mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-26 20:14:47 +00:00
added the formulate_prompt
Signed-off-by: Peter Staar <taa@zurich.ibm.com>
This commit is contained in:
parent
4c0bc61e54
commit
054e01d8b3
@ -44,6 +44,9 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
|||||||
self.device = decide_device(accelerator_options.device)
|
self.device = decide_device(accelerator_options.device)
|
||||||
self.device = "cpu" # FIXME
|
self.device = "cpu" # FIXME
|
||||||
|
|
||||||
|
self.use_cache = True
|
||||||
|
self.max_new_tokens = 64 # FIXME
|
||||||
|
|
||||||
_log.debug(f"Available device for VLM: {self.device}")
|
_log.debug(f"Available device for VLM: {self.device}")
|
||||||
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
||||||
|
|
||||||
@ -102,29 +105,6 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
|||||||
# Load generation config
|
# Load generation config
|
||||||
self.generation_config = GenerationConfig.from_pretrained(model_path)
|
self.generation_config = GenerationConfig.from_pretrained(model_path)
|
||||||
|
|
||||||
"""
|
|
||||||
@staticmethod
|
|
||||||
def download_models(
|
|
||||||
repo_id: str,
|
|
||||||
local_dir: Optional[Path] = None,
|
|
||||||
force: bool = False,
|
|
||||||
progress: bool = False,
|
|
||||||
) -> Path:
|
|
||||||
from huggingface_hub import snapshot_download
|
|
||||||
from huggingface_hub.utils import disable_progress_bars
|
|
||||||
|
|
||||||
if not progress:
|
|
||||||
disable_progress_bars()
|
|
||||||
download_path = snapshot_download(
|
|
||||||
repo_id=repo_id,
|
|
||||||
force_download=force,
|
|
||||||
local_dir=local_dir,
|
|
||||||
# revision="v0.0.1",
|
|
||||||
)
|
|
||||||
|
|
||||||
return Path(download_path)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __call__(
|
def __call__(
|
||||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||||
) -> Iterable[Page]:
|
) -> Iterable[Page]:
|
||||||
@ -147,13 +127,8 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
|||||||
hi_res_image = hi_res_image.convert("RGB")
|
hi_res_image = hi_res_image.convert("RGB")
|
||||||
|
|
||||||
# Define prompt structure
|
# Define prompt structure
|
||||||
user_prompt = "<|user|>"
|
prompt = self.formulate_prompt()
|
||||||
assistant_prompt = "<|assistant|>"
|
|
||||||
prompt_suffix = "<|end|>"
|
|
||||||
|
|
||||||
# Part 1: Image Processing
|
|
||||||
prompt = f"{user_prompt}<|image_1|>Convert this image into MarkDown and only return the bare MarkDown!{prompt_suffix}{assistant_prompt}"
|
|
||||||
|
|
||||||
inputs = self.processor(
|
inputs = self.processor(
|
||||||
text=prompt, images=hi_res_image, return_tensors="pt"
|
text=prompt, images=hi_res_image, return_tensors="pt"
|
||||||
).to(self.device)
|
).to(self.device)
|
||||||
@ -162,7 +137,8 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
|||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
generate_ids = self.vlm_model.generate(
|
generate_ids = self.vlm_model.generate(
|
||||||
**inputs,
|
**inputs,
|
||||||
max_new_tokens=128,
|
max_new_tokens=self.max_new_tokens,
|
||||||
|
use_cache=self.use_cache, # Enables KV caching which can improve performance
|
||||||
generation_config=self.generation_config,
|
generation_config=self.generation_config,
|
||||||
num_logits_to_keep=1,
|
num_logits_to_keep=1,
|
||||||
)
|
)
|
||||||
@ -191,3 +167,22 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
|||||||
page.predictions.vlm_response = VlmPrediction(text=response)
|
page.predictions.vlm_response = VlmPrediction(text=response)
|
||||||
|
|
||||||
yield page
|
yield page
|
||||||
|
|
||||||
|
def formulate_prompt(self) -> str:
|
||||||
|
"""Formulate a prompt for the VLM."""
|
||||||
|
if self.vlm_options.repo_id=="microsoft/Phi-4-multimodal-instruct":
|
||||||
|
user_prompt = "<|user|>"
|
||||||
|
assistant_prompt = "<|assistant|>"
|
||||||
|
prompt_suffix = "<|end|>"
|
||||||
|
|
||||||
|
# prompt = f"{user_prompt}<|image_1|>Convert this image into MarkDown and only return the bare MarkDown!{prompt_suffix}{assistant_prompt}"
|
||||||
|
prompt = f"{user_prompt}<|image_1|>{self.vlm_options.prompt}{prompt_suffix}{assistant_prompt}"
|
||||||
|
_log.debug(f"prompt for {self.vlm_options.repo_id}: {prompt}")
|
||||||
|
|
||||||
|
return prompt
|
||||||
|
else:
|
||||||
|
raise ValueError(f"No prompt template for {self.vlm_options.repo_id}")
|
||||||
|
|
||||||
|
|
||||||
|
return ""
|
||||||
|
|
||||||
|
@ -44,14 +44,13 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
|
|||||||
self.device = decide_device(accelerator_options.device)
|
self.device = decide_device(accelerator_options.device)
|
||||||
self.device = "cpu" # FIXME
|
self.device = "cpu" # FIXME
|
||||||
|
|
||||||
torch.set_num_threads(12) # Adjust the number as needed
|
self.use_cache = True
|
||||||
|
self.max_new_tokens = 64 # FIXME
|
||||||
|
|
||||||
_log.debug(f"Available device for VLM: {self.device}")
|
_log.debug(f"Available device for VLM: {self.device}")
|
||||||
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
||||||
|
|
||||||
# PARAMETERS:
|
|
||||||
if artifacts_path is None:
|
if artifacts_path is None:
|
||||||
# artifacts_path = self.download_models(self.vlm_options.repo_id)
|
|
||||||
artifacts_path = HuggingFaceVlmModel.download_models(
|
artifacts_path = HuggingFaceVlmModel.download_models(
|
||||||
self.vlm_options.repo_id
|
self.vlm_options.repo_id
|
||||||
)
|
)
|
||||||
@ -59,41 +58,25 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
|
|||||||
artifacts_path = artifacts_path / repo_cache_folder
|
artifacts_path = artifacts_path / repo_cache_folder
|
||||||
|
|
||||||
model_path = artifacts_path
|
model_path = artifacts_path
|
||||||
print(f"model: {model_path}")
|
_log.debug(f"model: {model_path}")
|
||||||
|
|
||||||
self.max_new_tokens = 64 # FIXME
|
|
||||||
|
|
||||||
self.processor = AutoProcessor.from_pretrained(
|
self.processor = AutoProcessor.from_pretrained(
|
||||||
artifacts_path,
|
artifacts_path,
|
||||||
trust_remote_code=self.trust_remote_code,
|
trust_remote_code=self.trust_remote_code,
|
||||||
)
|
)
|
||||||
self.vlm_model = LlavaForConditionalGeneration.from_pretrained(
|
self.vlm_model = LlavaForConditionalGeneration.from_pretrained(
|
||||||
artifacts_path
|
artifacts_path,
|
||||||
|
device_map=self.device,
|
||||||
|
# torch_dtype="auto",
|
||||||
|
# quantization_config=self.param_quantization_config,
|
||||||
|
_attn_implementation=(
|
||||||
|
"flash_attention_2"
|
||||||
|
if self.device.startswith("cuda")
|
||||||
|
and accelerator_options.cuda_use_flash_attention2
|
||||||
|
else "eager"
|
||||||
|
),
|
||||||
).to(self.device)
|
).to(self.device)
|
||||||
|
|
||||||
"""
|
|
||||||
@staticmethod
|
|
||||||
def download_models(
|
|
||||||
repo_id: str,
|
|
||||||
local_dir: Optional[Path] = None,
|
|
||||||
force: bool = False,
|
|
||||||
progress: bool = False,
|
|
||||||
) -> Path:
|
|
||||||
from huggingface_hub import snapshot_download
|
|
||||||
from huggingface_hub.utils import disable_progress_bars
|
|
||||||
|
|
||||||
if not progress:
|
|
||||||
disable_progress_bars()
|
|
||||||
download_path = snapshot_download(
|
|
||||||
repo_id=repo_id,
|
|
||||||
force_download=force,
|
|
||||||
local_dir=local_dir,
|
|
||||||
# revision="v0.0.1",
|
|
||||||
)
|
|
||||||
|
|
||||||
return Path(download_path)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __call__(
|
def __call__(
|
||||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||||
) -> Iterable[Page]:
|
) -> Iterable[Page]:
|
||||||
@ -116,22 +99,32 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
|
|||||||
hi_res_image = hi_res_image.convert("RGB")
|
hi_res_image = hi_res_image.convert("RGB")
|
||||||
|
|
||||||
images = [hi_res_image]
|
images = [hi_res_image]
|
||||||
prompt = "<s>[INST]Describe the images.\n[IMG][/INST]"
|
|
||||||
|
|
||||||
|
# Define prompt structure
|
||||||
|
# prompt = "<s>[INST]Describe the images.\n[IMG][/INST]"
|
||||||
|
prompt = self.formulate_prompt()
|
||||||
|
|
||||||
inputs = self.processor(
|
inputs = self.processor(
|
||||||
text=prompt, images=images, return_tensors="pt", use_fast=False
|
text=prompt, images=images, return_tensors="pt"
|
||||||
).to(self.device) # .to("cuda")
|
).to(self.device) # .to("cuda")
|
||||||
|
|
||||||
|
# Generate response
|
||||||
|
start_time = time.time()
|
||||||
generate_ids = self.vlm_model.generate(
|
generate_ids = self.vlm_model.generate(
|
||||||
**inputs,
|
**inputs,
|
||||||
max_new_tokens=self.max_new_tokens,
|
max_new_tokens=self.max_new_tokens,
|
||||||
use_cache=True, # Enables KV caching which can improve performance
|
use_cache=self.use_cache, # Enables KV caching which can improve performance
|
||||||
)
|
)
|
||||||
|
|
||||||
|
num_tokens = len(generate_ids[0])
|
||||||
|
generation_time = time.time() - start_time
|
||||||
|
|
||||||
response = self.processor.batch_decode(
|
response = self.processor.batch_decode(
|
||||||
generate_ids,
|
generate_ids,
|
||||||
skip_special_tokens=True,
|
skip_special_tokens=True,
|
||||||
clean_up_tokenization_spaces=False,
|
clean_up_tokenization_spaces=False,
|
||||||
)[0]
|
)[0]
|
||||||
print(f"response: {response}")
|
|
||||||
"""
|
"""
|
||||||
_log.debug(
|
_log.debug(
|
||||||
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
|
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
|
||||||
@ -147,3 +140,24 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
|
|||||||
page.predictions.vlm_response = VlmPrediction(text=response)
|
page.predictions.vlm_response = VlmPrediction(text=response)
|
||||||
|
|
||||||
yield page
|
yield page
|
||||||
|
|
||||||
|
def formulate_prompt(self) -> str:
|
||||||
|
"""Formulate a prompt for the VLM."""
|
||||||
|
if self.vlm_options.repo_id=="mistral-community/pixtral-12b":
|
||||||
|
#prompt = f"<s>[INST]{self.vlm_options.prompt}\n[IMG][/INST]"
|
||||||
|
chat = [
|
||||||
|
{
|
||||||
|
"role": "user", "content": [
|
||||||
|
{"type": "text", "content": self.vlm_options.prompt},
|
||||||
|
{"type": "image"},
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
prompt = self.processor.apply_chat_template(chat)
|
||||||
|
_log.debug(f"prompt for {self.vlm_options.repo_id}: {prompt}")
|
||||||
|
|
||||||
|
return prompt
|
||||||
|
else:
|
||||||
|
raise ValueError(f"No prompt template for {self.vlm_options.repo_id}")
|
||||||
|
|
||||||
|
return ""
|
||||||
|
Loading…
Reference in New Issue
Block a user