Add profiling code to all models

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
This commit is contained in:
Christoph Auer 2024-10-28 15:04:09 +01:00
parent a00f01cf07
commit 0814f32ae4
15 changed files with 644 additions and 527 deletions

View File

@ -6,6 +6,7 @@ from pathlib import Path, PurePath
from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple, Type, Union from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple, Type, Union
import filetype import filetype
import numpy as np
from docling_core.types.doc import ( from docling_core.types.doc import (
DocItem, DocItem,
DocItemLabel, DocItemLabel,
@ -179,6 +180,29 @@ class DocumentFormat(str, Enum):
V1 = "v1" V1 = "v1"
class ProfilingScope(str, Enum):
PAGE = "page"
DOCUMENT = "document"
class ProfilingItem(BaseModel):
scope: ProfilingScope
count: int = 0
times: List[float] = []
def avg(self) -> float:
return np.average(self.times) # type: ignore
def std(self) -> float:
return np.std(self.times) # type: ignore
def mean(self) -> float:
return np.mean(self.times) # type: ignore
def percentile(self, perc: float) -> float:
return np.percentile(self.times, perc) # type: ignore
class ConversionResult(BaseModel): class ConversionResult(BaseModel):
input: InputDocument input: InputDocument
@ -187,6 +211,7 @@ class ConversionResult(BaseModel):
pages: List[Page] = [] pages: List[Page] = []
assembled: AssembledUnit = AssembledUnit() assembled: AssembledUnit = AssembledUnit()
timings: Dict[str, ProfilingItem] = {}
document: DoclingDocument = _EMPTY_DOCLING_DOC document: DoclingDocument = _EMPTY_DOCLING_DOC

View File

@ -32,6 +32,8 @@ class DebugSettings(BaseModel):
visualize_layout: bool = False visualize_layout: bool = False
visualize_tables: bool = False visualize_tables: bool = False
profile_pipeline_timings: bool = False
class AppSettings(BaseSettings): class AppSettings(BaseSettings):
perf: BatchConcurrencySettings perf: BatchConcurrencySettings

View File

@ -1,14 +1,19 @@
import time
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import Any, Iterable from typing import Any, Callable, Iterable, Type
from docling_core.types.doc import DoclingDocument, NodeItem from docling_core.types.doc import DoclingDocument, NodeItem
from docling.datamodel.base_models import Page from docling.datamodel.base_models import Page
from docling.datamodel.document import ConversionResult, ProfilingItem, ProfilingScope
from docling.datamodel.settings import settings
class BasePageModel(ABC): class BasePageModel(ABC):
@abstractmethod @abstractmethod
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]: def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
pass pass
@ -23,3 +28,28 @@ class BaseEnrichmentModel(ABC):
self, doc: DoclingDocument, element_batch: Iterable[NodeItem] self, doc: DoclingDocument, element_batch: Iterable[NodeItem]
) -> Iterable[Any]: ) -> Iterable[Any]:
pass pass
class TimeRecorder:
def __init__(
self,
conv_res: ConversionResult,
key: str,
scope: ProfilingScope = ProfilingScope.PAGE,
):
if settings.debug.profile_pipeline_timings:
if key not in conv_res.timings.keys():
conv_res.timings[key] = ProfilingItem(scope=scope)
self.conv_res = conv_res
self.key = key
def __enter__(self):
if settings.debug.profile_pipeline_timings:
self.start = time.monotonic()
return self
def __exit__(self, *args):
if settings.debug.profile_pipeline_timings:
elapsed = time.monotonic() - self.start
self.conv_res.timings[self.key].times.append(elapsed)
self.conv_res.timings[self.key].count += 1

View File

@ -10,12 +10,14 @@ from rtree import index
from scipy.ndimage import find_objects, label from scipy.ndimage import find_objects, label
from docling.datamodel.base_models import OcrCell, Page from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import OcrOptions from docling.datamodel.pipeline_options import OcrOptions
from docling.models.base_model import BasePageModel
_log = logging.getLogger(__name__) _log = logging.getLogger(__name__)
class BaseOcrModel: class BaseOcrModel(BasePageModel):
def __init__(self, enabled: bool, options: OcrOptions): def __init__(self, enabled: bool, options: OcrOptions):
self.enabled = enabled self.enabled = enabled
self.options = options self.options = options
@ -133,5 +135,7 @@ class BaseOcrModel:
image.show() image.show()
@abstractmethod @abstractmethod
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]: def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
pass pass

View File

@ -27,6 +27,7 @@ from pydantic import BaseModel, ConfigDict
from docling.datamodel.base_models import Cluster, FigureElement, Table, TextElement from docling.datamodel.base_models import Cluster, FigureElement, Table, TextElement
from docling.datamodel.document import ConversionResult, layout_label_to_ds_type from docling.datamodel.document import ConversionResult, layout_label_to_ds_type
from docling.models.base_model import TimeRecorder
from docling.utils.utils import create_hash from docling.utils.utils import create_hash
@ -226,6 +227,7 @@ class GlmModel:
return ds_doc return ds_doc
def __call__(self, conv_res: ConversionResult) -> DoclingDocument: def __call__(self, conv_res: ConversionResult) -> DoclingDocument:
with TimeRecorder(conv_res, "glm"):
ds_doc = self._to_legacy_document(conv_res) ds_doc = self._to_legacy_document(conv_res)
ds_doc_dict = ds_doc.model_dump(by_alias=True) ds_doc_dict = ds_doc.model_dump(by_alias=True)

View File

@ -1,12 +1,15 @@
import logging import logging
import time
from typing import Iterable from typing import Iterable
import numpy import numpy
from docling_core.types.doc import BoundingBox, CoordOrigin from docling_core.types.doc import BoundingBox, CoordOrigin
from docling.datamodel.base_models import OcrCell, Page from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.document import ConversionResult, ProfilingItem
from docling.datamodel.pipeline_options import EasyOcrOptions from docling.datamodel.pipeline_options import EasyOcrOptions
from docling.datamodel.settings import settings from docling.datamodel.settings import settings
from docling.models.base_model import TimeRecorder
from docling.models.base_ocr_model import BaseOcrModel from docling.models.base_ocr_model import BaseOcrModel
_log = logging.getLogger(__name__) _log = logging.getLogger(__name__)
@ -34,17 +37,21 @@ class EasyOcrModel(BaseOcrModel):
download_enabled=self.options.download_enabled, download_enabled=self.options.download_enabled,
) )
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]: def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled: if not self.enabled:
yield from page_batch yield from page_batch
return return
for page in page_batch: for page in page_batch:
assert page._backend is not None assert page._backend is not None
if not page._backend.is_valid(): if not page._backend.is_valid():
yield page yield page
else: else:
with TimeRecorder(conv_res, "ocr"):
ocr_rects = self.get_ocr_rects(page) ocr_rects = self.get_ocr_rects(page)
all_ocr_cells = [] all_ocr_cells = []
@ -81,7 +88,9 @@ class EasyOcrModel(BaseOcrModel):
all_ocr_cells.extend(cells) all_ocr_cells.extend(cells)
## Remove OCR cells which overlap with programmatic cells. ## Remove OCR cells which overlap with programmatic cells.
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells) filtered_ocr_cells = self.filter_ocr_cells(
all_ocr_cells, page.cells
)
page.cells.extend(filtered_ocr_cells) page.cells.extend(filtered_ocr_cells)

View File

@ -16,8 +16,9 @@ from docling.datamodel.base_models import (
LayoutPrediction, LayoutPrediction,
Page, Page,
) )
from docling.datamodel.document import ConversionResult
from docling.datamodel.settings import settings from docling.datamodel.settings import settings
from docling.models.base_model import BasePageModel from docling.models.base_model import BasePageModel, TimeRecorder
from docling.utils import layout_utils as lu from docling.utils import layout_utils as lu
_log = logging.getLogger(__name__) _log = logging.getLogger(__name__)
@ -272,12 +273,16 @@ class LayoutModel(BasePageModel):
return clusters_out_new, cells_out_new return clusters_out_new, cells_out_new
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]: def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for page in page_batch: for page in page_batch:
assert page._backend is not None assert page._backend is not None
if not page._backend.is_valid(): if not page._backend.is_valid():
yield page yield page
else: else:
with TimeRecorder(conv_res, "layout"):
assert page.size is not None assert page.size is not None
clusters = [] clusters = []
@ -285,7 +290,10 @@ class LayoutModel(BasePageModel):
self.layout_predictor.predict(page.get_image(scale=1.0)) self.layout_predictor.predict(page.get_image(scale=1.0))
): ):
label = DocItemLabel( label = DocItemLabel(
pred_item["label"].lower().replace(" ", "_").replace("-", "_") pred_item["label"]
.lower()
.replace(" ", "_")
.replace("-", "_")
) # Temporary, until docling-ibm-model uses docling-core types ) # Temporary, until docling-ibm-model uses docling-core types
cluster = Cluster( cluster = Cluster(
id=ix, id=ix,
@ -330,7 +338,9 @@ class LayoutModel(BasePageModel):
) )
for tc in c.cells: # [:1]: for tc in c.cells: # [:1]:
x0, y0, x1, y1 = tc.bbox.as_tuple() x0, y0, x1, y1 = tc.bbox.as_tuple()
draw.rectangle([(x0, y0), (x1, y1)], outline=cell_color) draw.rectangle(
[(x0, y0), (x1, y1)], outline=cell_color
)
if show: if show:
image.show() image.show()
@ -340,9 +350,9 @@ class LayoutModel(BasePageModel):
clusters, page.cells, page.size.height clusters, page.cells, page.size.height
) )
page.predictions.layout = LayoutPrediction(clusters=clusters)
if settings.debug.visualize_layout: if settings.debug.visualize_layout:
draw_clusters_and_cells() draw_clusters_and_cells()
page.predictions.layout = LayoutPrediction(clusters=clusters)
yield page yield page

View File

@ -12,7 +12,8 @@ from docling.datamodel.base_models import (
Table, Table,
TextElement, TextElement,
) )
from docling.models.base_model import BasePageModel from docling.datamodel.document import ConversionResult
from docling.models.base_model import BasePageModel, TimeRecorder
from docling.models.layout_model import LayoutModel from docling.models.layout_model import LayoutModel
_log = logging.getLogger(__name__) _log = logging.getLogger(__name__)
@ -51,12 +52,16 @@ class PageAssembleModel(BasePageModel):
return sanitized_text.strip() # Strip any leading or trailing whitespace return sanitized_text.strip() # Strip any leading or trailing whitespace
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]: def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for page in page_batch: for page in page_batch:
assert page._backend is not None assert page._backend is not None
if not page._backend.is_valid(): if not page._backend.is_valid():
yield page yield page
else: else:
with TimeRecorder(conv_res, "page_assemble"):
assert page.predictions.layout is not None assert page.predictions.layout is not None
# assembles some JSON output page by page. # assembles some JSON output page by page.
@ -112,11 +117,9 @@ class PageAssembleModel(BasePageModel):
elif cluster.label == LayoutModel.FIGURE_LABEL: elif cluster.label == LayoutModel.FIGURE_LABEL:
fig = None fig = None
if page.predictions.figures_classification: if page.predictions.figures_classification:
fig = ( fig = page.predictions.figures_classification.figure_map.get(
page.predictions.figures_classification.figure_map.get(
cluster.id, None cluster.id, None
) )
)
if ( if (
not fig not fig
): # fallback: add figure without classification, if it isn't present ): # fallback: add figure without classification, if it isn't present
@ -133,11 +136,9 @@ class PageAssembleModel(BasePageModel):
elif cluster.label == LayoutModel.FORMULA_LABEL: elif cluster.label == LayoutModel.FORMULA_LABEL:
equation = None equation = None
if page.predictions.equations_prediction: if page.predictions.equations_prediction:
equation = ( equation = page.predictions.equations_prediction.equation_map.get(
page.predictions.equations_prediction.equation_map.get(
cluster.id, None cluster.id, None
) )
)
if ( if (
not equation not equation
): # fallback: add empty formula, if it isn't present ): # fallback: add empty formula, if it isn't present

View File

@ -4,7 +4,8 @@ from PIL import ImageDraw
from pydantic import BaseModel from pydantic import BaseModel
from docling.datamodel.base_models import Page from docling.datamodel.base_models import Page
from docling.models.base_model import BasePageModel from docling.datamodel.document import ConversionResult
from docling.models.base_model import BasePageModel, TimeRecorder
class PagePreprocessingOptions(BaseModel): class PagePreprocessingOptions(BaseModel):
@ -15,12 +16,15 @@ class PagePreprocessingModel(BasePageModel):
def __init__(self, options: PagePreprocessingOptions): def __init__(self, options: PagePreprocessingOptions):
self.options = options self.options = options
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]: def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for page in page_batch: for page in page_batch:
assert page._backend is not None assert page._backend is not None
if not page._backend.is_valid(): if not page._backend.is_valid():
yield page yield page
else: else:
with TimeRecorder(conv_res, "page_parse"):
page = self._populate_page_images(page) page = self._populate_page_images(page)
page = self._parse_page_cells(page) page = self._parse_page_cells(page)
yield page yield page

View File

@ -8,9 +8,10 @@ from docling_ibm_models.tableformer.data_management.tf_predictor import TFPredic
from PIL import ImageDraw from PIL import ImageDraw
from docling.datamodel.base_models import Page, Table, TableStructurePrediction from docling.datamodel.base_models import Page, Table, TableStructurePrediction
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import TableFormerMode, TableStructureOptions from docling.datamodel.pipeline_options import TableFormerMode, TableStructureOptions
from docling.datamodel.settings import settings from docling.datamodel.settings import settings
from docling.models.base_model import BasePageModel from docling.models.base_model import BasePageModel, TimeRecorder
class TableStructureModel(BasePageModel): class TableStructureModel(BasePageModel):
@ -64,7 +65,9 @@ class TableStructureModel(BasePageModel):
image.show() image.show()
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]: def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled: if not self.enabled:
yield from page_batch yield from page_batch
@ -75,11 +78,14 @@ class TableStructureModel(BasePageModel):
if not page._backend.is_valid(): if not page._backend.is_valid():
yield page yield page
else: else:
with TimeRecorder(conv_res, "table_structure"):
assert page.predictions.layout is not None assert page.predictions.layout is not None
assert page.size is not None assert page.size is not None
page.predictions.tablestructure = TableStructurePrediction() # dummy page.predictions.tablestructure = (
TableStructurePrediction()
) # dummy
in_tables = [ in_tables = [
( (
@ -121,7 +127,9 @@ class TableStructureModel(BasePageModel):
"width": page.size.width * self.scale, "width": page.size.width * self.scale,
"height": page.size.height * self.scale, "height": page.size.height * self.scale,
} }
page_input["image"] = numpy.asarray(page.get_image(scale=self.scale)) page_input["image"] = numpy.asarray(
page.get_image(scale=self.scale)
)
table_clusters, table_bboxes = zip(*in_tables) table_clusters, table_bboxes = zip(*in_tables)
@ -138,7 +146,9 @@ class TableStructureModel(BasePageModel):
the_bbox = BoundingBox.model_validate( the_bbox = BoundingBox.model_validate(
element["bbox"] element["bbox"]
).scaled(1 / self.scale) ).scaled(1 / self.scale)
text_piece = page._backend.get_text_in_rect(the_bbox) text_piece = page._backend.get_text_in_rect(
the_bbox
)
element["bbox"]["token"] = text_piece element["bbox"]["token"] = text_piece
tc = TableCell.model_validate(element) tc = TableCell.model_validate(element)
@ -149,7 +159,9 @@ class TableStructureModel(BasePageModel):
# Retrieving cols/rows, after post processing: # Retrieving cols/rows, after post processing:
num_rows = table_out["predict_details"]["num_rows"] num_rows = table_out["predict_details"]["num_rows"]
num_cols = table_out["predict_details"]["num_cols"] num_cols = table_out["predict_details"]["num_cols"]
otsl_seq = table_out["predict_details"]["prediction"]["rs_seq"] otsl_seq = table_out["predict_details"]["prediction"][
"rs_seq"
]
tbl = Table( tbl = Table(
otsl_seq=otsl_seq, otsl_seq=otsl_seq,
@ -162,9 +174,9 @@ class TableStructureModel(BasePageModel):
label=DocItemLabel.TABLE, label=DocItemLabel.TABLE,
) )
page.predictions.tablestructure.table_map[table_cluster.id] = ( page.predictions.tablestructure.table_map[
tbl table_cluster.id
) ] = tbl
# For debugging purposes: # For debugging purposes:
if settings.debug.visualize_tables: if settings.debug.visualize_tables:

View File

@ -8,8 +8,10 @@ import pandas as pd
from docling_core.types.doc import BoundingBox, CoordOrigin from docling_core.types.doc import BoundingBox, CoordOrigin
from docling.datamodel.base_models import OcrCell, Page from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import TesseractCliOcrOptions from docling.datamodel.pipeline_options import TesseractCliOcrOptions
from docling.datamodel.settings import settings from docling.datamodel.settings import settings
from docling.models.base_model import TimeRecorder
from docling.models.base_ocr_model import BaseOcrModel from docling.models.base_ocr_model import BaseOcrModel
_log = logging.getLogger(__name__) _log = logging.getLogger(__name__)
@ -103,7 +105,9 @@ class TesseractOcrCliModel(BaseOcrModel):
return df_filtered return df_filtered
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]: def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled: if not self.enabled:
yield from page_batch yield from page_batch
@ -114,6 +118,8 @@ class TesseractOcrCliModel(BaseOcrModel):
if not page._backend.is_valid(): if not page._backend.is_valid():
yield page yield page
else: else:
with TimeRecorder(conv_res, "ocr"):
ocr_rects = self.get_ocr_rects(page) ocr_rects = self.get_ocr_rects(page)
all_ocr_cells = [] all_ocr_cells = []
@ -165,7 +171,9 @@ class TesseractOcrCliModel(BaseOcrModel):
all_ocr_cells.append(cell) all_ocr_cells.append(cell)
## Remove OCR cells which overlap with programmatic cells. ## Remove OCR cells which overlap with programmatic cells.
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells) filtered_ocr_cells = self.filter_ocr_cells(
all_ocr_cells, page.cells
)
page.cells.extend(filtered_ocr_cells) page.cells.extend(filtered_ocr_cells)

View File

@ -4,8 +4,10 @@ from typing import Iterable
from docling_core.types.doc import BoundingBox, CoordOrigin from docling_core.types.doc import BoundingBox, CoordOrigin
from docling.datamodel.base_models import OcrCell, Page from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import TesseractOcrOptions from docling.datamodel.pipeline_options import TesseractOcrOptions
from docling.datamodel.settings import settings from docling.datamodel.settings import settings
from docling.models.base_model import TimeRecorder
from docling.models.base_ocr_model import BaseOcrModel from docling.models.base_ocr_model import BaseOcrModel
_log = logging.getLogger(__name__) _log = logging.getLogger(__name__)
@ -62,7 +64,9 @@ class TesseractOcrModel(BaseOcrModel):
# Finalize the tesseractAPI # Finalize the tesseractAPI
self.reader.End() self.reader.End()
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]: def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled: if not self.enabled:
yield from page_batch yield from page_batch
@ -73,6 +77,8 @@ class TesseractOcrModel(BaseOcrModel):
if not page._backend.is_valid(): if not page._backend.is_valid():
yield page yield page
else: else:
with TimeRecorder(conv_res, "ocr"):
assert self.reader is not None assert self.reader is not None
ocr_rects = self.get_ocr_rects(page) ocr_rects = self.get_ocr_rects(page)
@ -95,7 +101,9 @@ class TesseractOcrModel(BaseOcrModel):
cells = [] cells = []
for ix, (im, box, _, _) in enumerate(boxes): for ix, (im, box, _, _) in enumerate(boxes):
# Set the area of interest. Tesseract uses Bottom-Left for the origin # Set the area of interest. Tesseract uses Bottom-Left for the origin
self.reader.SetRectangle(box["x"], box["y"], box["w"], box["h"]) self.reader.SetRectangle(
box["x"], box["y"], box["w"], box["h"]
)
# Extract text within the bounding box # Extract text within the bounding box
text = self.reader.GetUTF8Text().strip() text = self.reader.GetUTF8Text().strip()
@ -121,7 +129,9 @@ class TesseractOcrModel(BaseOcrModel):
all_ocr_cells.extend(cells) all_ocr_cells.extend(cells)
## Remove OCR cells which overlap with programmatic cells. ## Remove OCR cells which overlap with programmatic cells.
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells) filtered_ocr_cells = self.filter_ocr_cells(
all_ocr_cells, page.cells
)
page.cells.extend(filtered_ocr_cells) page.cells.extend(filtered_ocr_cells)

View File

@ -15,10 +15,15 @@ from docling.datamodel.base_models import (
ErrorItem, ErrorItem,
Page, Page,
) )
from docling.datamodel.document import ConversionResult, InputDocument from docling.datamodel.document import (
ConversionResult,
InputDocument,
ProfilingItem,
ProfilingScope,
)
from docling.datamodel.pipeline_options import PipelineOptions from docling.datamodel.pipeline_options import PipelineOptions
from docling.datamodel.settings import settings from docling.datamodel.settings import settings
from docling.models.base_model import BaseEnrichmentModel from docling.models.base_model import BaseEnrichmentModel, TimeRecorder
from docling.utils.utils import chunkify from docling.utils.utils import chunkify
_log = logging.getLogger(__name__) _log = logging.getLogger(__name__)
@ -37,11 +42,11 @@ class BasePipeline(ABC):
try: try:
# These steps are building and assembling the structure of the # These steps are building and assembling the structure of the
# output DoclingDocument # output DoclingDocument
conv_res = self._build_document(in_doc, conv_res) conv_res = self._build_document(conv_res)
conv_res = self._assemble_document(in_doc, conv_res) conv_res = self._assemble_document(conv_res)
# From this stage, all operations should rely only on conv_res.output # From this stage, all operations should rely only on conv_res.output
conv_res = self._enrich_document(in_doc, conv_res) conv_res = self._enrich_document(conv_res)
conv_res.status = self._determine_status(in_doc, conv_res) conv_res.status = self._determine_status(conv_res)
except Exception as e: except Exception as e:
conv_res.status = ConversionStatus.FAILURE conv_res.status = ConversionStatus.FAILURE
if raises_on_error: if raises_on_error:
@ -50,19 +55,13 @@ class BasePipeline(ABC):
return conv_res return conv_res
@abstractmethod @abstractmethod
def _build_document( def _build_document(self, conv_res: ConversionResult) -> ConversionResult:
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
pass pass
def _assemble_document( def _assemble_document(self, conv_res: ConversionResult) -> ConversionResult:
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
return conv_res return conv_res
def _enrich_document( def _enrich_document(self, conv_res: ConversionResult) -> ConversionResult:
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
def _filter_elements( def _filter_elements(
doc: DoclingDocument, model: BaseEnrichmentModel doc: DoclingDocument, model: BaseEnrichmentModel
@ -71,6 +70,7 @@ class BasePipeline(ABC):
if model.is_processable(doc=doc, element=element): if model.is_processable(doc=doc, element=element):
yield element yield element
with TimeRecorder(conv_res, "doc_enrich", scope=ProfilingScope.DOCUMENT):
for model in self.enrichment_pipe: for model in self.enrichment_pipe:
for element_batch in chunkify( for element_batch in chunkify(
_filter_elements(conv_res.document, model), _filter_elements(conv_res.document, model),
@ -86,9 +86,7 @@ class BasePipeline(ABC):
return conv_res return conv_res
@abstractmethod @abstractmethod
def _determine_status( def _determine_status(self, conv_res: ConversionResult) -> ConversionStatus:
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionStatus:
pass pass
@classmethod @classmethod
@ -110,40 +108,44 @@ class BasePipeline(ABC):
class PaginatedPipeline(BasePipeline): # TODO this is a bad name. class PaginatedPipeline(BasePipeline): # TODO this is a bad name.
def _apply_on_pages(self, page_batch: Iterable[Page]) -> Iterable[Page]: def _apply_on_pages(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for model in self.build_pipe: for model in self.build_pipe:
page_batch = model(page_batch) page_batch = model(conv_res, page_batch)
yield from page_batch yield from page_batch
def _build_document( def _build_document(self, conv_res: ConversionResult) -> ConversionResult:
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
if not isinstance(in_doc._backend, PdfDocumentBackend): if not isinstance(conv_res.input._backend, PdfDocumentBackend):
raise RuntimeError( raise RuntimeError(
f"The selected backend {type(in_doc._backend).__name__} for {in_doc.file} is not a PDF backend. " f"The selected backend {type(conv_res.input._backend).__name__} for {conv_res.input.file} is not a PDF backend. "
f"Can not convert this with a PDF pipeline. " f"Can not convert this with a PDF pipeline. "
f"Please check your format configuration on DocumentConverter." f"Please check your format configuration on DocumentConverter."
) )
# conv_res.status = ConversionStatus.FAILURE # conv_res.status = ConversionStatus.FAILURE
# return conv_res # return conv_res
for i in range(0, in_doc.page_count): with TimeRecorder(conv_res, "doc_build", scope=ProfilingScope.DOCUMENT):
for i in range(0, conv_res.input.page_count):
conv_res.pages.append(Page(page_no=i)) conv_res.pages.append(Page(page_no=i))
try: try:
# Iterate batches of pages (page_batch_size) in the doc # Iterate batches of pages (page_batch_size) in the doc
for page_batch in chunkify(conv_res.pages, settings.perf.page_batch_size): for page_batch in chunkify(
conv_res.pages, settings.perf.page_batch_size
):
start_pb_time = time.time() start_pb_time = time.time()
# 1. Initialise the page resources # 1. Initialise the page resources
init_pages = map( init_pages = map(
functools.partial(self.initialize_page, in_doc), page_batch functools.partial(self.initialize_page, conv_res), page_batch
) )
# 2. Run pipeline stages # 2. Run pipeline stages
pipeline_pages = self._apply_on_pages(init_pages) pipeline_pages = self._apply_on_pages(conv_res, init_pages)
for p in pipeline_pages: # Must exhaust! for p in pipeline_pages: # Must exhaust!
pass pass
@ -155,21 +157,19 @@ class PaginatedPipeline(BasePipeline): # TODO this is a bad name.
conv_res.status = ConversionStatus.FAILURE conv_res.status = ConversionStatus.FAILURE
trace = "\n".join(traceback.format_exception(e)) trace = "\n".join(traceback.format_exception(e))
_log.warning( _log.warning(
f"Encountered an error during conversion of document {in_doc.document_hash}:\n" f"Encountered an error during conversion of document {conv_res.input.document_hash}:\n"
f"{trace}" f"{trace}"
) )
raise e raise e
finally: finally:
# Always unload the PDF backend, even in case of failure # Always unload the PDF backend, even in case of failure
if in_doc._backend: if conv_res.input._backend:
in_doc._backend.unload() conv_res.input._backend.unload()
return conv_res return conv_res
def _determine_status( def _determine_status(self, conv_res: ConversionResult) -> ConversionStatus:
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionStatus:
status = ConversionStatus.SUCCESS status = ConversionStatus.SUCCESS
for page in conv_res.pages: for page in conv_res.pages:
if page._backend is None or not page._backend.is_valid(): if page._backend is None or not page._backend.is_valid():
@ -186,5 +186,5 @@ class PaginatedPipeline(BasePipeline): # TODO this is a bad name.
# Initialise and load resources for a page # Initialise and load resources for a page
@abstractmethod @abstractmethod
def initialize_page(self, doc: InputDocument, page: Page) -> Page: def initialize_page(self, conv_res: ConversionResult, page: Page) -> Page:
pass pass

View File

@ -5,8 +5,9 @@ from docling.backend.abstract_backend import (
DeclarativeDocumentBackend, DeclarativeDocumentBackend,
) )
from docling.datamodel.base_models import ConversionStatus from docling.datamodel.base_models import ConversionStatus
from docling.datamodel.document import ConversionResult, InputDocument from docling.datamodel.document import ConversionResult, InputDocument, ProfilingScope
from docling.datamodel.pipeline_options import PipelineOptions from docling.datamodel.pipeline_options import PipelineOptions
from docling.models.base_model import TimeRecorder
from docling.pipeline.base_pipeline import BasePipeline from docling.pipeline.base_pipeline import BasePipeline
_log = logging.getLogger(__name__) _log = logging.getLogger(__name__)
@ -22,13 +23,11 @@ class SimplePipeline(BasePipeline):
def __init__(self, pipeline_options: PipelineOptions): def __init__(self, pipeline_options: PipelineOptions):
super().__init__(pipeline_options) super().__init__(pipeline_options)
def _build_document( def _build_document(self, conv_res: ConversionResult) -> ConversionResult:
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
if not isinstance(in_doc._backend, DeclarativeDocumentBackend): if not isinstance(conv_res.input._backend, DeclarativeDocumentBackend):
raise RuntimeError( raise RuntimeError(
f"The selected backend {type(in_doc._backend).__name__} for {in_doc.file} is not a declarative backend. " f"The selected backend {type(conv_res.input._backend).__name__} for {conv_res.input.file} is not a declarative backend. "
f"Can not convert this with simple pipeline. " f"Can not convert this with simple pipeline. "
f"Please check your format configuration on DocumentConverter." f"Please check your format configuration on DocumentConverter."
) )
@ -38,13 +37,11 @@ class SimplePipeline(BasePipeline):
# Instead of running a page-level pipeline to build up the document structure, # Instead of running a page-level pipeline to build up the document structure,
# the backend is expected to be of type DeclarativeDocumentBackend, which can output # the backend is expected to be of type DeclarativeDocumentBackend, which can output
# a DoclingDocument straight. # a DoclingDocument straight.
with TimeRecorder(conv_res, "doc_build", scope=ProfilingScope.DOCUMENT):
conv_res.document = in_doc._backend.convert() conv_res.document = conv_res.input._backend.convert()
return conv_res return conv_res
def _determine_status( def _determine_status(self, conv_res: ConversionResult) -> ConversionStatus:
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionStatus:
# This is called only if the previous steps didn't raise. # This is called only if the previous steps didn't raise.
# Since we don't have anything else to evaluate, we can # Since we don't have anything else to evaluate, we can
# safely return SUCCESS. # safely return SUCCESS.

View File

@ -7,13 +7,14 @@ from docling_core.types.doc import DocItem, ImageRef, PictureItem, TableItem
from docling.backend.abstract_backend import AbstractDocumentBackend from docling.backend.abstract_backend import AbstractDocumentBackend
from docling.backend.pdf_backend import PdfDocumentBackend from docling.backend.pdf_backend import PdfDocumentBackend
from docling.datamodel.base_models import AssembledUnit, Page from docling.datamodel.base_models import AssembledUnit, Page
from docling.datamodel.document import ConversionResult, InputDocument from docling.datamodel.document import ConversionResult, InputDocument, ProfilingScope
from docling.datamodel.pipeline_options import ( from docling.datamodel.pipeline_options import (
EasyOcrOptions, EasyOcrOptions,
PdfPipelineOptions, PdfPipelineOptions,
TesseractCliOcrOptions, TesseractCliOcrOptions,
TesseractOcrOptions, TesseractOcrOptions,
) )
from docling.models.base_model import TimeRecorder
from docling.models.base_ocr_model import BaseOcrModel from docling.models.base_ocr_model import BaseOcrModel
from docling.models.ds_glm_model import GlmModel, GlmOptions from docling.models.ds_glm_model import GlmModel, GlmOptions
from docling.models.easyocr_model import EasyOcrModel from docling.models.easyocr_model import EasyOcrModel
@ -119,20 +120,20 @@ class StandardPdfPipeline(PaginatedPipeline):
) )
return None return None
def initialize_page(self, doc: InputDocument, page: Page) -> Page: def initialize_page(self, conv_res: ConversionResult, page: Page) -> Page:
page._backend = doc._backend.load_page(page.page_no) # type: ignore with TimeRecorder(conv_res, "init_page"):
page._backend = conv_res.input._backend.load_page(page.page_no) # type: ignore
if page._backend is not None and page._backend.is_valid(): if page._backend is not None and page._backend.is_valid():
page.size = page._backend.get_size() page.size = page._backend.get_size()
return page return page
def _assemble_document( def _assemble_document(self, conv_res: ConversionResult) -> ConversionResult:
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
all_elements = [] all_elements = []
all_headers = [] all_headers = []
all_body = [] all_body = []
with TimeRecorder(conv_res, "doc_assemble", scope=ProfilingScope.DOCUMENT):
for p in conv_res.pages: for p in conv_res.pages:
if p.assembled is not None: if p.assembled is not None:
for el in p.assembled.body: for el in p.assembled.body:
@ -185,7 +186,9 @@ class StandardPdfPipeline(PaginatedPipeline):
) )
cropped_im = page.image.crop(crop_bbox.as_tuple()) cropped_im = page.image.crop(crop_bbox.as_tuple())
element.image = ImageRef.from_pil(cropped_im, dpi=int(72 * scale)) element.image = ImageRef.from_pil(
cropped_im, dpi=int(72 * scale)
)
return conv_res return conv_res