mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-29 21:44:32 +00:00
Add profiling code to all models
Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
This commit is contained in:
parent
a00f01cf07
commit
0814f32ae4
@ -6,6 +6,7 @@ from pathlib import Path, PurePath
|
||||
from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple, Type, Union
|
||||
|
||||
import filetype
|
||||
import numpy as np
|
||||
from docling_core.types.doc import (
|
||||
DocItem,
|
||||
DocItemLabel,
|
||||
@ -179,6 +180,29 @@ class DocumentFormat(str, Enum):
|
||||
V1 = "v1"
|
||||
|
||||
|
||||
class ProfilingScope(str, Enum):
|
||||
PAGE = "page"
|
||||
DOCUMENT = "document"
|
||||
|
||||
|
||||
class ProfilingItem(BaseModel):
|
||||
scope: ProfilingScope
|
||||
count: int = 0
|
||||
times: List[float] = []
|
||||
|
||||
def avg(self) -> float:
|
||||
return np.average(self.times) # type: ignore
|
||||
|
||||
def std(self) -> float:
|
||||
return np.std(self.times) # type: ignore
|
||||
|
||||
def mean(self) -> float:
|
||||
return np.mean(self.times) # type: ignore
|
||||
|
||||
def percentile(self, perc: float) -> float:
|
||||
return np.percentile(self.times, perc) # type: ignore
|
||||
|
||||
|
||||
class ConversionResult(BaseModel):
|
||||
input: InputDocument
|
||||
|
||||
@ -187,6 +211,7 @@ class ConversionResult(BaseModel):
|
||||
|
||||
pages: List[Page] = []
|
||||
assembled: AssembledUnit = AssembledUnit()
|
||||
timings: Dict[str, ProfilingItem] = {}
|
||||
|
||||
document: DoclingDocument = _EMPTY_DOCLING_DOC
|
||||
|
||||
|
@ -32,6 +32,8 @@ class DebugSettings(BaseModel):
|
||||
visualize_layout: bool = False
|
||||
visualize_tables: bool = False
|
||||
|
||||
profile_pipeline_timings: bool = False
|
||||
|
||||
|
||||
class AppSettings(BaseSettings):
|
||||
perf: BatchConcurrencySettings
|
||||
|
@ -1,14 +1,19 @@
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Iterable
|
||||
from typing import Any, Callable, Iterable, Type
|
||||
|
||||
from docling_core.types.doc import DoclingDocument, NodeItem
|
||||
|
||||
from docling.datamodel.base_models import Page
|
||||
from docling.datamodel.document import ConversionResult, ProfilingItem, ProfilingScope
|
||||
from docling.datamodel.settings import settings
|
||||
|
||||
|
||||
class BasePageModel(ABC):
|
||||
@abstractmethod
|
||||
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
pass
|
||||
|
||||
|
||||
@ -23,3 +28,28 @@ class BaseEnrichmentModel(ABC):
|
||||
self, doc: DoclingDocument, element_batch: Iterable[NodeItem]
|
||||
) -> Iterable[Any]:
|
||||
pass
|
||||
|
||||
|
||||
class TimeRecorder:
|
||||
def __init__(
|
||||
self,
|
||||
conv_res: ConversionResult,
|
||||
key: str,
|
||||
scope: ProfilingScope = ProfilingScope.PAGE,
|
||||
):
|
||||
if settings.debug.profile_pipeline_timings:
|
||||
if key not in conv_res.timings.keys():
|
||||
conv_res.timings[key] = ProfilingItem(scope=scope)
|
||||
self.conv_res = conv_res
|
||||
self.key = key
|
||||
|
||||
def __enter__(self):
|
||||
if settings.debug.profile_pipeline_timings:
|
||||
self.start = time.monotonic()
|
||||
return self
|
||||
|
||||
def __exit__(self, *args):
|
||||
if settings.debug.profile_pipeline_timings:
|
||||
elapsed = time.monotonic() - self.start
|
||||
self.conv_res.timings[self.key].times.append(elapsed)
|
||||
self.conv_res.timings[self.key].count += 1
|
||||
|
@ -10,12 +10,14 @@ from rtree import index
|
||||
from scipy.ndimage import find_objects, label
|
||||
|
||||
from docling.datamodel.base_models import OcrCell, Page
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options import OcrOptions
|
||||
from docling.models.base_model import BasePageModel
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BaseOcrModel:
|
||||
class BaseOcrModel(BasePageModel):
|
||||
def __init__(self, enabled: bool, options: OcrOptions):
|
||||
self.enabled = enabled
|
||||
self.options = options
|
||||
@ -133,5 +135,7 @@ class BaseOcrModel:
|
||||
image.show()
|
||||
|
||||
@abstractmethod
|
||||
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
pass
|
||||
|
@ -27,6 +27,7 @@ from pydantic import BaseModel, ConfigDict
|
||||
|
||||
from docling.datamodel.base_models import Cluster, FigureElement, Table, TextElement
|
||||
from docling.datamodel.document import ConversionResult, layout_label_to_ds_type
|
||||
from docling.models.base_model import TimeRecorder
|
||||
from docling.utils.utils import create_hash
|
||||
|
||||
|
||||
@ -226,12 +227,13 @@ class GlmModel:
|
||||
return ds_doc
|
||||
|
||||
def __call__(self, conv_res: ConversionResult) -> DoclingDocument:
|
||||
ds_doc = self._to_legacy_document(conv_res)
|
||||
ds_doc_dict = ds_doc.model_dump(by_alias=True)
|
||||
with TimeRecorder(conv_res, "glm"):
|
||||
ds_doc = self._to_legacy_document(conv_res)
|
||||
ds_doc_dict = ds_doc.model_dump(by_alias=True)
|
||||
|
||||
glm_doc = self.model.apply_on_doc(ds_doc_dict)
|
||||
glm_doc = self.model.apply_on_doc(ds_doc_dict)
|
||||
|
||||
docling_doc: DoclingDocument = to_docling_document(glm_doc) # Experimental
|
||||
docling_doc: DoclingDocument = to_docling_document(glm_doc) # Experimental
|
||||
|
||||
# DEBUG code:
|
||||
def draw_clusters_and_cells(ds_document, page_no):
|
||||
|
@ -1,12 +1,15 @@
|
||||
import logging
|
||||
import time
|
||||
from typing import Iterable
|
||||
|
||||
import numpy
|
||||
from docling_core.types.doc import BoundingBox, CoordOrigin
|
||||
|
||||
from docling.datamodel.base_models import OcrCell, Page
|
||||
from docling.datamodel.document import ConversionResult, ProfilingItem
|
||||
from docling.datamodel.pipeline_options import EasyOcrOptions
|
||||
from docling.datamodel.settings import settings
|
||||
from docling.models.base_model import TimeRecorder
|
||||
from docling.models.base_ocr_model import BaseOcrModel
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
@ -34,56 +37,62 @@ class EasyOcrModel(BaseOcrModel):
|
||||
download_enabled=self.options.download_enabled,
|
||||
)
|
||||
|
||||
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
|
||||
if not self.enabled:
|
||||
yield from page_batch
|
||||
return
|
||||
|
||||
for page in page_batch:
|
||||
|
||||
assert page._backend is not None
|
||||
if not page._backend.is_valid():
|
||||
yield page
|
||||
else:
|
||||
ocr_rects = self.get_ocr_rects(page)
|
||||
with TimeRecorder(conv_res, "ocr"):
|
||||
ocr_rects = self.get_ocr_rects(page)
|
||||
|
||||
all_ocr_cells = []
|
||||
for ocr_rect in ocr_rects:
|
||||
# Skip zero area boxes
|
||||
if ocr_rect.area() == 0:
|
||||
continue
|
||||
high_res_image = page._backend.get_page_image(
|
||||
scale=self.scale, cropbox=ocr_rect
|
||||
)
|
||||
im = numpy.array(high_res_image)
|
||||
result = self.reader.readtext(im)
|
||||
|
||||
del high_res_image
|
||||
del im
|
||||
|
||||
cells = [
|
||||
OcrCell(
|
||||
id=ix,
|
||||
text=line[1],
|
||||
confidence=line[2],
|
||||
bbox=BoundingBox.from_tuple(
|
||||
coord=(
|
||||
(line[0][0][0] / self.scale) + ocr_rect.l,
|
||||
(line[0][0][1] / self.scale) + ocr_rect.t,
|
||||
(line[0][2][0] / self.scale) + ocr_rect.l,
|
||||
(line[0][2][1] / self.scale) + ocr_rect.t,
|
||||
),
|
||||
origin=CoordOrigin.TOPLEFT,
|
||||
),
|
||||
all_ocr_cells = []
|
||||
for ocr_rect in ocr_rects:
|
||||
# Skip zero area boxes
|
||||
if ocr_rect.area() == 0:
|
||||
continue
|
||||
high_res_image = page._backend.get_page_image(
|
||||
scale=self.scale, cropbox=ocr_rect
|
||||
)
|
||||
for ix, line in enumerate(result)
|
||||
]
|
||||
all_ocr_cells.extend(cells)
|
||||
im = numpy.array(high_res_image)
|
||||
result = self.reader.readtext(im)
|
||||
|
||||
## Remove OCR cells which overlap with programmatic cells.
|
||||
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
|
||||
del high_res_image
|
||||
del im
|
||||
|
||||
page.cells.extend(filtered_ocr_cells)
|
||||
cells = [
|
||||
OcrCell(
|
||||
id=ix,
|
||||
text=line[1],
|
||||
confidence=line[2],
|
||||
bbox=BoundingBox.from_tuple(
|
||||
coord=(
|
||||
(line[0][0][0] / self.scale) + ocr_rect.l,
|
||||
(line[0][0][1] / self.scale) + ocr_rect.t,
|
||||
(line[0][2][0] / self.scale) + ocr_rect.l,
|
||||
(line[0][2][1] / self.scale) + ocr_rect.t,
|
||||
),
|
||||
origin=CoordOrigin.TOPLEFT,
|
||||
),
|
||||
)
|
||||
for ix, line in enumerate(result)
|
||||
]
|
||||
all_ocr_cells.extend(cells)
|
||||
|
||||
## Remove OCR cells which overlap with programmatic cells.
|
||||
filtered_ocr_cells = self.filter_ocr_cells(
|
||||
all_ocr_cells, page.cells
|
||||
)
|
||||
|
||||
page.cells.extend(filtered_ocr_cells)
|
||||
|
||||
# DEBUG code:
|
||||
if settings.debug.visualize_ocr:
|
||||
|
@ -16,8 +16,9 @@ from docling.datamodel.base_models import (
|
||||
LayoutPrediction,
|
||||
Page,
|
||||
)
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.settings import settings
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.models.base_model import BasePageModel, TimeRecorder
|
||||
from docling.utils import layout_utils as lu
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
@ -272,77 +273,86 @@ class LayoutModel(BasePageModel):
|
||||
|
||||
return clusters_out_new, cells_out_new
|
||||
|
||||
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
|
||||
for page in page_batch:
|
||||
assert page._backend is not None
|
||||
if not page._backend.is_valid():
|
||||
yield page
|
||||
else:
|
||||
assert page.size is not None
|
||||
with TimeRecorder(conv_res, "layout"):
|
||||
assert page.size is not None
|
||||
|
||||
clusters = []
|
||||
for ix, pred_item in enumerate(
|
||||
self.layout_predictor.predict(page.get_image(scale=1.0))
|
||||
):
|
||||
label = DocItemLabel(
|
||||
pred_item["label"].lower().replace(" ", "_").replace("-", "_")
|
||||
) # Temporary, until docling-ibm-model uses docling-core types
|
||||
cluster = Cluster(
|
||||
id=ix,
|
||||
label=label,
|
||||
confidence=pred_item["confidence"],
|
||||
bbox=BoundingBox.model_validate(pred_item),
|
||||
cells=[],
|
||||
clusters = []
|
||||
for ix, pred_item in enumerate(
|
||||
self.layout_predictor.predict(page.get_image(scale=1.0))
|
||||
):
|
||||
label = DocItemLabel(
|
||||
pred_item["label"]
|
||||
.lower()
|
||||
.replace(" ", "_")
|
||||
.replace("-", "_")
|
||||
) # Temporary, until docling-ibm-model uses docling-core types
|
||||
cluster = Cluster(
|
||||
id=ix,
|
||||
label=label,
|
||||
confidence=pred_item["confidence"],
|
||||
bbox=BoundingBox.model_validate(pred_item),
|
||||
cells=[],
|
||||
)
|
||||
clusters.append(cluster)
|
||||
|
||||
# Map cells to clusters
|
||||
# TODO: Remove, postprocess should take care of it anyway.
|
||||
for cell in page.cells:
|
||||
for cluster in clusters:
|
||||
if not cell.bbox.area() > 0:
|
||||
overlap_frac = 0.0
|
||||
else:
|
||||
overlap_frac = (
|
||||
cell.bbox.intersection_area_with(cluster.bbox)
|
||||
/ cell.bbox.area()
|
||||
)
|
||||
|
||||
if overlap_frac > 0.5:
|
||||
cluster.cells.append(cell)
|
||||
|
||||
# Pre-sort clusters
|
||||
# clusters = self.sort_clusters_by_cell_order(clusters)
|
||||
|
||||
# DEBUG code:
|
||||
def draw_clusters_and_cells(show: bool = True):
|
||||
image = copy.deepcopy(page.image)
|
||||
if image is not None:
|
||||
draw = ImageDraw.Draw(image)
|
||||
for c in clusters:
|
||||
x0, y0, x1, y1 = c.bbox.as_tuple()
|
||||
draw.rectangle([(x0, y0), (x1, y1)], outline="green")
|
||||
|
||||
cell_color = (
|
||||
random.randint(30, 140),
|
||||
random.randint(30, 140),
|
||||
random.randint(30, 140),
|
||||
)
|
||||
for tc in c.cells: # [:1]:
|
||||
x0, y0, x1, y1 = tc.bbox.as_tuple()
|
||||
draw.rectangle(
|
||||
[(x0, y0), (x1, y1)], outline=cell_color
|
||||
)
|
||||
if show:
|
||||
image.show()
|
||||
|
||||
# draw_clusters_and_cells()
|
||||
|
||||
clusters, page.cells = self.postprocess(
|
||||
clusters, page.cells, page.size.height
|
||||
)
|
||||
clusters.append(cluster)
|
||||
|
||||
# Map cells to clusters
|
||||
# TODO: Remove, postprocess should take care of it anyway.
|
||||
for cell in page.cells:
|
||||
for cluster in clusters:
|
||||
if not cell.bbox.area() > 0:
|
||||
overlap_frac = 0.0
|
||||
else:
|
||||
overlap_frac = (
|
||||
cell.bbox.intersection_area_with(cluster.bbox)
|
||||
/ cell.bbox.area()
|
||||
)
|
||||
|
||||
if overlap_frac > 0.5:
|
||||
cluster.cells.append(cell)
|
||||
|
||||
# Pre-sort clusters
|
||||
# clusters = self.sort_clusters_by_cell_order(clusters)
|
||||
|
||||
# DEBUG code:
|
||||
def draw_clusters_and_cells(show: bool = True):
|
||||
image = copy.deepcopy(page.image)
|
||||
if image is not None:
|
||||
draw = ImageDraw.Draw(image)
|
||||
for c in clusters:
|
||||
x0, y0, x1, y1 = c.bbox.as_tuple()
|
||||
draw.rectangle([(x0, y0), (x1, y1)], outline="green")
|
||||
|
||||
cell_color = (
|
||||
random.randint(30, 140),
|
||||
random.randint(30, 140),
|
||||
random.randint(30, 140),
|
||||
)
|
||||
for tc in c.cells: # [:1]:
|
||||
x0, y0, x1, y1 = tc.bbox.as_tuple()
|
||||
draw.rectangle([(x0, y0), (x1, y1)], outline=cell_color)
|
||||
if show:
|
||||
image.show()
|
||||
|
||||
# draw_clusters_and_cells()
|
||||
|
||||
clusters, page.cells = self.postprocess(
|
||||
clusters, page.cells, page.size.height
|
||||
)
|
||||
page.predictions.layout = LayoutPrediction(clusters=clusters)
|
||||
|
||||
if settings.debug.visualize_layout:
|
||||
draw_clusters_and_cells()
|
||||
|
||||
page.predictions.layout = LayoutPrediction(clusters=clusters)
|
||||
|
||||
yield page
|
||||
|
@ -12,7 +12,8 @@ from docling.datamodel.base_models import (
|
||||
Table,
|
||||
TextElement,
|
||||
)
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.models.base_model import BasePageModel, TimeRecorder
|
||||
from docling.models.layout_model import LayoutModel
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
@ -51,122 +52,122 @@ class PageAssembleModel(BasePageModel):
|
||||
|
||||
return sanitized_text.strip() # Strip any leading or trailing whitespace
|
||||
|
||||
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
for page in page_batch:
|
||||
assert page._backend is not None
|
||||
if not page._backend.is_valid():
|
||||
yield page
|
||||
else:
|
||||
assert page.predictions.layout is not None
|
||||
with TimeRecorder(conv_res, "page_assemble"):
|
||||
|
||||
# assembles some JSON output page by page.
|
||||
assert page.predictions.layout is not None
|
||||
|
||||
elements: List[PageElement] = []
|
||||
headers: List[PageElement] = []
|
||||
body: List[PageElement] = []
|
||||
# assembles some JSON output page by page.
|
||||
|
||||
for cluster in page.predictions.layout.clusters:
|
||||
# _log.info("Cluster label seen:", cluster.label)
|
||||
if cluster.label in LayoutModel.TEXT_ELEM_LABELS:
|
||||
elements: List[PageElement] = []
|
||||
headers: List[PageElement] = []
|
||||
body: List[PageElement] = []
|
||||
|
||||
textlines = [
|
||||
cell.text.replace("\x02", "-").strip()
|
||||
for cell in cluster.cells
|
||||
if len(cell.text.strip()) > 0
|
||||
]
|
||||
text = self.sanitize_text(textlines)
|
||||
text_el = TextElement(
|
||||
label=cluster.label,
|
||||
id=cluster.id,
|
||||
text=text,
|
||||
page_no=page.page_no,
|
||||
cluster=cluster,
|
||||
)
|
||||
elements.append(text_el)
|
||||
for cluster in page.predictions.layout.clusters:
|
||||
# _log.info("Cluster label seen:", cluster.label)
|
||||
if cluster.label in LayoutModel.TEXT_ELEM_LABELS:
|
||||
|
||||
if cluster.label in LayoutModel.PAGE_HEADER_LABELS:
|
||||
headers.append(text_el)
|
||||
else:
|
||||
body.append(text_el)
|
||||
elif cluster.label == LayoutModel.TABLE_LABEL:
|
||||
tbl = None
|
||||
if page.predictions.tablestructure:
|
||||
tbl = page.predictions.tablestructure.table_map.get(
|
||||
cluster.id, None
|
||||
)
|
||||
if (
|
||||
not tbl
|
||||
): # fallback: add table without structure, if it isn't present
|
||||
tbl = Table(
|
||||
textlines = [
|
||||
cell.text.replace("\x02", "-").strip()
|
||||
for cell in cluster.cells
|
||||
if len(cell.text.strip()) > 0
|
||||
]
|
||||
text = self.sanitize_text(textlines)
|
||||
text_el = TextElement(
|
||||
label=cluster.label,
|
||||
id=cluster.id,
|
||||
text="",
|
||||
otsl_seq=[],
|
||||
table_cells=[],
|
||||
cluster=cluster,
|
||||
page_no=page.page_no,
|
||||
)
|
||||
|
||||
elements.append(tbl)
|
||||
body.append(tbl)
|
||||
elif cluster.label == LayoutModel.FIGURE_LABEL:
|
||||
fig = None
|
||||
if page.predictions.figures_classification:
|
||||
fig = (
|
||||
page.predictions.figures_classification.figure_map.get(
|
||||
cluster.id, None
|
||||
)
|
||||
)
|
||||
if (
|
||||
not fig
|
||||
): # fallback: add figure without classification, if it isn't present
|
||||
fig = FigureElement(
|
||||
label=cluster.label,
|
||||
id=cluster.id,
|
||||
text="",
|
||||
data=None,
|
||||
cluster=cluster,
|
||||
page_no=page.page_no,
|
||||
)
|
||||
elements.append(fig)
|
||||
body.append(fig)
|
||||
elif cluster.label == LayoutModel.FORMULA_LABEL:
|
||||
equation = None
|
||||
if page.predictions.equations_prediction:
|
||||
equation = (
|
||||
page.predictions.equations_prediction.equation_map.get(
|
||||
cluster.id, None
|
||||
)
|
||||
)
|
||||
if (
|
||||
not equation
|
||||
): # fallback: add empty formula, if it isn't present
|
||||
text = self.sanitize_text(
|
||||
[
|
||||
cell.text.replace("\x02", "-").strip()
|
||||
for cell in cluster.cells
|
||||
if len(cell.text.strip()) > 0
|
||||
]
|
||||
)
|
||||
equation = TextElement(
|
||||
label=cluster.label,
|
||||
id=cluster.id,
|
||||
cluster=cluster,
|
||||
page_no=page.page_no,
|
||||
text=text,
|
||||
page_no=page.page_no,
|
||||
cluster=cluster,
|
||||
)
|
||||
elements.append(equation)
|
||||
body.append(equation)
|
||||
elements.append(text_el)
|
||||
|
||||
page.assembled = AssembledUnit(
|
||||
elements=elements, headers=headers, body=body
|
||||
)
|
||||
if cluster.label in LayoutModel.PAGE_HEADER_LABELS:
|
||||
headers.append(text_el)
|
||||
else:
|
||||
body.append(text_el)
|
||||
elif cluster.label == LayoutModel.TABLE_LABEL:
|
||||
tbl = None
|
||||
if page.predictions.tablestructure:
|
||||
tbl = page.predictions.tablestructure.table_map.get(
|
||||
cluster.id, None
|
||||
)
|
||||
if (
|
||||
not tbl
|
||||
): # fallback: add table without structure, if it isn't present
|
||||
tbl = Table(
|
||||
label=cluster.label,
|
||||
id=cluster.id,
|
||||
text="",
|
||||
otsl_seq=[],
|
||||
table_cells=[],
|
||||
cluster=cluster,
|
||||
page_no=page.page_no,
|
||||
)
|
||||
|
||||
# Remove page images (can be disabled)
|
||||
if not self.options.keep_images:
|
||||
page._image_cache = {}
|
||||
elements.append(tbl)
|
||||
body.append(tbl)
|
||||
elif cluster.label == LayoutModel.FIGURE_LABEL:
|
||||
fig = None
|
||||
if page.predictions.figures_classification:
|
||||
fig = page.predictions.figures_classification.figure_map.get(
|
||||
cluster.id, None
|
||||
)
|
||||
if (
|
||||
not fig
|
||||
): # fallback: add figure without classification, if it isn't present
|
||||
fig = FigureElement(
|
||||
label=cluster.label,
|
||||
id=cluster.id,
|
||||
text="",
|
||||
data=None,
|
||||
cluster=cluster,
|
||||
page_no=page.page_no,
|
||||
)
|
||||
elements.append(fig)
|
||||
body.append(fig)
|
||||
elif cluster.label == LayoutModel.FORMULA_LABEL:
|
||||
equation = None
|
||||
if page.predictions.equations_prediction:
|
||||
equation = page.predictions.equations_prediction.equation_map.get(
|
||||
cluster.id, None
|
||||
)
|
||||
if (
|
||||
not equation
|
||||
): # fallback: add empty formula, if it isn't present
|
||||
text = self.sanitize_text(
|
||||
[
|
||||
cell.text.replace("\x02", "-").strip()
|
||||
for cell in cluster.cells
|
||||
if len(cell.text.strip()) > 0
|
||||
]
|
||||
)
|
||||
equation = TextElement(
|
||||
label=cluster.label,
|
||||
id=cluster.id,
|
||||
cluster=cluster,
|
||||
page_no=page.page_no,
|
||||
text=text,
|
||||
)
|
||||
elements.append(equation)
|
||||
body.append(equation)
|
||||
|
||||
# Unload backend
|
||||
page._backend.unload()
|
||||
page.assembled = AssembledUnit(
|
||||
elements=elements, headers=headers, body=body
|
||||
)
|
||||
|
||||
# Remove page images (can be disabled)
|
||||
if not self.options.keep_images:
|
||||
page._image_cache = {}
|
||||
|
||||
# Unload backend
|
||||
page._backend.unload()
|
||||
|
||||
yield page
|
||||
|
@ -4,7 +4,8 @@ from PIL import ImageDraw
|
||||
from pydantic import BaseModel
|
||||
|
||||
from docling.datamodel.base_models import Page
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.models.base_model import BasePageModel, TimeRecorder
|
||||
|
||||
|
||||
class PagePreprocessingOptions(BaseModel):
|
||||
@ -15,14 +16,17 @@ class PagePreprocessingModel(BasePageModel):
|
||||
def __init__(self, options: PagePreprocessingOptions):
|
||||
self.options = options
|
||||
|
||||
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
for page in page_batch:
|
||||
assert page._backend is not None
|
||||
if not page._backend.is_valid():
|
||||
yield page
|
||||
else:
|
||||
page = self._populate_page_images(page)
|
||||
page = self._parse_page_cells(page)
|
||||
with TimeRecorder(conv_res, "page_parse"):
|
||||
page = self._populate_page_images(page)
|
||||
page = self._parse_page_cells(page)
|
||||
yield page
|
||||
|
||||
# Generate the page image and store it in the page object
|
||||
|
@ -8,9 +8,10 @@ from docling_ibm_models.tableformer.data_management.tf_predictor import TFPredic
|
||||
from PIL import ImageDraw
|
||||
|
||||
from docling.datamodel.base_models import Page, Table, TableStructurePrediction
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options import TableFormerMode, TableStructureOptions
|
||||
from docling.datamodel.settings import settings
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.models.base_model import BasePageModel, TimeRecorder
|
||||
|
||||
|
||||
class TableStructureModel(BasePageModel):
|
||||
@ -64,7 +65,9 @@ class TableStructureModel(BasePageModel):
|
||||
|
||||
image.show()
|
||||
|
||||
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
|
||||
if not self.enabled:
|
||||
yield from page_batch
|
||||
@ -75,96 +78,105 @@ class TableStructureModel(BasePageModel):
|
||||
if not page._backend.is_valid():
|
||||
yield page
|
||||
else:
|
||||
with TimeRecorder(conv_res, "table_structure"):
|
||||
|
||||
assert page.predictions.layout is not None
|
||||
assert page.size is not None
|
||||
assert page.predictions.layout is not None
|
||||
assert page.size is not None
|
||||
|
||||
page.predictions.tablestructure = TableStructurePrediction() # dummy
|
||||
page.predictions.tablestructure = (
|
||||
TableStructurePrediction()
|
||||
) # dummy
|
||||
|
||||
in_tables = [
|
||||
(
|
||||
cluster,
|
||||
[
|
||||
round(cluster.bbox.l) * self.scale,
|
||||
round(cluster.bbox.t) * self.scale,
|
||||
round(cluster.bbox.r) * self.scale,
|
||||
round(cluster.bbox.b) * self.scale,
|
||||
],
|
||||
in_tables = [
|
||||
(
|
||||
cluster,
|
||||
[
|
||||
round(cluster.bbox.l) * self.scale,
|
||||
round(cluster.bbox.t) * self.scale,
|
||||
round(cluster.bbox.r) * self.scale,
|
||||
round(cluster.bbox.b) * self.scale,
|
||||
],
|
||||
)
|
||||
for cluster in page.predictions.layout.clusters
|
||||
if cluster.label == DocItemLabel.TABLE
|
||||
]
|
||||
if not len(in_tables):
|
||||
yield page
|
||||
continue
|
||||
|
||||
tokens = []
|
||||
for c in page.cells:
|
||||
for cluster, _ in in_tables:
|
||||
if c.bbox.area() > 0:
|
||||
if (
|
||||
c.bbox.intersection_area_with(cluster.bbox)
|
||||
/ c.bbox.area()
|
||||
> 0.2
|
||||
):
|
||||
# Only allow non empty stings (spaces) into the cells of a table
|
||||
if len(c.text.strip()) > 0:
|
||||
new_cell = copy.deepcopy(c)
|
||||
new_cell.bbox = new_cell.bbox.scaled(
|
||||
scale=self.scale
|
||||
)
|
||||
|
||||
tokens.append(new_cell.model_dump())
|
||||
|
||||
page_input = {
|
||||
"tokens": tokens,
|
||||
"width": page.size.width * self.scale,
|
||||
"height": page.size.height * self.scale,
|
||||
}
|
||||
page_input["image"] = numpy.asarray(
|
||||
page.get_image(scale=self.scale)
|
||||
)
|
||||
for cluster in page.predictions.layout.clusters
|
||||
if cluster.label == DocItemLabel.TABLE
|
||||
]
|
||||
if not len(in_tables):
|
||||
yield page
|
||||
continue
|
||||
|
||||
tokens = []
|
||||
for c in page.cells:
|
||||
for cluster, _ in in_tables:
|
||||
if c.bbox.area() > 0:
|
||||
if (
|
||||
c.bbox.intersection_area_with(cluster.bbox)
|
||||
/ c.bbox.area()
|
||||
> 0.2
|
||||
):
|
||||
# Only allow non empty stings (spaces) into the cells of a table
|
||||
if len(c.text.strip()) > 0:
|
||||
new_cell = copy.deepcopy(c)
|
||||
new_cell.bbox = new_cell.bbox.scaled(
|
||||
scale=self.scale
|
||||
table_clusters, table_bboxes = zip(*in_tables)
|
||||
|
||||
if len(table_bboxes):
|
||||
tf_output = self.tf_predictor.multi_table_predict(
|
||||
page_input, table_bboxes, do_matching=self.do_cell_matching
|
||||
)
|
||||
|
||||
for table_cluster, table_out in zip(table_clusters, tf_output):
|
||||
table_cells = []
|
||||
for element in table_out["tf_responses"]:
|
||||
|
||||
if not self.do_cell_matching:
|
||||
the_bbox = BoundingBox.model_validate(
|
||||
element["bbox"]
|
||||
).scaled(1 / self.scale)
|
||||
text_piece = page._backend.get_text_in_rect(
|
||||
the_bbox
|
||||
)
|
||||
element["bbox"]["token"] = text_piece
|
||||
|
||||
tokens.append(new_cell.model_dump())
|
||||
tc = TableCell.model_validate(element)
|
||||
if self.do_cell_matching and tc.bbox is not None:
|
||||
tc.bbox = tc.bbox.scaled(1 / self.scale)
|
||||
table_cells.append(tc)
|
||||
|
||||
page_input = {
|
||||
"tokens": tokens,
|
||||
"width": page.size.width * self.scale,
|
||||
"height": page.size.height * self.scale,
|
||||
}
|
||||
page_input["image"] = numpy.asarray(page.get_image(scale=self.scale))
|
||||
# Retrieving cols/rows, after post processing:
|
||||
num_rows = table_out["predict_details"]["num_rows"]
|
||||
num_cols = table_out["predict_details"]["num_cols"]
|
||||
otsl_seq = table_out["predict_details"]["prediction"][
|
||||
"rs_seq"
|
||||
]
|
||||
|
||||
table_clusters, table_bboxes = zip(*in_tables)
|
||||
tbl = Table(
|
||||
otsl_seq=otsl_seq,
|
||||
table_cells=table_cells,
|
||||
num_rows=num_rows,
|
||||
num_cols=num_cols,
|
||||
id=table_cluster.id,
|
||||
page_no=page.page_no,
|
||||
cluster=table_cluster,
|
||||
label=DocItemLabel.TABLE,
|
||||
)
|
||||
|
||||
if len(table_bboxes):
|
||||
tf_output = self.tf_predictor.multi_table_predict(
|
||||
page_input, table_bboxes, do_matching=self.do_cell_matching
|
||||
)
|
||||
|
||||
for table_cluster, table_out in zip(table_clusters, tf_output):
|
||||
table_cells = []
|
||||
for element in table_out["tf_responses"]:
|
||||
|
||||
if not self.do_cell_matching:
|
||||
the_bbox = BoundingBox.model_validate(
|
||||
element["bbox"]
|
||||
).scaled(1 / self.scale)
|
||||
text_piece = page._backend.get_text_in_rect(the_bbox)
|
||||
element["bbox"]["token"] = text_piece
|
||||
|
||||
tc = TableCell.model_validate(element)
|
||||
if self.do_cell_matching and tc.bbox is not None:
|
||||
tc.bbox = tc.bbox.scaled(1 / self.scale)
|
||||
table_cells.append(tc)
|
||||
|
||||
# Retrieving cols/rows, after post processing:
|
||||
num_rows = table_out["predict_details"]["num_rows"]
|
||||
num_cols = table_out["predict_details"]["num_cols"]
|
||||
otsl_seq = table_out["predict_details"]["prediction"]["rs_seq"]
|
||||
|
||||
tbl = Table(
|
||||
otsl_seq=otsl_seq,
|
||||
table_cells=table_cells,
|
||||
num_rows=num_rows,
|
||||
num_cols=num_cols,
|
||||
id=table_cluster.id,
|
||||
page_no=page.page_no,
|
||||
cluster=table_cluster,
|
||||
label=DocItemLabel.TABLE,
|
||||
)
|
||||
|
||||
page.predictions.tablestructure.table_map[table_cluster.id] = (
|
||||
tbl
|
||||
)
|
||||
page.predictions.tablestructure.table_map[
|
||||
table_cluster.id
|
||||
] = tbl
|
||||
|
||||
# For debugging purposes:
|
||||
if settings.debug.visualize_tables:
|
||||
|
@ -8,8 +8,10 @@ import pandas as pd
|
||||
from docling_core.types.doc import BoundingBox, CoordOrigin
|
||||
|
||||
from docling.datamodel.base_models import OcrCell, Page
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options import TesseractCliOcrOptions
|
||||
from docling.datamodel.settings import settings
|
||||
from docling.models.base_model import TimeRecorder
|
||||
from docling.models.base_ocr_model import BaseOcrModel
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
@ -103,7 +105,9 @@ class TesseractOcrCliModel(BaseOcrModel):
|
||||
|
||||
return df_filtered
|
||||
|
||||
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
|
||||
if not self.enabled:
|
||||
yield from page_batch
|
||||
@ -114,60 +118,64 @@ class TesseractOcrCliModel(BaseOcrModel):
|
||||
if not page._backend.is_valid():
|
||||
yield page
|
||||
else:
|
||||
ocr_rects = self.get_ocr_rects(page)
|
||||
with TimeRecorder(conv_res, "ocr"):
|
||||
|
||||
all_ocr_cells = []
|
||||
for ocr_rect in ocr_rects:
|
||||
# Skip zero area boxes
|
||||
if ocr_rect.area() == 0:
|
||||
continue
|
||||
high_res_image = page._backend.get_page_image(
|
||||
scale=self.scale, cropbox=ocr_rect
|
||||
ocr_rects = self.get_ocr_rects(page)
|
||||
|
||||
all_ocr_cells = []
|
||||
for ocr_rect in ocr_rects:
|
||||
# Skip zero area boxes
|
||||
if ocr_rect.area() == 0:
|
||||
continue
|
||||
high_res_image = page._backend.get_page_image(
|
||||
scale=self.scale, cropbox=ocr_rect
|
||||
)
|
||||
|
||||
with tempfile.NamedTemporaryFile(
|
||||
suffix=".png", mode="w"
|
||||
) as image_file:
|
||||
fname = image_file.name
|
||||
high_res_image.save(fname)
|
||||
|
||||
df = self._run_tesseract(fname)
|
||||
|
||||
# _log.info(df)
|
||||
|
||||
# Print relevant columns (bounding box and text)
|
||||
for ix, row in df.iterrows():
|
||||
text = row["text"]
|
||||
conf = row["conf"]
|
||||
|
||||
l = float(row["left"])
|
||||
b = float(row["top"])
|
||||
w = float(row["width"])
|
||||
h = float(row["height"])
|
||||
|
||||
t = b + h
|
||||
r = l + w
|
||||
|
||||
cell = OcrCell(
|
||||
id=ix,
|
||||
text=text,
|
||||
confidence=conf / 100.0,
|
||||
bbox=BoundingBox.from_tuple(
|
||||
coord=(
|
||||
(l / self.scale) + ocr_rect.l,
|
||||
(b / self.scale) + ocr_rect.t,
|
||||
(r / self.scale) + ocr_rect.l,
|
||||
(t / self.scale) + ocr_rect.t,
|
||||
),
|
||||
origin=CoordOrigin.TOPLEFT,
|
||||
),
|
||||
)
|
||||
all_ocr_cells.append(cell)
|
||||
|
||||
## Remove OCR cells which overlap with programmatic cells.
|
||||
filtered_ocr_cells = self.filter_ocr_cells(
|
||||
all_ocr_cells, page.cells
|
||||
)
|
||||
|
||||
with tempfile.NamedTemporaryFile(
|
||||
suffix=".png", mode="w"
|
||||
) as image_file:
|
||||
fname = image_file.name
|
||||
high_res_image.save(fname)
|
||||
|
||||
df = self._run_tesseract(fname)
|
||||
|
||||
# _log.info(df)
|
||||
|
||||
# Print relevant columns (bounding box and text)
|
||||
for ix, row in df.iterrows():
|
||||
text = row["text"]
|
||||
conf = row["conf"]
|
||||
|
||||
l = float(row["left"])
|
||||
b = float(row["top"])
|
||||
w = float(row["width"])
|
||||
h = float(row["height"])
|
||||
|
||||
t = b + h
|
||||
r = l + w
|
||||
|
||||
cell = OcrCell(
|
||||
id=ix,
|
||||
text=text,
|
||||
confidence=conf / 100.0,
|
||||
bbox=BoundingBox.from_tuple(
|
||||
coord=(
|
||||
(l / self.scale) + ocr_rect.l,
|
||||
(b / self.scale) + ocr_rect.t,
|
||||
(r / self.scale) + ocr_rect.l,
|
||||
(t / self.scale) + ocr_rect.t,
|
||||
),
|
||||
origin=CoordOrigin.TOPLEFT,
|
||||
),
|
||||
)
|
||||
all_ocr_cells.append(cell)
|
||||
|
||||
## Remove OCR cells which overlap with programmatic cells.
|
||||
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
|
||||
|
||||
page.cells.extend(filtered_ocr_cells)
|
||||
page.cells.extend(filtered_ocr_cells)
|
||||
|
||||
# DEBUG code:
|
||||
if settings.debug.visualize_ocr:
|
||||
|
@ -4,8 +4,10 @@ from typing import Iterable
|
||||
from docling_core.types.doc import BoundingBox, CoordOrigin
|
||||
|
||||
from docling.datamodel.base_models import OcrCell, Page
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options import TesseractOcrOptions
|
||||
from docling.datamodel.settings import settings
|
||||
from docling.models.base_model import TimeRecorder
|
||||
from docling.models.base_ocr_model import BaseOcrModel
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
@ -62,7 +64,9 @@ class TesseractOcrModel(BaseOcrModel):
|
||||
# Finalize the tesseractAPI
|
||||
self.reader.End()
|
||||
|
||||
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
|
||||
if not self.enabled:
|
||||
yield from page_batch
|
||||
@ -73,57 +77,63 @@ class TesseractOcrModel(BaseOcrModel):
|
||||
if not page._backend.is_valid():
|
||||
yield page
|
||||
else:
|
||||
assert self.reader is not None
|
||||
with TimeRecorder(conv_res, "ocr"):
|
||||
|
||||
ocr_rects = self.get_ocr_rects(page)
|
||||
assert self.reader is not None
|
||||
|
||||
all_ocr_cells = []
|
||||
for ocr_rect in ocr_rects:
|
||||
# Skip zero area boxes
|
||||
if ocr_rect.area() == 0:
|
||||
continue
|
||||
high_res_image = page._backend.get_page_image(
|
||||
scale=self.scale, cropbox=ocr_rect
|
||||
)
|
||||
ocr_rects = self.get_ocr_rects(page)
|
||||
|
||||
# Retrieve text snippets with their bounding boxes
|
||||
self.reader.SetImage(high_res_image)
|
||||
boxes = self.reader.GetComponentImages(
|
||||
self.reader_RIL.TEXTLINE, True
|
||||
)
|
||||
|
||||
cells = []
|
||||
for ix, (im, box, _, _) in enumerate(boxes):
|
||||
# Set the area of interest. Tesseract uses Bottom-Left for the origin
|
||||
self.reader.SetRectangle(box["x"], box["y"], box["w"], box["h"])
|
||||
|
||||
# Extract text within the bounding box
|
||||
text = self.reader.GetUTF8Text().strip()
|
||||
confidence = self.reader.MeanTextConf()
|
||||
left = box["x"] / self.scale
|
||||
bottom = box["y"] / self.scale
|
||||
right = (box["x"] + box["w"]) / self.scale
|
||||
top = (box["y"] + box["h"]) / self.scale
|
||||
|
||||
cells.append(
|
||||
OcrCell(
|
||||
id=ix,
|
||||
text=text,
|
||||
confidence=confidence,
|
||||
bbox=BoundingBox.from_tuple(
|
||||
coord=(left, top, right, bottom),
|
||||
origin=CoordOrigin.TOPLEFT,
|
||||
),
|
||||
)
|
||||
all_ocr_cells = []
|
||||
for ocr_rect in ocr_rects:
|
||||
# Skip zero area boxes
|
||||
if ocr_rect.area() == 0:
|
||||
continue
|
||||
high_res_image = page._backend.get_page_image(
|
||||
scale=self.scale, cropbox=ocr_rect
|
||||
)
|
||||
|
||||
# del high_res_image
|
||||
all_ocr_cells.extend(cells)
|
||||
# Retrieve text snippets with their bounding boxes
|
||||
self.reader.SetImage(high_res_image)
|
||||
boxes = self.reader.GetComponentImages(
|
||||
self.reader_RIL.TEXTLINE, True
|
||||
)
|
||||
|
||||
## Remove OCR cells which overlap with programmatic cells.
|
||||
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
|
||||
cells = []
|
||||
for ix, (im, box, _, _) in enumerate(boxes):
|
||||
# Set the area of interest. Tesseract uses Bottom-Left for the origin
|
||||
self.reader.SetRectangle(
|
||||
box["x"], box["y"], box["w"], box["h"]
|
||||
)
|
||||
|
||||
page.cells.extend(filtered_ocr_cells)
|
||||
# Extract text within the bounding box
|
||||
text = self.reader.GetUTF8Text().strip()
|
||||
confidence = self.reader.MeanTextConf()
|
||||
left = box["x"] / self.scale
|
||||
bottom = box["y"] / self.scale
|
||||
right = (box["x"] + box["w"]) / self.scale
|
||||
top = (box["y"] + box["h"]) / self.scale
|
||||
|
||||
cells.append(
|
||||
OcrCell(
|
||||
id=ix,
|
||||
text=text,
|
||||
confidence=confidence,
|
||||
bbox=BoundingBox.from_tuple(
|
||||
coord=(left, top, right, bottom),
|
||||
origin=CoordOrigin.TOPLEFT,
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
# del high_res_image
|
||||
all_ocr_cells.extend(cells)
|
||||
|
||||
## Remove OCR cells which overlap with programmatic cells.
|
||||
filtered_ocr_cells = self.filter_ocr_cells(
|
||||
all_ocr_cells, page.cells
|
||||
)
|
||||
|
||||
page.cells.extend(filtered_ocr_cells)
|
||||
|
||||
# DEBUG code:
|
||||
if settings.debug.visualize_ocr:
|
||||
|
@ -15,10 +15,15 @@ from docling.datamodel.base_models import (
|
||||
ErrorItem,
|
||||
Page,
|
||||
)
|
||||
from docling.datamodel.document import ConversionResult, InputDocument
|
||||
from docling.datamodel.document import (
|
||||
ConversionResult,
|
||||
InputDocument,
|
||||
ProfilingItem,
|
||||
ProfilingScope,
|
||||
)
|
||||
from docling.datamodel.pipeline_options import PipelineOptions
|
||||
from docling.datamodel.settings import settings
|
||||
from docling.models.base_model import BaseEnrichmentModel
|
||||
from docling.models.base_model import BaseEnrichmentModel, TimeRecorder
|
||||
from docling.utils.utils import chunkify
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
@ -37,11 +42,11 @@ class BasePipeline(ABC):
|
||||
try:
|
||||
# These steps are building and assembling the structure of the
|
||||
# output DoclingDocument
|
||||
conv_res = self._build_document(in_doc, conv_res)
|
||||
conv_res = self._assemble_document(in_doc, conv_res)
|
||||
conv_res = self._build_document(conv_res)
|
||||
conv_res = self._assemble_document(conv_res)
|
||||
# From this stage, all operations should rely only on conv_res.output
|
||||
conv_res = self._enrich_document(in_doc, conv_res)
|
||||
conv_res.status = self._determine_status(in_doc, conv_res)
|
||||
conv_res = self._enrich_document(conv_res)
|
||||
conv_res.status = self._determine_status(conv_res)
|
||||
except Exception as e:
|
||||
conv_res.status = ConversionStatus.FAILURE
|
||||
if raises_on_error:
|
||||
@ -50,19 +55,13 @@ class BasePipeline(ABC):
|
||||
return conv_res
|
||||
|
||||
@abstractmethod
|
||||
def _build_document(
|
||||
self, in_doc: InputDocument, conv_res: ConversionResult
|
||||
) -> ConversionResult:
|
||||
def _build_document(self, conv_res: ConversionResult) -> ConversionResult:
|
||||
pass
|
||||
|
||||
def _assemble_document(
|
||||
self, in_doc: InputDocument, conv_res: ConversionResult
|
||||
) -> ConversionResult:
|
||||
def _assemble_document(self, conv_res: ConversionResult) -> ConversionResult:
|
||||
return conv_res
|
||||
|
||||
def _enrich_document(
|
||||
self, in_doc: InputDocument, conv_res: ConversionResult
|
||||
) -> ConversionResult:
|
||||
def _enrich_document(self, conv_res: ConversionResult) -> ConversionResult:
|
||||
|
||||
def _filter_elements(
|
||||
doc: DoclingDocument, model: BaseEnrichmentModel
|
||||
@ -71,24 +70,23 @@ class BasePipeline(ABC):
|
||||
if model.is_processable(doc=doc, element=element):
|
||||
yield element
|
||||
|
||||
for model in self.enrichment_pipe:
|
||||
for element_batch in chunkify(
|
||||
_filter_elements(conv_res.document, model),
|
||||
settings.perf.elements_batch_size,
|
||||
):
|
||||
# TODO: currently we assume the element itself is modified, because
|
||||
# we don't have an interface to save the element back to the document
|
||||
for element in model(
|
||||
doc=conv_res.document, element_batch=element_batch
|
||||
): # Must exhaust!
|
||||
pass
|
||||
with TimeRecorder(conv_res, "doc_enrich", scope=ProfilingScope.DOCUMENT):
|
||||
for model in self.enrichment_pipe:
|
||||
for element_batch in chunkify(
|
||||
_filter_elements(conv_res.document, model),
|
||||
settings.perf.elements_batch_size,
|
||||
):
|
||||
# TODO: currently we assume the element itself is modified, because
|
||||
# we don't have an interface to save the element back to the document
|
||||
for element in model(
|
||||
doc=conv_res.document, element_batch=element_batch
|
||||
): # Must exhaust!
|
||||
pass
|
||||
|
||||
return conv_res
|
||||
|
||||
@abstractmethod
|
||||
def _determine_status(
|
||||
self, in_doc: InputDocument, conv_res: ConversionResult
|
||||
) -> ConversionStatus:
|
||||
def _determine_status(self, conv_res: ConversionResult) -> ConversionStatus:
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
@ -110,66 +108,68 @@ class BasePipeline(ABC):
|
||||
|
||||
class PaginatedPipeline(BasePipeline): # TODO this is a bad name.
|
||||
|
||||
def _apply_on_pages(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||
def _apply_on_pages(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
for model in self.build_pipe:
|
||||
page_batch = model(page_batch)
|
||||
page_batch = model(conv_res, page_batch)
|
||||
|
||||
yield from page_batch
|
||||
|
||||
def _build_document(
|
||||
self, in_doc: InputDocument, conv_res: ConversionResult
|
||||
) -> ConversionResult:
|
||||
def _build_document(self, conv_res: ConversionResult) -> ConversionResult:
|
||||
|
||||
if not isinstance(in_doc._backend, PdfDocumentBackend):
|
||||
if not isinstance(conv_res.input._backend, PdfDocumentBackend):
|
||||
raise RuntimeError(
|
||||
f"The selected backend {type(in_doc._backend).__name__} for {in_doc.file} is not a PDF backend. "
|
||||
f"The selected backend {type(conv_res.input._backend).__name__} for {conv_res.input.file} is not a PDF backend. "
|
||||
f"Can not convert this with a PDF pipeline. "
|
||||
f"Please check your format configuration on DocumentConverter."
|
||||
)
|
||||
# conv_res.status = ConversionStatus.FAILURE
|
||||
# return conv_res
|
||||
|
||||
for i in range(0, in_doc.page_count):
|
||||
conv_res.pages.append(Page(page_no=i))
|
||||
with TimeRecorder(conv_res, "doc_build", scope=ProfilingScope.DOCUMENT):
|
||||
|
||||
try:
|
||||
# Iterate batches of pages (page_batch_size) in the doc
|
||||
for page_batch in chunkify(conv_res.pages, settings.perf.page_batch_size):
|
||||
start_pb_time = time.time()
|
||||
for i in range(0, conv_res.input.page_count):
|
||||
conv_res.pages.append(Page(page_no=i))
|
||||
|
||||
# 1. Initialise the page resources
|
||||
init_pages = map(
|
||||
functools.partial(self.initialize_page, in_doc), page_batch
|
||||
try:
|
||||
# Iterate batches of pages (page_batch_size) in the doc
|
||||
for page_batch in chunkify(
|
||||
conv_res.pages, settings.perf.page_batch_size
|
||||
):
|
||||
start_pb_time = time.time()
|
||||
|
||||
# 1. Initialise the page resources
|
||||
init_pages = map(
|
||||
functools.partial(self.initialize_page, conv_res), page_batch
|
||||
)
|
||||
|
||||
# 2. Run pipeline stages
|
||||
pipeline_pages = self._apply_on_pages(conv_res, init_pages)
|
||||
|
||||
for p in pipeline_pages: # Must exhaust!
|
||||
pass
|
||||
|
||||
end_pb_time = time.time() - start_pb_time
|
||||
_log.debug(f"Finished converting page batch time={end_pb_time:.3f}")
|
||||
|
||||
except Exception as e:
|
||||
conv_res.status = ConversionStatus.FAILURE
|
||||
trace = "\n".join(traceback.format_exception(e))
|
||||
_log.warning(
|
||||
f"Encountered an error during conversion of document {conv_res.input.document_hash}:\n"
|
||||
f"{trace}"
|
||||
)
|
||||
raise e
|
||||
|
||||
# 2. Run pipeline stages
|
||||
pipeline_pages = self._apply_on_pages(init_pages)
|
||||
|
||||
for p in pipeline_pages: # Must exhaust!
|
||||
pass
|
||||
|
||||
end_pb_time = time.time() - start_pb_time
|
||||
_log.debug(f"Finished converting page batch time={end_pb_time:.3f}")
|
||||
|
||||
except Exception as e:
|
||||
conv_res.status = ConversionStatus.FAILURE
|
||||
trace = "\n".join(traceback.format_exception(e))
|
||||
_log.warning(
|
||||
f"Encountered an error during conversion of document {in_doc.document_hash}:\n"
|
||||
f"{trace}"
|
||||
)
|
||||
raise e
|
||||
|
||||
finally:
|
||||
# Always unload the PDF backend, even in case of failure
|
||||
if in_doc._backend:
|
||||
in_doc._backend.unload()
|
||||
finally:
|
||||
# Always unload the PDF backend, even in case of failure
|
||||
if conv_res.input._backend:
|
||||
conv_res.input._backend.unload()
|
||||
|
||||
return conv_res
|
||||
|
||||
def _determine_status(
|
||||
self, in_doc: InputDocument, conv_res: ConversionResult
|
||||
) -> ConversionStatus:
|
||||
def _determine_status(self, conv_res: ConversionResult) -> ConversionStatus:
|
||||
status = ConversionStatus.SUCCESS
|
||||
for page in conv_res.pages:
|
||||
if page._backend is None or not page._backend.is_valid():
|
||||
@ -186,5 +186,5 @@ class PaginatedPipeline(BasePipeline): # TODO this is a bad name.
|
||||
|
||||
# Initialise and load resources for a page
|
||||
@abstractmethod
|
||||
def initialize_page(self, doc: InputDocument, page: Page) -> Page:
|
||||
def initialize_page(self, conv_res: ConversionResult, page: Page) -> Page:
|
||||
pass
|
||||
|
@ -5,8 +5,9 @@ from docling.backend.abstract_backend import (
|
||||
DeclarativeDocumentBackend,
|
||||
)
|
||||
from docling.datamodel.base_models import ConversionStatus
|
||||
from docling.datamodel.document import ConversionResult, InputDocument
|
||||
from docling.datamodel.document import ConversionResult, InputDocument, ProfilingScope
|
||||
from docling.datamodel.pipeline_options import PipelineOptions
|
||||
from docling.models.base_model import TimeRecorder
|
||||
from docling.pipeline.base_pipeline import BasePipeline
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
@ -22,13 +23,11 @@ class SimplePipeline(BasePipeline):
|
||||
def __init__(self, pipeline_options: PipelineOptions):
|
||||
super().__init__(pipeline_options)
|
||||
|
||||
def _build_document(
|
||||
self, in_doc: InputDocument, conv_res: ConversionResult
|
||||
) -> ConversionResult:
|
||||
def _build_document(self, conv_res: ConversionResult) -> ConversionResult:
|
||||
|
||||
if not isinstance(in_doc._backend, DeclarativeDocumentBackend):
|
||||
if not isinstance(conv_res.input._backend, DeclarativeDocumentBackend):
|
||||
raise RuntimeError(
|
||||
f"The selected backend {type(in_doc._backend).__name__} for {in_doc.file} is not a declarative backend. "
|
||||
f"The selected backend {type(conv_res.input._backend).__name__} for {conv_res.input.file} is not a declarative backend. "
|
||||
f"Can not convert this with simple pipeline. "
|
||||
f"Please check your format configuration on DocumentConverter."
|
||||
)
|
||||
@ -38,13 +37,11 @@ class SimplePipeline(BasePipeline):
|
||||
# Instead of running a page-level pipeline to build up the document structure,
|
||||
# the backend is expected to be of type DeclarativeDocumentBackend, which can output
|
||||
# a DoclingDocument straight.
|
||||
|
||||
conv_res.document = in_doc._backend.convert()
|
||||
with TimeRecorder(conv_res, "doc_build", scope=ProfilingScope.DOCUMENT):
|
||||
conv_res.document = conv_res.input._backend.convert()
|
||||
return conv_res
|
||||
|
||||
def _determine_status(
|
||||
self, in_doc: InputDocument, conv_res: ConversionResult
|
||||
) -> ConversionStatus:
|
||||
def _determine_status(self, conv_res: ConversionResult) -> ConversionStatus:
|
||||
# This is called only if the previous steps didn't raise.
|
||||
# Since we don't have anything else to evaluate, we can
|
||||
# safely return SUCCESS.
|
||||
|
@ -7,13 +7,14 @@ from docling_core.types.doc import DocItem, ImageRef, PictureItem, TableItem
|
||||
from docling.backend.abstract_backend import AbstractDocumentBackend
|
||||
from docling.backend.pdf_backend import PdfDocumentBackend
|
||||
from docling.datamodel.base_models import AssembledUnit, Page
|
||||
from docling.datamodel.document import ConversionResult, InputDocument
|
||||
from docling.datamodel.document import ConversionResult, InputDocument, ProfilingScope
|
||||
from docling.datamodel.pipeline_options import (
|
||||
EasyOcrOptions,
|
||||
PdfPipelineOptions,
|
||||
TesseractCliOcrOptions,
|
||||
TesseractOcrOptions,
|
||||
)
|
||||
from docling.models.base_model import TimeRecorder
|
||||
from docling.models.base_ocr_model import BaseOcrModel
|
||||
from docling.models.ds_glm_model import GlmModel, GlmOptions
|
||||
from docling.models.easyocr_model import EasyOcrModel
|
||||
@ -119,73 +120,75 @@ class StandardPdfPipeline(PaginatedPipeline):
|
||||
)
|
||||
return None
|
||||
|
||||
def initialize_page(self, doc: InputDocument, page: Page) -> Page:
|
||||
page._backend = doc._backend.load_page(page.page_no) # type: ignore
|
||||
if page._backend is not None and page._backend.is_valid():
|
||||
page.size = page._backend.get_size()
|
||||
def initialize_page(self, conv_res: ConversionResult, page: Page) -> Page:
|
||||
with TimeRecorder(conv_res, "init_page"):
|
||||
page._backend = conv_res.input._backend.load_page(page.page_no) # type: ignore
|
||||
if page._backend is not None and page._backend.is_valid():
|
||||
page.size = page._backend.get_size()
|
||||
|
||||
return page
|
||||
|
||||
def _assemble_document(
|
||||
self, in_doc: InputDocument, conv_res: ConversionResult
|
||||
) -> ConversionResult:
|
||||
def _assemble_document(self, conv_res: ConversionResult) -> ConversionResult:
|
||||
all_elements = []
|
||||
all_headers = []
|
||||
all_body = []
|
||||
|
||||
for p in conv_res.pages:
|
||||
if p.assembled is not None:
|
||||
for el in p.assembled.body:
|
||||
all_body.append(el)
|
||||
for el in p.assembled.headers:
|
||||
all_headers.append(el)
|
||||
for el in p.assembled.elements:
|
||||
all_elements.append(el)
|
||||
with TimeRecorder(conv_res, "doc_assemble", scope=ProfilingScope.DOCUMENT):
|
||||
for p in conv_res.pages:
|
||||
if p.assembled is not None:
|
||||
for el in p.assembled.body:
|
||||
all_body.append(el)
|
||||
for el in p.assembled.headers:
|
||||
all_headers.append(el)
|
||||
for el in p.assembled.elements:
|
||||
all_elements.append(el)
|
||||
|
||||
conv_res.assembled = AssembledUnit(
|
||||
elements=all_elements, headers=all_headers, body=all_body
|
||||
)
|
||||
conv_res.assembled = AssembledUnit(
|
||||
elements=all_elements, headers=all_headers, body=all_body
|
||||
)
|
||||
|
||||
conv_res.document = self.glm_model(conv_res)
|
||||
conv_res.document = self.glm_model(conv_res)
|
||||
|
||||
# Generate page images in the output
|
||||
if self.pipeline_options.generate_page_images:
|
||||
for page in conv_res.pages:
|
||||
assert page.image is not None
|
||||
page_no = page.page_no + 1
|
||||
conv_res.document.pages[page_no].image = ImageRef.from_pil(
|
||||
page.image, dpi=int(72 * self.pipeline_options.images_scale)
|
||||
)
|
||||
|
||||
# Generate images of the requested element types
|
||||
if (
|
||||
self.pipeline_options.generate_picture_images
|
||||
or self.pipeline_options.generate_table_images
|
||||
):
|
||||
scale = self.pipeline_options.images_scale
|
||||
for element, _level in conv_res.document.iterate_items():
|
||||
if not isinstance(element, DocItem) or len(element.prov) == 0:
|
||||
continue
|
||||
if (
|
||||
isinstance(element, PictureItem)
|
||||
and self.pipeline_options.generate_picture_images
|
||||
) or (
|
||||
isinstance(element, TableItem)
|
||||
and self.pipeline_options.generate_table_images
|
||||
):
|
||||
page_ix = element.prov[0].page_no - 1
|
||||
page = conv_res.pages[page_ix]
|
||||
assert page.size is not None
|
||||
# Generate page images in the output
|
||||
if self.pipeline_options.generate_page_images:
|
||||
for page in conv_res.pages:
|
||||
assert page.image is not None
|
||||
|
||||
crop_bbox = (
|
||||
element.prov[0]
|
||||
.bbox.scaled(scale=scale)
|
||||
.to_top_left_origin(page_height=page.size.height * scale)
|
||||
page_no = page.page_no + 1
|
||||
conv_res.document.pages[page_no].image = ImageRef.from_pil(
|
||||
page.image, dpi=int(72 * self.pipeline_options.images_scale)
|
||||
)
|
||||
|
||||
cropped_im = page.image.crop(crop_bbox.as_tuple())
|
||||
element.image = ImageRef.from_pil(cropped_im, dpi=int(72 * scale))
|
||||
# Generate images of the requested element types
|
||||
if (
|
||||
self.pipeline_options.generate_picture_images
|
||||
or self.pipeline_options.generate_table_images
|
||||
):
|
||||
scale = self.pipeline_options.images_scale
|
||||
for element, _level in conv_res.document.iterate_items():
|
||||
if not isinstance(element, DocItem) or len(element.prov) == 0:
|
||||
continue
|
||||
if (
|
||||
isinstance(element, PictureItem)
|
||||
and self.pipeline_options.generate_picture_images
|
||||
) or (
|
||||
isinstance(element, TableItem)
|
||||
and self.pipeline_options.generate_table_images
|
||||
):
|
||||
page_ix = element.prov[0].page_no - 1
|
||||
page = conv_res.pages[page_ix]
|
||||
assert page.size is not None
|
||||
assert page.image is not None
|
||||
|
||||
crop_bbox = (
|
||||
element.prov[0]
|
||||
.bbox.scaled(scale=scale)
|
||||
.to_top_left_origin(page_height=page.size.height * scale)
|
||||
)
|
||||
|
||||
cropped_im = page.image.crop(crop_bbox.as_tuple())
|
||||
element.image = ImageRef.from_pil(
|
||||
cropped_im, dpi=int(72 * scale)
|
||||
)
|
||||
|
||||
return conv_res
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user