Add profiling code to all models

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
This commit is contained in:
Christoph Auer 2024-10-28 15:04:09 +01:00
parent a00f01cf07
commit 0814f32ae4
15 changed files with 644 additions and 527 deletions

View File

@ -6,6 +6,7 @@ from pathlib import Path, PurePath
from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple, Type, Union
import filetype
import numpy as np
from docling_core.types.doc import (
DocItem,
DocItemLabel,
@ -179,6 +180,29 @@ class DocumentFormat(str, Enum):
V1 = "v1"
class ProfilingScope(str, Enum):
PAGE = "page"
DOCUMENT = "document"
class ProfilingItem(BaseModel):
scope: ProfilingScope
count: int = 0
times: List[float] = []
def avg(self) -> float:
return np.average(self.times) # type: ignore
def std(self) -> float:
return np.std(self.times) # type: ignore
def mean(self) -> float:
return np.mean(self.times) # type: ignore
def percentile(self, perc: float) -> float:
return np.percentile(self.times, perc) # type: ignore
class ConversionResult(BaseModel):
input: InputDocument
@ -187,6 +211,7 @@ class ConversionResult(BaseModel):
pages: List[Page] = []
assembled: AssembledUnit = AssembledUnit()
timings: Dict[str, ProfilingItem] = {}
document: DoclingDocument = _EMPTY_DOCLING_DOC

View File

@ -32,6 +32,8 @@ class DebugSettings(BaseModel):
visualize_layout: bool = False
visualize_tables: bool = False
profile_pipeline_timings: bool = False
class AppSettings(BaseSettings):
perf: BatchConcurrencySettings

View File

@ -1,14 +1,19 @@
import time
from abc import ABC, abstractmethod
from typing import Any, Iterable
from typing import Any, Callable, Iterable, Type
from docling_core.types.doc import DoclingDocument, NodeItem
from docling.datamodel.base_models import Page
from docling.datamodel.document import ConversionResult, ProfilingItem, ProfilingScope
from docling.datamodel.settings import settings
class BasePageModel(ABC):
@abstractmethod
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
pass
@ -23,3 +28,28 @@ class BaseEnrichmentModel(ABC):
self, doc: DoclingDocument, element_batch: Iterable[NodeItem]
) -> Iterable[Any]:
pass
class TimeRecorder:
def __init__(
self,
conv_res: ConversionResult,
key: str,
scope: ProfilingScope = ProfilingScope.PAGE,
):
if settings.debug.profile_pipeline_timings:
if key not in conv_res.timings.keys():
conv_res.timings[key] = ProfilingItem(scope=scope)
self.conv_res = conv_res
self.key = key
def __enter__(self):
if settings.debug.profile_pipeline_timings:
self.start = time.monotonic()
return self
def __exit__(self, *args):
if settings.debug.profile_pipeline_timings:
elapsed = time.monotonic() - self.start
self.conv_res.timings[self.key].times.append(elapsed)
self.conv_res.timings[self.key].count += 1

View File

@ -10,12 +10,14 @@ from rtree import index
from scipy.ndimage import find_objects, label
from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import OcrOptions
from docling.models.base_model import BasePageModel
_log = logging.getLogger(__name__)
class BaseOcrModel:
class BaseOcrModel(BasePageModel):
def __init__(self, enabled: bool, options: OcrOptions):
self.enabled = enabled
self.options = options
@ -133,5 +135,7 @@ class BaseOcrModel:
image.show()
@abstractmethod
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
pass

View File

@ -27,6 +27,7 @@ from pydantic import BaseModel, ConfigDict
from docling.datamodel.base_models import Cluster, FigureElement, Table, TextElement
from docling.datamodel.document import ConversionResult, layout_label_to_ds_type
from docling.models.base_model import TimeRecorder
from docling.utils.utils import create_hash
@ -226,6 +227,7 @@ class GlmModel:
return ds_doc
def __call__(self, conv_res: ConversionResult) -> DoclingDocument:
with TimeRecorder(conv_res, "glm"):
ds_doc = self._to_legacy_document(conv_res)
ds_doc_dict = ds_doc.model_dump(by_alias=True)

View File

@ -1,12 +1,15 @@
import logging
import time
from typing import Iterable
import numpy
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.document import ConversionResult, ProfilingItem
from docling.datamodel.pipeline_options import EasyOcrOptions
from docling.datamodel.settings import settings
from docling.models.base_model import TimeRecorder
from docling.models.base_ocr_model import BaseOcrModel
_log = logging.getLogger(__name__)
@ -34,17 +37,21 @@ class EasyOcrModel(BaseOcrModel):
download_enabled=self.options.download_enabled,
)
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled:
yield from page_batch
return
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "ocr"):
ocr_rects = self.get_ocr_rects(page)
all_ocr_cells = []
@ -81,7 +88,9 @@ class EasyOcrModel(BaseOcrModel):
all_ocr_cells.extend(cells)
## Remove OCR cells which overlap with programmatic cells.
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
filtered_ocr_cells = self.filter_ocr_cells(
all_ocr_cells, page.cells
)
page.cells.extend(filtered_ocr_cells)

View File

@ -16,8 +16,9 @@ from docling.datamodel.base_models import (
LayoutPrediction,
Page,
)
from docling.datamodel.document import ConversionResult
from docling.datamodel.settings import settings
from docling.models.base_model import BasePageModel
from docling.models.base_model import BasePageModel, TimeRecorder
from docling.utils import layout_utils as lu
_log = logging.getLogger(__name__)
@ -272,12 +273,16 @@ class LayoutModel(BasePageModel):
return clusters_out_new, cells_out_new
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "layout"):
assert page.size is not None
clusters = []
@ -285,7 +290,10 @@ class LayoutModel(BasePageModel):
self.layout_predictor.predict(page.get_image(scale=1.0))
):
label = DocItemLabel(
pred_item["label"].lower().replace(" ", "_").replace("-", "_")
pred_item["label"]
.lower()
.replace(" ", "_")
.replace("-", "_")
) # Temporary, until docling-ibm-model uses docling-core types
cluster = Cluster(
id=ix,
@ -330,7 +338,9 @@ class LayoutModel(BasePageModel):
)
for tc in c.cells: # [:1]:
x0, y0, x1, y1 = tc.bbox.as_tuple()
draw.rectangle([(x0, y0), (x1, y1)], outline=cell_color)
draw.rectangle(
[(x0, y0), (x1, y1)], outline=cell_color
)
if show:
image.show()
@ -340,9 +350,9 @@ class LayoutModel(BasePageModel):
clusters, page.cells, page.size.height
)
page.predictions.layout = LayoutPrediction(clusters=clusters)
if settings.debug.visualize_layout:
draw_clusters_and_cells()
page.predictions.layout = LayoutPrediction(clusters=clusters)
yield page

View File

@ -12,7 +12,8 @@ from docling.datamodel.base_models import (
Table,
TextElement,
)
from docling.models.base_model import BasePageModel
from docling.datamodel.document import ConversionResult
from docling.models.base_model import BasePageModel, TimeRecorder
from docling.models.layout_model import LayoutModel
_log = logging.getLogger(__name__)
@ -51,12 +52,16 @@ class PageAssembleModel(BasePageModel):
return sanitized_text.strip() # Strip any leading or trailing whitespace
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "page_assemble"):
assert page.predictions.layout is not None
# assembles some JSON output page by page.
@ -112,11 +117,9 @@ class PageAssembleModel(BasePageModel):
elif cluster.label == LayoutModel.FIGURE_LABEL:
fig = None
if page.predictions.figures_classification:
fig = (
page.predictions.figures_classification.figure_map.get(
fig = page.predictions.figures_classification.figure_map.get(
cluster.id, None
)
)
if (
not fig
): # fallback: add figure without classification, if it isn't present
@ -133,11 +136,9 @@ class PageAssembleModel(BasePageModel):
elif cluster.label == LayoutModel.FORMULA_LABEL:
equation = None
if page.predictions.equations_prediction:
equation = (
page.predictions.equations_prediction.equation_map.get(
equation = page.predictions.equations_prediction.equation_map.get(
cluster.id, None
)
)
if (
not equation
): # fallback: add empty formula, if it isn't present

View File

@ -4,7 +4,8 @@ from PIL import ImageDraw
from pydantic import BaseModel
from docling.datamodel.base_models import Page
from docling.models.base_model import BasePageModel
from docling.datamodel.document import ConversionResult
from docling.models.base_model import BasePageModel, TimeRecorder
class PagePreprocessingOptions(BaseModel):
@ -15,12 +16,15 @@ class PagePreprocessingModel(BasePageModel):
def __init__(self, options: PagePreprocessingOptions):
self.options = options
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "page_parse"):
page = self._populate_page_images(page)
page = self._parse_page_cells(page)
yield page

View File

@ -8,9 +8,10 @@ from docling_ibm_models.tableformer.data_management.tf_predictor import TFPredic
from PIL import ImageDraw
from docling.datamodel.base_models import Page, Table, TableStructurePrediction
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import TableFormerMode, TableStructureOptions
from docling.datamodel.settings import settings
from docling.models.base_model import BasePageModel
from docling.models.base_model import BasePageModel, TimeRecorder
class TableStructureModel(BasePageModel):
@ -64,7 +65,9 @@ class TableStructureModel(BasePageModel):
image.show()
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled:
yield from page_batch
@ -75,11 +78,14 @@ class TableStructureModel(BasePageModel):
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "table_structure"):
assert page.predictions.layout is not None
assert page.size is not None
page.predictions.tablestructure = TableStructurePrediction() # dummy
page.predictions.tablestructure = (
TableStructurePrediction()
) # dummy
in_tables = [
(
@ -121,7 +127,9 @@ class TableStructureModel(BasePageModel):
"width": page.size.width * self.scale,
"height": page.size.height * self.scale,
}
page_input["image"] = numpy.asarray(page.get_image(scale=self.scale))
page_input["image"] = numpy.asarray(
page.get_image(scale=self.scale)
)
table_clusters, table_bboxes = zip(*in_tables)
@ -138,7 +146,9 @@ class TableStructureModel(BasePageModel):
the_bbox = BoundingBox.model_validate(
element["bbox"]
).scaled(1 / self.scale)
text_piece = page._backend.get_text_in_rect(the_bbox)
text_piece = page._backend.get_text_in_rect(
the_bbox
)
element["bbox"]["token"] = text_piece
tc = TableCell.model_validate(element)
@ -149,7 +159,9 @@ class TableStructureModel(BasePageModel):
# Retrieving cols/rows, after post processing:
num_rows = table_out["predict_details"]["num_rows"]
num_cols = table_out["predict_details"]["num_cols"]
otsl_seq = table_out["predict_details"]["prediction"]["rs_seq"]
otsl_seq = table_out["predict_details"]["prediction"][
"rs_seq"
]
tbl = Table(
otsl_seq=otsl_seq,
@ -162,9 +174,9 @@ class TableStructureModel(BasePageModel):
label=DocItemLabel.TABLE,
)
page.predictions.tablestructure.table_map[table_cluster.id] = (
tbl
)
page.predictions.tablestructure.table_map[
table_cluster.id
] = tbl
# For debugging purposes:
if settings.debug.visualize_tables:

View File

@ -8,8 +8,10 @@ import pandas as pd
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import TesseractCliOcrOptions
from docling.datamodel.settings import settings
from docling.models.base_model import TimeRecorder
from docling.models.base_ocr_model import BaseOcrModel
_log = logging.getLogger(__name__)
@ -103,7 +105,9 @@ class TesseractOcrCliModel(BaseOcrModel):
return df_filtered
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled:
yield from page_batch
@ -114,6 +118,8 @@ class TesseractOcrCliModel(BaseOcrModel):
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "ocr"):
ocr_rects = self.get_ocr_rects(page)
all_ocr_cells = []
@ -165,7 +171,9 @@ class TesseractOcrCliModel(BaseOcrModel):
all_ocr_cells.append(cell)
## Remove OCR cells which overlap with programmatic cells.
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
filtered_ocr_cells = self.filter_ocr_cells(
all_ocr_cells, page.cells
)
page.cells.extend(filtered_ocr_cells)

View File

@ -4,8 +4,10 @@ from typing import Iterable
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import TesseractOcrOptions
from docling.datamodel.settings import settings
from docling.models.base_model import TimeRecorder
from docling.models.base_ocr_model import BaseOcrModel
_log = logging.getLogger(__name__)
@ -62,7 +64,9 @@ class TesseractOcrModel(BaseOcrModel):
# Finalize the tesseractAPI
self.reader.End()
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled:
yield from page_batch
@ -73,6 +77,8 @@ class TesseractOcrModel(BaseOcrModel):
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "ocr"):
assert self.reader is not None
ocr_rects = self.get_ocr_rects(page)
@ -95,7 +101,9 @@ class TesseractOcrModel(BaseOcrModel):
cells = []
for ix, (im, box, _, _) in enumerate(boxes):
# Set the area of interest. Tesseract uses Bottom-Left for the origin
self.reader.SetRectangle(box["x"], box["y"], box["w"], box["h"])
self.reader.SetRectangle(
box["x"], box["y"], box["w"], box["h"]
)
# Extract text within the bounding box
text = self.reader.GetUTF8Text().strip()
@ -121,7 +129,9 @@ class TesseractOcrModel(BaseOcrModel):
all_ocr_cells.extend(cells)
## Remove OCR cells which overlap with programmatic cells.
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
filtered_ocr_cells = self.filter_ocr_cells(
all_ocr_cells, page.cells
)
page.cells.extend(filtered_ocr_cells)

View File

@ -15,10 +15,15 @@ from docling.datamodel.base_models import (
ErrorItem,
Page,
)
from docling.datamodel.document import ConversionResult, InputDocument
from docling.datamodel.document import (
ConversionResult,
InputDocument,
ProfilingItem,
ProfilingScope,
)
from docling.datamodel.pipeline_options import PipelineOptions
from docling.datamodel.settings import settings
from docling.models.base_model import BaseEnrichmentModel
from docling.models.base_model import BaseEnrichmentModel, TimeRecorder
from docling.utils.utils import chunkify
_log = logging.getLogger(__name__)
@ -37,11 +42,11 @@ class BasePipeline(ABC):
try:
# These steps are building and assembling the structure of the
# output DoclingDocument
conv_res = self._build_document(in_doc, conv_res)
conv_res = self._assemble_document(in_doc, conv_res)
conv_res = self._build_document(conv_res)
conv_res = self._assemble_document(conv_res)
# From this stage, all operations should rely only on conv_res.output
conv_res = self._enrich_document(in_doc, conv_res)
conv_res.status = self._determine_status(in_doc, conv_res)
conv_res = self._enrich_document(conv_res)
conv_res.status = self._determine_status(conv_res)
except Exception as e:
conv_res.status = ConversionStatus.FAILURE
if raises_on_error:
@ -50,19 +55,13 @@ class BasePipeline(ABC):
return conv_res
@abstractmethod
def _build_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
def _build_document(self, conv_res: ConversionResult) -> ConversionResult:
pass
def _assemble_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
def _assemble_document(self, conv_res: ConversionResult) -> ConversionResult:
return conv_res
def _enrich_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
def _enrich_document(self, conv_res: ConversionResult) -> ConversionResult:
def _filter_elements(
doc: DoclingDocument, model: BaseEnrichmentModel
@ -71,6 +70,7 @@ class BasePipeline(ABC):
if model.is_processable(doc=doc, element=element):
yield element
with TimeRecorder(conv_res, "doc_enrich", scope=ProfilingScope.DOCUMENT):
for model in self.enrichment_pipe:
for element_batch in chunkify(
_filter_elements(conv_res.document, model),
@ -86,9 +86,7 @@ class BasePipeline(ABC):
return conv_res
@abstractmethod
def _determine_status(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionStatus:
def _determine_status(self, conv_res: ConversionResult) -> ConversionStatus:
pass
@classmethod
@ -110,40 +108,44 @@ class BasePipeline(ABC):
class PaginatedPipeline(BasePipeline): # TODO this is a bad name.
def _apply_on_pages(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def _apply_on_pages(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for model in self.build_pipe:
page_batch = model(page_batch)
page_batch = model(conv_res, page_batch)
yield from page_batch
def _build_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
def _build_document(self, conv_res: ConversionResult) -> ConversionResult:
if not isinstance(in_doc._backend, PdfDocumentBackend):
if not isinstance(conv_res.input._backend, PdfDocumentBackend):
raise RuntimeError(
f"The selected backend {type(in_doc._backend).__name__} for {in_doc.file} is not a PDF backend. "
f"The selected backend {type(conv_res.input._backend).__name__} for {conv_res.input.file} is not a PDF backend. "
f"Can not convert this with a PDF pipeline. "
f"Please check your format configuration on DocumentConverter."
)
# conv_res.status = ConversionStatus.FAILURE
# return conv_res
for i in range(0, in_doc.page_count):
with TimeRecorder(conv_res, "doc_build", scope=ProfilingScope.DOCUMENT):
for i in range(0, conv_res.input.page_count):
conv_res.pages.append(Page(page_no=i))
try:
# Iterate batches of pages (page_batch_size) in the doc
for page_batch in chunkify(conv_res.pages, settings.perf.page_batch_size):
for page_batch in chunkify(
conv_res.pages, settings.perf.page_batch_size
):
start_pb_time = time.time()
# 1. Initialise the page resources
init_pages = map(
functools.partial(self.initialize_page, in_doc), page_batch
functools.partial(self.initialize_page, conv_res), page_batch
)
# 2. Run pipeline stages
pipeline_pages = self._apply_on_pages(init_pages)
pipeline_pages = self._apply_on_pages(conv_res, init_pages)
for p in pipeline_pages: # Must exhaust!
pass
@ -155,21 +157,19 @@ class PaginatedPipeline(BasePipeline): # TODO this is a bad name.
conv_res.status = ConversionStatus.FAILURE
trace = "\n".join(traceback.format_exception(e))
_log.warning(
f"Encountered an error during conversion of document {in_doc.document_hash}:\n"
f"Encountered an error during conversion of document {conv_res.input.document_hash}:\n"
f"{trace}"
)
raise e
finally:
# Always unload the PDF backend, even in case of failure
if in_doc._backend:
in_doc._backend.unload()
if conv_res.input._backend:
conv_res.input._backend.unload()
return conv_res
def _determine_status(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionStatus:
def _determine_status(self, conv_res: ConversionResult) -> ConversionStatus:
status = ConversionStatus.SUCCESS
for page in conv_res.pages:
if page._backend is None or not page._backend.is_valid():
@ -186,5 +186,5 @@ class PaginatedPipeline(BasePipeline): # TODO this is a bad name.
# Initialise and load resources for a page
@abstractmethod
def initialize_page(self, doc: InputDocument, page: Page) -> Page:
def initialize_page(self, conv_res: ConversionResult, page: Page) -> Page:
pass

View File

@ -5,8 +5,9 @@ from docling.backend.abstract_backend import (
DeclarativeDocumentBackend,
)
from docling.datamodel.base_models import ConversionStatus
from docling.datamodel.document import ConversionResult, InputDocument
from docling.datamodel.document import ConversionResult, InputDocument, ProfilingScope
from docling.datamodel.pipeline_options import PipelineOptions
from docling.models.base_model import TimeRecorder
from docling.pipeline.base_pipeline import BasePipeline
_log = logging.getLogger(__name__)
@ -22,13 +23,11 @@ class SimplePipeline(BasePipeline):
def __init__(self, pipeline_options: PipelineOptions):
super().__init__(pipeline_options)
def _build_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
def _build_document(self, conv_res: ConversionResult) -> ConversionResult:
if not isinstance(in_doc._backend, DeclarativeDocumentBackend):
if not isinstance(conv_res.input._backend, DeclarativeDocumentBackend):
raise RuntimeError(
f"The selected backend {type(in_doc._backend).__name__} for {in_doc.file} is not a declarative backend. "
f"The selected backend {type(conv_res.input._backend).__name__} for {conv_res.input.file} is not a declarative backend. "
f"Can not convert this with simple pipeline. "
f"Please check your format configuration on DocumentConverter."
)
@ -38,13 +37,11 @@ class SimplePipeline(BasePipeline):
# Instead of running a page-level pipeline to build up the document structure,
# the backend is expected to be of type DeclarativeDocumentBackend, which can output
# a DoclingDocument straight.
conv_res.document = in_doc._backend.convert()
with TimeRecorder(conv_res, "doc_build", scope=ProfilingScope.DOCUMENT):
conv_res.document = conv_res.input._backend.convert()
return conv_res
def _determine_status(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionStatus:
def _determine_status(self, conv_res: ConversionResult) -> ConversionStatus:
# This is called only if the previous steps didn't raise.
# Since we don't have anything else to evaluate, we can
# safely return SUCCESS.

View File

@ -7,13 +7,14 @@ from docling_core.types.doc import DocItem, ImageRef, PictureItem, TableItem
from docling.backend.abstract_backend import AbstractDocumentBackend
from docling.backend.pdf_backend import PdfDocumentBackend
from docling.datamodel.base_models import AssembledUnit, Page
from docling.datamodel.document import ConversionResult, InputDocument
from docling.datamodel.document import ConversionResult, InputDocument, ProfilingScope
from docling.datamodel.pipeline_options import (
EasyOcrOptions,
PdfPipelineOptions,
TesseractCliOcrOptions,
TesseractOcrOptions,
)
from docling.models.base_model import TimeRecorder
from docling.models.base_ocr_model import BaseOcrModel
from docling.models.ds_glm_model import GlmModel, GlmOptions
from docling.models.easyocr_model import EasyOcrModel
@ -119,20 +120,20 @@ class StandardPdfPipeline(PaginatedPipeline):
)
return None
def initialize_page(self, doc: InputDocument, page: Page) -> Page:
page._backend = doc._backend.load_page(page.page_no) # type: ignore
def initialize_page(self, conv_res: ConversionResult, page: Page) -> Page:
with TimeRecorder(conv_res, "init_page"):
page._backend = conv_res.input._backend.load_page(page.page_no) # type: ignore
if page._backend is not None and page._backend.is_valid():
page.size = page._backend.get_size()
return page
def _assemble_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
def _assemble_document(self, conv_res: ConversionResult) -> ConversionResult:
all_elements = []
all_headers = []
all_body = []
with TimeRecorder(conv_res, "doc_assemble", scope=ProfilingScope.DOCUMENT):
for p in conv_res.pages:
if p.assembled is not None:
for el in p.assembled.body:
@ -185,7 +186,9 @@ class StandardPdfPipeline(PaginatedPipeline):
)
cropped_im = page.image.crop(crop_bbox.as_tuple())
element.image = ImageRef.from_pil(cropped_im, dpi=int(72 * scale))
element.image = ImageRef.from_pil(
cropped_im, dpi=int(72 * scale)
)
return conv_res