"X\" cell or a \"U\" cell, and the upper neighbour of an \"X\" cell must be either another \"X\" cell or an \"L\" cell.",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -1241,7 +1241,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 4. First row rule : Only \"L\" cells and \"C\" cells are allowed in the first row.",
|
||||
"text": "4. First row rule : Only \"L\" cells and \"C\" cells are allowed in the first row.",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -1264,7 +1264,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 5. First column rule : Only \"U\" cells and \"C\" cells are allowed in the first column.",
|
||||
"text": "5. First column rule : Only \"U\" cells and \"C\" cells are allowed in the first column.",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -1287,7 +1287,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 6. Rectangular rule : The table representation is always rectangular - all rows must have an equal number of tokens, terminated with \"NL\" token.",
|
||||
"text": "6. Rectangular rule : The table representation is always rectangular - all rows must have an equal number of tokens, terminated with \"NL\" token.",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -1979,7 +1979,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 1. Auer, C., Dolfi, M., Carvalho, A., Ramis, C.B., Staar, P.W.J.: Delivering document conversion as a cloud service with high throughput and responsiveness. CoRR abs/2206.00785 (2022). https://doi.org/10.48550/arXiv.2206.00785 , https://doi.org/10.48550/arXiv.2206.00785",
|
||||
"text": "1. Auer, C., Dolfi, M., Carvalho, A., Ramis, C.B., Staar, P.W.J.: Delivering document conversion as a cloud service with high throughput and responsiveness. CoRR abs/2206.00785 (2022). https://doi.org/10.48550/arXiv.2206.00785 , https://doi.org/10.48550/arXiv.2206.00785",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2002,7 +2002,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 2. Chen, B., Peng, D., Zhang, J., Ren, Y., Jin, L.: Complex table structure recognition in the wild using transformer and identity matrix-based augmentation. In: Porwal, U., Forn\u00e9s, A., Shafait, F. (eds.) Frontiers in Handwriting Recognition. pp. 545561. Springer International Publishing, Cham (2022)",
|
||||
"text": "2. Chen, B., Peng, D., Zhang, J., Ren, Y., Jin, L.: Complex table structure recognition in the wild using transformer and identity matrix-based augmentation. In: Porwal, U., Forn\u00e9s, A., Shafait, F. (eds.) Frontiers in Handwriting Recognition. pp. 545561. Springer International Publishing, Cham (2022)",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2025,7 +2025,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 3. Chi, Z., Huang, H., Xu, H.D., Yu, H., Yin, W., Mao, X.L.: Complicated table structure recognition. arXiv preprint arXiv:1908.04729 (2019)",
|
||||
"text": "3. Chi, Z., Huang, H., Xu, H.D., Yu, H., Yin, W., Mao, X.L.: Complicated table structure recognition. arXiv preprint arXiv:1908.04729 (2019)",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2048,7 +2048,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 4. Deng, Y., Rosenberg, D., Mann, G.: Challenges in end-to-end neural scientific table recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 894-901. IEEE (2019)",
|
||||
"text": "4. Deng, Y., Rosenberg, D., Mann, G.: Challenges in end-to-end neural scientific table recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 894-901. IEEE (2019)",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2071,7 +2071,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 5. Kayal, P., Anand, M., Desai, H., Singh, M.: Tables to latex: structure and content extraction from scientific tables. International Journal on Document Analysis and Recognition (IJDAR) pp. 1-10 (2022)",
|
||||
"text": "5. Kayal, P., Anand, M., Desai, H., Singh, M.: Tables to latex: structure and content extraction from scientific tables. International Journal on Document Analysis and Recognition (IJDAR) pp. 1-10 (2022)",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2094,7 +2094,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 6. Lee, E., Kwon, J., Yang, H., Park, J., Lee, S., Koo, H.I., Cho, N.I.: Table structure recognition based on grid shape graph. In: 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). pp. 18681873. IEEE (2022)",
|
||||
"text": "6. Lee, E., Kwon, J., Yang, H., Park, J., Lee, S., Koo, H.I., Cho, N.I.: Table structure recognition based on grid shape graph. In: 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). pp. 18681873. IEEE (2022)",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2117,7 +2117,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 7. Li, M., Cui, L., Huang, S., Wei, F., Zhou, M., Li, Z.: Tablebank: A benchmark dataset for table detection and recognition (2019)",
|
||||
"text": "7. Li, M., Cui, L., Huang, S., Wei, F., Zhou, M., Li, Z.: Tablebank: A benchmark dataset for table detection and recognition (2019)",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2140,7 +2140,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 8. Livathinos, N., Berrospi, C., Lysak, M., Kuropiatnyk, V., Nassar, A., Carvalho, A., Dolfi, M., Auer, C., Dinkla, K., Staar, P.: Robust pdf document conversion using recurrent neural networks. Proceedings of the AAAI Conference on Artificial Intelligence 35 (17), 15137-15145 (May 2021), https://ojs.aaai.org/index.php/ AAAI/article/view/17777",
|
||||
"text": "8. Livathinos, N., Berrospi, C., Lysak, M., Kuropiatnyk, V., Nassar, A., Carvalho, A., Dolfi, M., Auer, C., Dinkla, K., Staar, P.: Robust pdf document conversion using recurrent neural networks. Proceedings of the AAAI Conference on Artificial Intelligence 35 (17), 15137-15145 (May 2021), https://ojs.aaai.org/index.php/ AAAI/article/view/17777",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2163,7 +2163,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 9. Nassar, A., Livathinos, N., Lysak, M., Staar, P.: Tableformer: Table structure understanding with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4614-4623 (June 2022)",
|
||||
"text": "9. Nassar, A., Livathinos, N., Lysak, M., Staar, P.: Tableformer: Table structure understanding with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4614-4623 (June 2022)",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2186,7 +2186,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 10. Pfitzmann, B., Auer, C., Dolfi, M., Nassar, A.S., Staar, P.W.J.: Doclaynet: A large human-annotated dataset for document-layout segmentation. In: Zhang, A., Rangwala, H. (eds.) KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022. pp. 3743-3751. ACM (2022). https://doi.org/10.1145/3534678.3539043 , https:// doi.org/10.1145/3534678.3539043",
|
||||
"text": "10. Pfitzmann, B., Auer, C., Dolfi, M., Nassar, A.S., Staar, P.W.J.: Doclaynet: A large human-annotated dataset for document-layout segmentation. In: Zhang, A., Rangwala, H. (eds.) KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022. pp. 3743-3751. ACM (2022). https://doi.org/10.1145/3534678.3539043 , https:// doi.org/10.1145/3534678.3539043",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2209,7 +2209,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 11. Prasad, D., Gadpal, A., Kapadni, K., Visave, M., Sultanpure, K.: Cascadetabnet: An approach for end to end table detection and structure recognition from imagebased documents. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. pp. 572-573 (2020)",
|
||||
"text": "11. Prasad, D., Gadpal, A., Kapadni, K., Visave, M., Sultanpure, K.: Cascadetabnet: An approach for end to end table detection and structure recognition from imagebased documents. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. pp. 572-573 (2020)",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2232,7 +2232,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 12. Schreiber, S., Agne, S., Wolf, I., Dengel, A., Ahmed, S.: Deepdesrt: Deep learning for detection and structure recognition of tables in document images. In: 2017 14th IAPR international conference on document analysis and recognition (ICDAR). vol. 1, pp. 1162-1167. IEEE (2017)",
|
||||
"text": "12. Schreiber, S., Agne, S., Wolf, I., Dengel, A., Ahmed, S.: Deepdesrt: Deep learning for detection and structure recognition of tables in document images. In: 2017 14th IAPR international conference on document analysis and recognition (ICDAR). vol. 1, pp. 1162-1167. IEEE (2017)",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2255,7 +2255,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 13. Siddiqui, S.A., Fateh, I.A., Rizvi, S.T.R., Dengel, A., Ahmed, S.: Deeptabstr: Deep learning based table structure recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 1403-1409 (2019). https:// doi.org/10.1109/ICDAR.2019.00226",
|
||||
"text": "13. Siddiqui, S.A., Fateh, I.A., Rizvi, S.T.R., Dengel, A., Ahmed, S.: Deeptabstr: Deep learning based table structure recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 1403-1409 (2019). https:// doi.org/10.1109/ICDAR.2019.00226",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2278,7 +2278,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 14. Smock, B., Pesala, R., Abraham, R.: PubTables-1M: Towards comprehensive table extraction from unstructured documents. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4634-4642 (June 2022)",
|
||||
"text": "14. Smock, B., Pesala, R., Abraham, R.: PubTables-1M: Towards comprehensive table extraction from unstructured documents. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4634-4642 (June 2022)",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2301,7 +2301,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 15. Staar, P.W.J., Dolfi, M., Auer, C., Bekas, C.: Corpus conversion service: A machine learning platform to ingest documents at scale. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 774-782. KDD '18, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3219819.3219834 , https://doi.org/10. 1145/3219819.3219834",
|
||||
"text": "15. Staar, P.W.J., Dolfi, M., Auer, C., Bekas, C.: Corpus conversion service: A machine learning platform to ingest documents at scale. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 774-782. KDD '18, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3219819.3219834 , https://doi.org/10. 1145/3219819.3219834",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2324,7 +2324,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 16. Wang, X.: Tabular Abstraction, Editing, and Formatting. Ph.D. thesis, CAN (1996), aAINN09397",
|
||||
"text": "16. Wang, X.: Tabular Abstraction, Editing, and Formatting. Ph.D. thesis, CAN (1996), aAINN09397",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2347,7 +2347,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 17. Xue, W., Li, Q., Tao, D.: Res2tim: Reconstruct syntactic structures from table images. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 749-755. IEEE (2019)",
|
||||
"text": "17. Xue, W., Li, Q., Tao, D.: Res2tim: Reconstruct syntactic structures from table images. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 749-755. IEEE (2019)",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2370,7 +2370,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 18. Xue, W., Yu, B., Wang, W., Tao, D., Li, Q.: Tgrnet: A table graph reconstruction network for table structure recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 1295-1304 (2021)",
|
||||
"text": "18. Xue, W., Yu, B., Wang, W., Tao, D., Li, Q.: Tgrnet: A table graph reconstruction network for table structure recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 1295-1304 (2021)",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2393,7 +2393,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 19. Ye, J., Qi, X., He, Y., Chen, Y., Gu, D., Gao, P., Xiao, R.: Pingan-vcgroup's solution for icdar 2021 competition on scientific literature parsing task b: Table recognition to html (2021). https://doi.org/10.48550/ARXIV.2105.01848 , https://arxiv.org/abs/2105.01848",
|
||||
"text": "19. Ye, J., Qi, X., He, Y., Chen, Y., Gu, D., Gao, P., Xiao, R.: Pingan-vcgroup's solution for icdar 2021 competition on scientific literature parsing task b: Table recognition to html (2021). https://doi.org/10.48550/ARXIV.2105.01848 , https://arxiv.org/abs/2105.01848",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2416,7 +2416,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 20. Zhang, Z., Zhang, J., Du, J., Wang, F.: Split, embed and merge: An accurate table structure recognizer. Pattern Recognition 126 , 108565 (2022)",
|
||||
"text": "20. Zhang, Z., Zhang, J., Du, J., Wang, F.: Split, embed and merge: An accurate table structure recognizer. Pattern Recognition 126 , 108565 (2022)",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2439,7 +2439,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 21. Zheng, X., Burdick, D., Popa, L., Zhong, X., Wang, N.X.R.: Global table extractor (gte): A framework for joint table identification and cell structure recognition using visual context. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 697-706 (2021). https://doi.org/10.1109/WACV48630.2021. 00074",
|
||||
"text": "21. Zheng, X., Burdick, D., Popa, L., Zhong, X., Wang, N.X.R.: Global table extractor (gte): A framework for joint table identification and cell structure recognition using visual context. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 697-706 (2021). https://doi.org/10.1109/WACV48630.2021. 00074",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2462,7 +2462,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 22. Zhong, X., ShafieiBavani, E., Jimeno Yepes, A.: Image-based table recognition: Data, model, and evaluation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision - ECCV 2020. pp. 564-580. Springer International Publishing, Cham (2020)",
|
||||
"text": "22. Zhong, X., ShafieiBavani, E., Jimeno Yepes, A.: Image-based table recognition: Data, model, and evaluation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision - ECCV 2020. pp. 564-580. Springer International Publishing, Cham (2020)",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
@@ -2485,7 +2485,7 @@
|
||||
"__ref_s3_data": null
|
||||
}
|
||||
],
|
||||
"text": "- 23. Zhong, X., Tang, J., Yepes, A.J.: Publaynet: largest dataset ever for document layout analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 1015-1022. IEEE (2019)",
|
||||
"text": "23. Zhong, X., Tang, J., Yepes, A.J.: Publaynet: largest dataset ever for document layout analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 1015-1022. IEEE (2019)",
|
||||
"type": "paragraph",
|
||||
"payload": null,
|
||||
"name": "List-item",
|
||||
|
||||
Reference in New Issue
Block a user