Add profiling code to all models

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
This commit is contained in:
Christoph Auer 2024-10-28 15:04:09 +01:00
parent a00f01cf07
commit 0814f32ae4
15 changed files with 644 additions and 527 deletions

View File

@ -6,6 +6,7 @@ from pathlib import Path, PurePath
from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple, Type, Union
import filetype
import numpy as np
from docling_core.types.doc import (
DocItem,
DocItemLabel,
@ -179,6 +180,29 @@ class DocumentFormat(str, Enum):
V1 = "v1"
class ProfilingScope(str, Enum):
PAGE = "page"
DOCUMENT = "document"
class ProfilingItem(BaseModel):
scope: ProfilingScope
count: int = 0
times: List[float] = []
def avg(self) -> float:
return np.average(self.times) # type: ignore
def std(self) -> float:
return np.std(self.times) # type: ignore
def mean(self) -> float:
return np.mean(self.times) # type: ignore
def percentile(self, perc: float) -> float:
return np.percentile(self.times, perc) # type: ignore
class ConversionResult(BaseModel):
input: InputDocument
@ -187,6 +211,7 @@ class ConversionResult(BaseModel):
pages: List[Page] = []
assembled: AssembledUnit = AssembledUnit()
timings: Dict[str, ProfilingItem] = {}
document: DoclingDocument = _EMPTY_DOCLING_DOC

View File

@ -32,6 +32,8 @@ class DebugSettings(BaseModel):
visualize_layout: bool = False
visualize_tables: bool = False
profile_pipeline_timings: bool = False
class AppSettings(BaseSettings):
perf: BatchConcurrencySettings

View File

@ -1,14 +1,19 @@
import time
from abc import ABC, abstractmethod
from typing import Any, Iterable
from typing import Any, Callable, Iterable, Type
from docling_core.types.doc import DoclingDocument, NodeItem
from docling.datamodel.base_models import Page
from docling.datamodel.document import ConversionResult, ProfilingItem, ProfilingScope
from docling.datamodel.settings import settings
class BasePageModel(ABC):
@abstractmethod
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
pass
@ -23,3 +28,28 @@ class BaseEnrichmentModel(ABC):
self, doc: DoclingDocument, element_batch: Iterable[NodeItem]
) -> Iterable[Any]:
pass
class TimeRecorder:
def __init__(
self,
conv_res: ConversionResult,
key: str,
scope: ProfilingScope = ProfilingScope.PAGE,
):
if settings.debug.profile_pipeline_timings:
if key not in conv_res.timings.keys():
conv_res.timings[key] = ProfilingItem(scope=scope)
self.conv_res = conv_res
self.key = key
def __enter__(self):
if settings.debug.profile_pipeline_timings:
self.start = time.monotonic()
return self
def __exit__(self, *args):
if settings.debug.profile_pipeline_timings:
elapsed = time.monotonic() - self.start
self.conv_res.timings[self.key].times.append(elapsed)
self.conv_res.timings[self.key].count += 1

View File

@ -10,12 +10,14 @@ from rtree import index
from scipy.ndimage import find_objects, label
from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import OcrOptions
from docling.models.base_model import BasePageModel
_log = logging.getLogger(__name__)
class BaseOcrModel:
class BaseOcrModel(BasePageModel):
def __init__(self, enabled: bool, options: OcrOptions):
self.enabled = enabled
self.options = options
@ -133,5 +135,7 @@ class BaseOcrModel:
image.show()
@abstractmethod
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
pass

View File

@ -27,6 +27,7 @@ from pydantic import BaseModel, ConfigDict
from docling.datamodel.base_models import Cluster, FigureElement, Table, TextElement
from docling.datamodel.document import ConversionResult, layout_label_to_ds_type
from docling.models.base_model import TimeRecorder
from docling.utils.utils import create_hash
@ -226,12 +227,13 @@ class GlmModel:
return ds_doc
def __call__(self, conv_res: ConversionResult) -> DoclingDocument:
ds_doc = self._to_legacy_document(conv_res)
ds_doc_dict = ds_doc.model_dump(by_alias=True)
with TimeRecorder(conv_res, "glm"):
ds_doc = self._to_legacy_document(conv_res)
ds_doc_dict = ds_doc.model_dump(by_alias=True)
glm_doc = self.model.apply_on_doc(ds_doc_dict)
glm_doc = self.model.apply_on_doc(ds_doc_dict)
docling_doc: DoclingDocument = to_docling_document(glm_doc) # Experimental
docling_doc: DoclingDocument = to_docling_document(glm_doc) # Experimental
# DEBUG code:
def draw_clusters_and_cells(ds_document, page_no):

View File

@ -1,12 +1,15 @@
import logging
import time
from typing import Iterable
import numpy
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.document import ConversionResult, ProfilingItem
from docling.datamodel.pipeline_options import EasyOcrOptions
from docling.datamodel.settings import settings
from docling.models.base_model import TimeRecorder
from docling.models.base_ocr_model import BaseOcrModel
_log = logging.getLogger(__name__)
@ -34,56 +37,62 @@ class EasyOcrModel(BaseOcrModel):
download_enabled=self.options.download_enabled,
)
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled:
yield from page_batch
return
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
ocr_rects = self.get_ocr_rects(page)
with TimeRecorder(conv_res, "ocr"):
ocr_rects = self.get_ocr_rects(page)
all_ocr_cells = []
for ocr_rect in ocr_rects:
# Skip zero area boxes
if ocr_rect.area() == 0:
continue
high_res_image = page._backend.get_page_image(
scale=self.scale, cropbox=ocr_rect
)
im = numpy.array(high_res_image)
result = self.reader.readtext(im)
del high_res_image
del im
cells = [
OcrCell(
id=ix,
text=line[1],
confidence=line[2],
bbox=BoundingBox.from_tuple(
coord=(
(line[0][0][0] / self.scale) + ocr_rect.l,
(line[0][0][1] / self.scale) + ocr_rect.t,
(line[0][2][0] / self.scale) + ocr_rect.l,
(line[0][2][1] / self.scale) + ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
),
all_ocr_cells = []
for ocr_rect in ocr_rects:
# Skip zero area boxes
if ocr_rect.area() == 0:
continue
high_res_image = page._backend.get_page_image(
scale=self.scale, cropbox=ocr_rect
)
for ix, line in enumerate(result)
]
all_ocr_cells.extend(cells)
im = numpy.array(high_res_image)
result = self.reader.readtext(im)
## Remove OCR cells which overlap with programmatic cells.
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
del high_res_image
del im
page.cells.extend(filtered_ocr_cells)
cells = [
OcrCell(
id=ix,
text=line[1],
confidence=line[2],
bbox=BoundingBox.from_tuple(
coord=(
(line[0][0][0] / self.scale) + ocr_rect.l,
(line[0][0][1] / self.scale) + ocr_rect.t,
(line[0][2][0] / self.scale) + ocr_rect.l,
(line[0][2][1] / self.scale) + ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
),
)
for ix, line in enumerate(result)
]
all_ocr_cells.extend(cells)
## Remove OCR cells which overlap with programmatic cells.
filtered_ocr_cells = self.filter_ocr_cells(
all_ocr_cells, page.cells
)
page.cells.extend(filtered_ocr_cells)
# DEBUG code:
if settings.debug.visualize_ocr:

View File

@ -16,8 +16,9 @@ from docling.datamodel.base_models import (
LayoutPrediction,
Page,
)
from docling.datamodel.document import ConversionResult
from docling.datamodel.settings import settings
from docling.models.base_model import BasePageModel
from docling.models.base_model import BasePageModel, TimeRecorder
from docling.utils import layout_utils as lu
_log = logging.getLogger(__name__)
@ -272,77 +273,86 @@ class LayoutModel(BasePageModel):
return clusters_out_new, cells_out_new
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
assert page.size is not None
with TimeRecorder(conv_res, "layout"):
assert page.size is not None
clusters = []
for ix, pred_item in enumerate(
self.layout_predictor.predict(page.get_image(scale=1.0))
):
label = DocItemLabel(
pred_item["label"].lower().replace(" ", "_").replace("-", "_")
) # Temporary, until docling-ibm-model uses docling-core types
cluster = Cluster(
id=ix,
label=label,
confidence=pred_item["confidence"],
bbox=BoundingBox.model_validate(pred_item),
cells=[],
clusters = []
for ix, pred_item in enumerate(
self.layout_predictor.predict(page.get_image(scale=1.0))
):
label = DocItemLabel(
pred_item["label"]
.lower()
.replace(" ", "_")
.replace("-", "_")
) # Temporary, until docling-ibm-model uses docling-core types
cluster = Cluster(
id=ix,
label=label,
confidence=pred_item["confidence"],
bbox=BoundingBox.model_validate(pred_item),
cells=[],
)
clusters.append(cluster)
# Map cells to clusters
# TODO: Remove, postprocess should take care of it anyway.
for cell in page.cells:
for cluster in clusters:
if not cell.bbox.area() > 0:
overlap_frac = 0.0
else:
overlap_frac = (
cell.bbox.intersection_area_with(cluster.bbox)
/ cell.bbox.area()
)
if overlap_frac > 0.5:
cluster.cells.append(cell)
# Pre-sort clusters
# clusters = self.sort_clusters_by_cell_order(clusters)
# DEBUG code:
def draw_clusters_and_cells(show: bool = True):
image = copy.deepcopy(page.image)
if image is not None:
draw = ImageDraw.Draw(image)
for c in clusters:
x0, y0, x1, y1 = c.bbox.as_tuple()
draw.rectangle([(x0, y0), (x1, y1)], outline="green")
cell_color = (
random.randint(30, 140),
random.randint(30, 140),
random.randint(30, 140),
)
for tc in c.cells: # [:1]:
x0, y0, x1, y1 = tc.bbox.as_tuple()
draw.rectangle(
[(x0, y0), (x1, y1)], outline=cell_color
)
if show:
image.show()
# draw_clusters_and_cells()
clusters, page.cells = self.postprocess(
clusters, page.cells, page.size.height
)
clusters.append(cluster)
# Map cells to clusters
# TODO: Remove, postprocess should take care of it anyway.
for cell in page.cells:
for cluster in clusters:
if not cell.bbox.area() > 0:
overlap_frac = 0.0
else:
overlap_frac = (
cell.bbox.intersection_area_with(cluster.bbox)
/ cell.bbox.area()
)
if overlap_frac > 0.5:
cluster.cells.append(cell)
# Pre-sort clusters
# clusters = self.sort_clusters_by_cell_order(clusters)
# DEBUG code:
def draw_clusters_and_cells(show: bool = True):
image = copy.deepcopy(page.image)
if image is not None:
draw = ImageDraw.Draw(image)
for c in clusters:
x0, y0, x1, y1 = c.bbox.as_tuple()
draw.rectangle([(x0, y0), (x1, y1)], outline="green")
cell_color = (
random.randint(30, 140),
random.randint(30, 140),
random.randint(30, 140),
)
for tc in c.cells: # [:1]:
x0, y0, x1, y1 = tc.bbox.as_tuple()
draw.rectangle([(x0, y0), (x1, y1)], outline=cell_color)
if show:
image.show()
# draw_clusters_and_cells()
clusters, page.cells = self.postprocess(
clusters, page.cells, page.size.height
)
page.predictions.layout = LayoutPrediction(clusters=clusters)
if settings.debug.visualize_layout:
draw_clusters_and_cells()
page.predictions.layout = LayoutPrediction(clusters=clusters)
yield page

View File

@ -12,7 +12,8 @@ from docling.datamodel.base_models import (
Table,
TextElement,
)
from docling.models.base_model import BasePageModel
from docling.datamodel.document import ConversionResult
from docling.models.base_model import BasePageModel, TimeRecorder
from docling.models.layout_model import LayoutModel
_log = logging.getLogger(__name__)
@ -51,122 +52,122 @@ class PageAssembleModel(BasePageModel):
return sanitized_text.strip() # Strip any leading or trailing whitespace
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
assert page.predictions.layout is not None
with TimeRecorder(conv_res, "page_assemble"):
# assembles some JSON output page by page.
assert page.predictions.layout is not None
elements: List[PageElement] = []
headers: List[PageElement] = []
body: List[PageElement] = []
# assembles some JSON output page by page.
for cluster in page.predictions.layout.clusters:
# _log.info("Cluster label seen:", cluster.label)
if cluster.label in LayoutModel.TEXT_ELEM_LABELS:
elements: List[PageElement] = []
headers: List[PageElement] = []
body: List[PageElement] = []
textlines = [
cell.text.replace("\x02", "-").strip()
for cell in cluster.cells
if len(cell.text.strip()) > 0
]
text = self.sanitize_text(textlines)
text_el = TextElement(
label=cluster.label,
id=cluster.id,
text=text,
page_no=page.page_no,
cluster=cluster,
)
elements.append(text_el)
for cluster in page.predictions.layout.clusters:
# _log.info("Cluster label seen:", cluster.label)
if cluster.label in LayoutModel.TEXT_ELEM_LABELS:
if cluster.label in LayoutModel.PAGE_HEADER_LABELS:
headers.append(text_el)
else:
body.append(text_el)
elif cluster.label == LayoutModel.TABLE_LABEL:
tbl = None
if page.predictions.tablestructure:
tbl = page.predictions.tablestructure.table_map.get(
cluster.id, None
)
if (
not tbl
): # fallback: add table without structure, if it isn't present
tbl = Table(
textlines = [
cell.text.replace("\x02", "-").strip()
for cell in cluster.cells
if len(cell.text.strip()) > 0
]
text = self.sanitize_text(textlines)
text_el = TextElement(
label=cluster.label,
id=cluster.id,
text="",
otsl_seq=[],
table_cells=[],
cluster=cluster,
page_no=page.page_no,
)
elements.append(tbl)
body.append(tbl)
elif cluster.label == LayoutModel.FIGURE_LABEL:
fig = None
if page.predictions.figures_classification:
fig = (
page.predictions.figures_classification.figure_map.get(
cluster.id, None
)
)
if (
not fig
): # fallback: add figure without classification, if it isn't present
fig = FigureElement(
label=cluster.label,
id=cluster.id,
text="",
data=None,
cluster=cluster,
page_no=page.page_no,
)
elements.append(fig)
body.append(fig)
elif cluster.label == LayoutModel.FORMULA_LABEL:
equation = None
if page.predictions.equations_prediction:
equation = (
page.predictions.equations_prediction.equation_map.get(
cluster.id, None
)
)
if (
not equation
): # fallback: add empty formula, if it isn't present
text = self.sanitize_text(
[
cell.text.replace("\x02", "-").strip()
for cell in cluster.cells
if len(cell.text.strip()) > 0
]
)
equation = TextElement(
label=cluster.label,
id=cluster.id,
cluster=cluster,
page_no=page.page_no,
text=text,
page_no=page.page_no,
cluster=cluster,
)
elements.append(equation)
body.append(equation)
elements.append(text_el)
page.assembled = AssembledUnit(
elements=elements, headers=headers, body=body
)
if cluster.label in LayoutModel.PAGE_HEADER_LABELS:
headers.append(text_el)
else:
body.append(text_el)
elif cluster.label == LayoutModel.TABLE_LABEL:
tbl = None
if page.predictions.tablestructure:
tbl = page.predictions.tablestructure.table_map.get(
cluster.id, None
)
if (
not tbl
): # fallback: add table without structure, if it isn't present
tbl = Table(
label=cluster.label,
id=cluster.id,
text="",
otsl_seq=[],
table_cells=[],
cluster=cluster,
page_no=page.page_no,
)
# Remove page images (can be disabled)
if not self.options.keep_images:
page._image_cache = {}
elements.append(tbl)
body.append(tbl)
elif cluster.label == LayoutModel.FIGURE_LABEL:
fig = None
if page.predictions.figures_classification:
fig = page.predictions.figures_classification.figure_map.get(
cluster.id, None
)
if (
not fig
): # fallback: add figure without classification, if it isn't present
fig = FigureElement(
label=cluster.label,
id=cluster.id,
text="",
data=None,
cluster=cluster,
page_no=page.page_no,
)
elements.append(fig)
body.append(fig)
elif cluster.label == LayoutModel.FORMULA_LABEL:
equation = None
if page.predictions.equations_prediction:
equation = page.predictions.equations_prediction.equation_map.get(
cluster.id, None
)
if (
not equation
): # fallback: add empty formula, if it isn't present
text = self.sanitize_text(
[
cell.text.replace("\x02", "-").strip()
for cell in cluster.cells
if len(cell.text.strip()) > 0
]
)
equation = TextElement(
label=cluster.label,
id=cluster.id,
cluster=cluster,
page_no=page.page_no,
text=text,
)
elements.append(equation)
body.append(equation)
# Unload backend
page._backend.unload()
page.assembled = AssembledUnit(
elements=elements, headers=headers, body=body
)
# Remove page images (can be disabled)
if not self.options.keep_images:
page._image_cache = {}
# Unload backend
page._backend.unload()
yield page

View File

@ -4,7 +4,8 @@ from PIL import ImageDraw
from pydantic import BaseModel
from docling.datamodel.base_models import Page
from docling.models.base_model import BasePageModel
from docling.datamodel.document import ConversionResult
from docling.models.base_model import BasePageModel, TimeRecorder
class PagePreprocessingOptions(BaseModel):
@ -15,14 +16,17 @@ class PagePreprocessingModel(BasePageModel):
def __init__(self, options: PagePreprocessingOptions):
self.options = options
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
page = self._populate_page_images(page)
page = self._parse_page_cells(page)
with TimeRecorder(conv_res, "page_parse"):
page = self._populate_page_images(page)
page = self._parse_page_cells(page)
yield page
# Generate the page image and store it in the page object

View File

@ -8,9 +8,10 @@ from docling_ibm_models.tableformer.data_management.tf_predictor import TFPredic
from PIL import ImageDraw
from docling.datamodel.base_models import Page, Table, TableStructurePrediction
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import TableFormerMode, TableStructureOptions
from docling.datamodel.settings import settings
from docling.models.base_model import BasePageModel
from docling.models.base_model import BasePageModel, TimeRecorder
class TableStructureModel(BasePageModel):
@ -64,7 +65,9 @@ class TableStructureModel(BasePageModel):
image.show()
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled:
yield from page_batch
@ -75,96 +78,105 @@ class TableStructureModel(BasePageModel):
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "table_structure"):
assert page.predictions.layout is not None
assert page.size is not None
assert page.predictions.layout is not None
assert page.size is not None
page.predictions.tablestructure = TableStructurePrediction() # dummy
page.predictions.tablestructure = (
TableStructurePrediction()
) # dummy
in_tables = [
(
cluster,
[
round(cluster.bbox.l) * self.scale,
round(cluster.bbox.t) * self.scale,
round(cluster.bbox.r) * self.scale,
round(cluster.bbox.b) * self.scale,
],
in_tables = [
(
cluster,
[
round(cluster.bbox.l) * self.scale,
round(cluster.bbox.t) * self.scale,
round(cluster.bbox.r) * self.scale,
round(cluster.bbox.b) * self.scale,
],
)
for cluster in page.predictions.layout.clusters
if cluster.label == DocItemLabel.TABLE
]
if not len(in_tables):
yield page
continue
tokens = []
for c in page.cells:
for cluster, _ in in_tables:
if c.bbox.area() > 0:
if (
c.bbox.intersection_area_with(cluster.bbox)
/ c.bbox.area()
> 0.2
):
# Only allow non empty stings (spaces) into the cells of a table
if len(c.text.strip()) > 0:
new_cell = copy.deepcopy(c)
new_cell.bbox = new_cell.bbox.scaled(
scale=self.scale
)
tokens.append(new_cell.model_dump())
page_input = {
"tokens": tokens,
"width": page.size.width * self.scale,
"height": page.size.height * self.scale,
}
page_input["image"] = numpy.asarray(
page.get_image(scale=self.scale)
)
for cluster in page.predictions.layout.clusters
if cluster.label == DocItemLabel.TABLE
]
if not len(in_tables):
yield page
continue
tokens = []
for c in page.cells:
for cluster, _ in in_tables:
if c.bbox.area() > 0:
if (
c.bbox.intersection_area_with(cluster.bbox)
/ c.bbox.area()
> 0.2
):
# Only allow non empty stings (spaces) into the cells of a table
if len(c.text.strip()) > 0:
new_cell = copy.deepcopy(c)
new_cell.bbox = new_cell.bbox.scaled(
scale=self.scale
table_clusters, table_bboxes = zip(*in_tables)
if len(table_bboxes):
tf_output = self.tf_predictor.multi_table_predict(
page_input, table_bboxes, do_matching=self.do_cell_matching
)
for table_cluster, table_out in zip(table_clusters, tf_output):
table_cells = []
for element in table_out["tf_responses"]:
if not self.do_cell_matching:
the_bbox = BoundingBox.model_validate(
element["bbox"]
).scaled(1 / self.scale)
text_piece = page._backend.get_text_in_rect(
the_bbox
)
element["bbox"]["token"] = text_piece
tokens.append(new_cell.model_dump())
tc = TableCell.model_validate(element)
if self.do_cell_matching and tc.bbox is not None:
tc.bbox = tc.bbox.scaled(1 / self.scale)
table_cells.append(tc)
page_input = {
"tokens": tokens,
"width": page.size.width * self.scale,
"height": page.size.height * self.scale,
}
page_input["image"] = numpy.asarray(page.get_image(scale=self.scale))
# Retrieving cols/rows, after post processing:
num_rows = table_out["predict_details"]["num_rows"]
num_cols = table_out["predict_details"]["num_cols"]
otsl_seq = table_out["predict_details"]["prediction"][
"rs_seq"
]
table_clusters, table_bboxes = zip(*in_tables)
tbl = Table(
otsl_seq=otsl_seq,
table_cells=table_cells,
num_rows=num_rows,
num_cols=num_cols,
id=table_cluster.id,
page_no=page.page_no,
cluster=table_cluster,
label=DocItemLabel.TABLE,
)
if len(table_bboxes):
tf_output = self.tf_predictor.multi_table_predict(
page_input, table_bboxes, do_matching=self.do_cell_matching
)
for table_cluster, table_out in zip(table_clusters, tf_output):
table_cells = []
for element in table_out["tf_responses"]:
if not self.do_cell_matching:
the_bbox = BoundingBox.model_validate(
element["bbox"]
).scaled(1 / self.scale)
text_piece = page._backend.get_text_in_rect(the_bbox)
element["bbox"]["token"] = text_piece
tc = TableCell.model_validate(element)
if self.do_cell_matching and tc.bbox is not None:
tc.bbox = tc.bbox.scaled(1 / self.scale)
table_cells.append(tc)
# Retrieving cols/rows, after post processing:
num_rows = table_out["predict_details"]["num_rows"]
num_cols = table_out["predict_details"]["num_cols"]
otsl_seq = table_out["predict_details"]["prediction"]["rs_seq"]
tbl = Table(
otsl_seq=otsl_seq,
table_cells=table_cells,
num_rows=num_rows,
num_cols=num_cols,
id=table_cluster.id,
page_no=page.page_no,
cluster=table_cluster,
label=DocItemLabel.TABLE,
)
page.predictions.tablestructure.table_map[table_cluster.id] = (
tbl
)
page.predictions.tablestructure.table_map[
table_cluster.id
] = tbl
# For debugging purposes:
if settings.debug.visualize_tables:

View File

@ -8,8 +8,10 @@ import pandas as pd
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import TesseractCliOcrOptions
from docling.datamodel.settings import settings
from docling.models.base_model import TimeRecorder
from docling.models.base_ocr_model import BaseOcrModel
_log = logging.getLogger(__name__)
@ -103,7 +105,9 @@ class TesseractOcrCliModel(BaseOcrModel):
return df_filtered
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled:
yield from page_batch
@ -114,60 +118,64 @@ class TesseractOcrCliModel(BaseOcrModel):
if not page._backend.is_valid():
yield page
else:
ocr_rects = self.get_ocr_rects(page)
with TimeRecorder(conv_res, "ocr"):
all_ocr_cells = []
for ocr_rect in ocr_rects:
# Skip zero area boxes
if ocr_rect.area() == 0:
continue
high_res_image = page._backend.get_page_image(
scale=self.scale, cropbox=ocr_rect
ocr_rects = self.get_ocr_rects(page)
all_ocr_cells = []
for ocr_rect in ocr_rects:
# Skip zero area boxes
if ocr_rect.area() == 0:
continue
high_res_image = page._backend.get_page_image(
scale=self.scale, cropbox=ocr_rect
)
with tempfile.NamedTemporaryFile(
suffix=".png", mode="w"
) as image_file:
fname = image_file.name
high_res_image.save(fname)
df = self._run_tesseract(fname)
# _log.info(df)
# Print relevant columns (bounding box and text)
for ix, row in df.iterrows():
text = row["text"]
conf = row["conf"]
l = float(row["left"])
b = float(row["top"])
w = float(row["width"])
h = float(row["height"])
t = b + h
r = l + w
cell = OcrCell(
id=ix,
text=text,
confidence=conf / 100.0,
bbox=BoundingBox.from_tuple(
coord=(
(l / self.scale) + ocr_rect.l,
(b / self.scale) + ocr_rect.t,
(r / self.scale) + ocr_rect.l,
(t / self.scale) + ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
),
)
all_ocr_cells.append(cell)
## Remove OCR cells which overlap with programmatic cells.
filtered_ocr_cells = self.filter_ocr_cells(
all_ocr_cells, page.cells
)
with tempfile.NamedTemporaryFile(
suffix=".png", mode="w"
) as image_file:
fname = image_file.name
high_res_image.save(fname)
df = self._run_tesseract(fname)
# _log.info(df)
# Print relevant columns (bounding box and text)
for ix, row in df.iterrows():
text = row["text"]
conf = row["conf"]
l = float(row["left"])
b = float(row["top"])
w = float(row["width"])
h = float(row["height"])
t = b + h
r = l + w
cell = OcrCell(
id=ix,
text=text,
confidence=conf / 100.0,
bbox=BoundingBox.from_tuple(
coord=(
(l / self.scale) + ocr_rect.l,
(b / self.scale) + ocr_rect.t,
(r / self.scale) + ocr_rect.l,
(t / self.scale) + ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
),
)
all_ocr_cells.append(cell)
## Remove OCR cells which overlap with programmatic cells.
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
page.cells.extend(filtered_ocr_cells)
page.cells.extend(filtered_ocr_cells)
# DEBUG code:
if settings.debug.visualize_ocr:

View File

@ -4,8 +4,10 @@ from typing import Iterable
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import TesseractOcrOptions
from docling.datamodel.settings import settings
from docling.models.base_model import TimeRecorder
from docling.models.base_ocr_model import BaseOcrModel
_log = logging.getLogger(__name__)
@ -62,7 +64,9 @@ class TesseractOcrModel(BaseOcrModel):
# Finalize the tesseractAPI
self.reader.End()
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled:
yield from page_batch
@ -73,57 +77,63 @@ class TesseractOcrModel(BaseOcrModel):
if not page._backend.is_valid():
yield page
else:
assert self.reader is not None
with TimeRecorder(conv_res, "ocr"):
ocr_rects = self.get_ocr_rects(page)
assert self.reader is not None
all_ocr_cells = []
for ocr_rect in ocr_rects:
# Skip zero area boxes
if ocr_rect.area() == 0:
continue
high_res_image = page._backend.get_page_image(
scale=self.scale, cropbox=ocr_rect
)
ocr_rects = self.get_ocr_rects(page)
# Retrieve text snippets with their bounding boxes
self.reader.SetImage(high_res_image)
boxes = self.reader.GetComponentImages(
self.reader_RIL.TEXTLINE, True
)
cells = []
for ix, (im, box, _, _) in enumerate(boxes):
# Set the area of interest. Tesseract uses Bottom-Left for the origin
self.reader.SetRectangle(box["x"], box["y"], box["w"], box["h"])
# Extract text within the bounding box
text = self.reader.GetUTF8Text().strip()
confidence = self.reader.MeanTextConf()
left = box["x"] / self.scale
bottom = box["y"] / self.scale
right = (box["x"] + box["w"]) / self.scale
top = (box["y"] + box["h"]) / self.scale
cells.append(
OcrCell(
id=ix,
text=text,
confidence=confidence,
bbox=BoundingBox.from_tuple(
coord=(left, top, right, bottom),
origin=CoordOrigin.TOPLEFT,
),
)
all_ocr_cells = []
for ocr_rect in ocr_rects:
# Skip zero area boxes
if ocr_rect.area() == 0:
continue
high_res_image = page._backend.get_page_image(
scale=self.scale, cropbox=ocr_rect
)
# del high_res_image
all_ocr_cells.extend(cells)
# Retrieve text snippets with their bounding boxes
self.reader.SetImage(high_res_image)
boxes = self.reader.GetComponentImages(
self.reader_RIL.TEXTLINE, True
)
## Remove OCR cells which overlap with programmatic cells.
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
cells = []
for ix, (im, box, _, _) in enumerate(boxes):
# Set the area of interest. Tesseract uses Bottom-Left for the origin
self.reader.SetRectangle(
box["x"], box["y"], box["w"], box["h"]
)
page.cells.extend(filtered_ocr_cells)
# Extract text within the bounding box
text = self.reader.GetUTF8Text().strip()
confidence = self.reader.MeanTextConf()
left = box["x"] / self.scale
bottom = box["y"] / self.scale
right = (box["x"] + box["w"]) / self.scale
top = (box["y"] + box["h"]) / self.scale
cells.append(
OcrCell(
id=ix,
text=text,
confidence=confidence,
bbox=BoundingBox.from_tuple(
coord=(left, top, right, bottom),
origin=CoordOrigin.TOPLEFT,
),
)
)
# del high_res_image
all_ocr_cells.extend(cells)
## Remove OCR cells which overlap with programmatic cells.
filtered_ocr_cells = self.filter_ocr_cells(
all_ocr_cells, page.cells
)
page.cells.extend(filtered_ocr_cells)
# DEBUG code:
if settings.debug.visualize_ocr:

View File

@ -15,10 +15,15 @@ from docling.datamodel.base_models import (
ErrorItem,
Page,
)
from docling.datamodel.document import ConversionResult, InputDocument
from docling.datamodel.document import (
ConversionResult,
InputDocument,
ProfilingItem,
ProfilingScope,
)
from docling.datamodel.pipeline_options import PipelineOptions
from docling.datamodel.settings import settings
from docling.models.base_model import BaseEnrichmentModel
from docling.models.base_model import BaseEnrichmentModel, TimeRecorder
from docling.utils.utils import chunkify
_log = logging.getLogger(__name__)
@ -37,11 +42,11 @@ class BasePipeline(ABC):
try:
# These steps are building and assembling the structure of the
# output DoclingDocument
conv_res = self._build_document(in_doc, conv_res)
conv_res = self._assemble_document(in_doc, conv_res)
conv_res = self._build_document(conv_res)
conv_res = self._assemble_document(conv_res)
# From this stage, all operations should rely only on conv_res.output
conv_res = self._enrich_document(in_doc, conv_res)
conv_res.status = self._determine_status(in_doc, conv_res)
conv_res = self._enrich_document(conv_res)
conv_res.status = self._determine_status(conv_res)
except Exception as e:
conv_res.status = ConversionStatus.FAILURE
if raises_on_error:
@ -50,19 +55,13 @@ class BasePipeline(ABC):
return conv_res
@abstractmethod
def _build_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
def _build_document(self, conv_res: ConversionResult) -> ConversionResult:
pass
def _assemble_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
def _assemble_document(self, conv_res: ConversionResult) -> ConversionResult:
return conv_res
def _enrich_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
def _enrich_document(self, conv_res: ConversionResult) -> ConversionResult:
def _filter_elements(
doc: DoclingDocument, model: BaseEnrichmentModel
@ -71,24 +70,23 @@ class BasePipeline(ABC):
if model.is_processable(doc=doc, element=element):
yield element
for model in self.enrichment_pipe:
for element_batch in chunkify(
_filter_elements(conv_res.document, model),
settings.perf.elements_batch_size,
):
# TODO: currently we assume the element itself is modified, because
# we don't have an interface to save the element back to the document
for element in model(
doc=conv_res.document, element_batch=element_batch
): # Must exhaust!
pass
with TimeRecorder(conv_res, "doc_enrich", scope=ProfilingScope.DOCUMENT):
for model in self.enrichment_pipe:
for element_batch in chunkify(
_filter_elements(conv_res.document, model),
settings.perf.elements_batch_size,
):
# TODO: currently we assume the element itself is modified, because
# we don't have an interface to save the element back to the document
for element in model(
doc=conv_res.document, element_batch=element_batch
): # Must exhaust!
pass
return conv_res
@abstractmethod
def _determine_status(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionStatus:
def _determine_status(self, conv_res: ConversionResult) -> ConversionStatus:
pass
@classmethod
@ -110,66 +108,68 @@ class BasePipeline(ABC):
class PaginatedPipeline(BasePipeline): # TODO this is a bad name.
def _apply_on_pages(self, page_batch: Iterable[Page]) -> Iterable[Page]:
def _apply_on_pages(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for model in self.build_pipe:
page_batch = model(page_batch)
page_batch = model(conv_res, page_batch)
yield from page_batch
def _build_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
def _build_document(self, conv_res: ConversionResult) -> ConversionResult:
if not isinstance(in_doc._backend, PdfDocumentBackend):
if not isinstance(conv_res.input._backend, PdfDocumentBackend):
raise RuntimeError(
f"The selected backend {type(in_doc._backend).__name__} for {in_doc.file} is not a PDF backend. "
f"The selected backend {type(conv_res.input._backend).__name__} for {conv_res.input.file} is not a PDF backend. "
f"Can not convert this with a PDF pipeline. "
f"Please check your format configuration on DocumentConverter."
)
# conv_res.status = ConversionStatus.FAILURE
# return conv_res
for i in range(0, in_doc.page_count):
conv_res.pages.append(Page(page_no=i))
with TimeRecorder(conv_res, "doc_build", scope=ProfilingScope.DOCUMENT):
try:
# Iterate batches of pages (page_batch_size) in the doc
for page_batch in chunkify(conv_res.pages, settings.perf.page_batch_size):
start_pb_time = time.time()
for i in range(0, conv_res.input.page_count):
conv_res.pages.append(Page(page_no=i))
# 1. Initialise the page resources
init_pages = map(
functools.partial(self.initialize_page, in_doc), page_batch
try:
# Iterate batches of pages (page_batch_size) in the doc
for page_batch in chunkify(
conv_res.pages, settings.perf.page_batch_size
):
start_pb_time = time.time()
# 1. Initialise the page resources
init_pages = map(
functools.partial(self.initialize_page, conv_res), page_batch
)
# 2. Run pipeline stages
pipeline_pages = self._apply_on_pages(conv_res, init_pages)
for p in pipeline_pages: # Must exhaust!
pass
end_pb_time = time.time() - start_pb_time
_log.debug(f"Finished converting page batch time={end_pb_time:.3f}")
except Exception as e:
conv_res.status = ConversionStatus.FAILURE
trace = "\n".join(traceback.format_exception(e))
_log.warning(
f"Encountered an error during conversion of document {conv_res.input.document_hash}:\n"
f"{trace}"
)
raise e
# 2. Run pipeline stages
pipeline_pages = self._apply_on_pages(init_pages)
for p in pipeline_pages: # Must exhaust!
pass
end_pb_time = time.time() - start_pb_time
_log.debug(f"Finished converting page batch time={end_pb_time:.3f}")
except Exception as e:
conv_res.status = ConversionStatus.FAILURE
trace = "\n".join(traceback.format_exception(e))
_log.warning(
f"Encountered an error during conversion of document {in_doc.document_hash}:\n"
f"{trace}"
)
raise e
finally:
# Always unload the PDF backend, even in case of failure
if in_doc._backend:
in_doc._backend.unload()
finally:
# Always unload the PDF backend, even in case of failure
if conv_res.input._backend:
conv_res.input._backend.unload()
return conv_res
def _determine_status(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionStatus:
def _determine_status(self, conv_res: ConversionResult) -> ConversionStatus:
status = ConversionStatus.SUCCESS
for page in conv_res.pages:
if page._backend is None or not page._backend.is_valid():
@ -186,5 +186,5 @@ class PaginatedPipeline(BasePipeline): # TODO this is a bad name.
# Initialise and load resources for a page
@abstractmethod
def initialize_page(self, doc: InputDocument, page: Page) -> Page:
def initialize_page(self, conv_res: ConversionResult, page: Page) -> Page:
pass

View File

@ -5,8 +5,9 @@ from docling.backend.abstract_backend import (
DeclarativeDocumentBackend,
)
from docling.datamodel.base_models import ConversionStatus
from docling.datamodel.document import ConversionResult, InputDocument
from docling.datamodel.document import ConversionResult, InputDocument, ProfilingScope
from docling.datamodel.pipeline_options import PipelineOptions
from docling.models.base_model import TimeRecorder
from docling.pipeline.base_pipeline import BasePipeline
_log = logging.getLogger(__name__)
@ -22,13 +23,11 @@ class SimplePipeline(BasePipeline):
def __init__(self, pipeline_options: PipelineOptions):
super().__init__(pipeline_options)
def _build_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
def _build_document(self, conv_res: ConversionResult) -> ConversionResult:
if not isinstance(in_doc._backend, DeclarativeDocumentBackend):
if not isinstance(conv_res.input._backend, DeclarativeDocumentBackend):
raise RuntimeError(
f"The selected backend {type(in_doc._backend).__name__} for {in_doc.file} is not a declarative backend. "
f"The selected backend {type(conv_res.input._backend).__name__} for {conv_res.input.file} is not a declarative backend. "
f"Can not convert this with simple pipeline. "
f"Please check your format configuration on DocumentConverter."
)
@ -38,13 +37,11 @@ class SimplePipeline(BasePipeline):
# Instead of running a page-level pipeline to build up the document structure,
# the backend is expected to be of type DeclarativeDocumentBackend, which can output
# a DoclingDocument straight.
conv_res.document = in_doc._backend.convert()
with TimeRecorder(conv_res, "doc_build", scope=ProfilingScope.DOCUMENT):
conv_res.document = conv_res.input._backend.convert()
return conv_res
def _determine_status(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionStatus:
def _determine_status(self, conv_res: ConversionResult) -> ConversionStatus:
# This is called only if the previous steps didn't raise.
# Since we don't have anything else to evaluate, we can
# safely return SUCCESS.

View File

@ -7,13 +7,14 @@ from docling_core.types.doc import DocItem, ImageRef, PictureItem, TableItem
from docling.backend.abstract_backend import AbstractDocumentBackend
from docling.backend.pdf_backend import PdfDocumentBackend
from docling.datamodel.base_models import AssembledUnit, Page
from docling.datamodel.document import ConversionResult, InputDocument
from docling.datamodel.document import ConversionResult, InputDocument, ProfilingScope
from docling.datamodel.pipeline_options import (
EasyOcrOptions,
PdfPipelineOptions,
TesseractCliOcrOptions,
TesseractOcrOptions,
)
from docling.models.base_model import TimeRecorder
from docling.models.base_ocr_model import BaseOcrModel
from docling.models.ds_glm_model import GlmModel, GlmOptions
from docling.models.easyocr_model import EasyOcrModel
@ -119,73 +120,75 @@ class StandardPdfPipeline(PaginatedPipeline):
)
return None
def initialize_page(self, doc: InputDocument, page: Page) -> Page:
page._backend = doc._backend.load_page(page.page_no) # type: ignore
if page._backend is not None and page._backend.is_valid():
page.size = page._backend.get_size()
def initialize_page(self, conv_res: ConversionResult, page: Page) -> Page:
with TimeRecorder(conv_res, "init_page"):
page._backend = conv_res.input._backend.load_page(page.page_no) # type: ignore
if page._backend is not None and page._backend.is_valid():
page.size = page._backend.get_size()
return page
def _assemble_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
def _assemble_document(self, conv_res: ConversionResult) -> ConversionResult:
all_elements = []
all_headers = []
all_body = []
for p in conv_res.pages:
if p.assembled is not None:
for el in p.assembled.body:
all_body.append(el)
for el in p.assembled.headers:
all_headers.append(el)
for el in p.assembled.elements:
all_elements.append(el)
with TimeRecorder(conv_res, "doc_assemble", scope=ProfilingScope.DOCUMENT):
for p in conv_res.pages:
if p.assembled is not None:
for el in p.assembled.body:
all_body.append(el)
for el in p.assembled.headers:
all_headers.append(el)
for el in p.assembled.elements:
all_elements.append(el)
conv_res.assembled = AssembledUnit(
elements=all_elements, headers=all_headers, body=all_body
)
conv_res.assembled = AssembledUnit(
elements=all_elements, headers=all_headers, body=all_body
)
conv_res.document = self.glm_model(conv_res)
conv_res.document = self.glm_model(conv_res)
# Generate page images in the output
if self.pipeline_options.generate_page_images:
for page in conv_res.pages:
assert page.image is not None
page_no = page.page_no + 1
conv_res.document.pages[page_no].image = ImageRef.from_pil(
page.image, dpi=int(72 * self.pipeline_options.images_scale)
)
# Generate images of the requested element types
if (
self.pipeline_options.generate_picture_images
or self.pipeline_options.generate_table_images
):
scale = self.pipeline_options.images_scale
for element, _level in conv_res.document.iterate_items():
if not isinstance(element, DocItem) or len(element.prov) == 0:
continue
if (
isinstance(element, PictureItem)
and self.pipeline_options.generate_picture_images
) or (
isinstance(element, TableItem)
and self.pipeline_options.generate_table_images
):
page_ix = element.prov[0].page_no - 1
page = conv_res.pages[page_ix]
assert page.size is not None
# Generate page images in the output
if self.pipeline_options.generate_page_images:
for page in conv_res.pages:
assert page.image is not None
crop_bbox = (
element.prov[0]
.bbox.scaled(scale=scale)
.to_top_left_origin(page_height=page.size.height * scale)
page_no = page.page_no + 1
conv_res.document.pages[page_no].image = ImageRef.from_pil(
page.image, dpi=int(72 * self.pipeline_options.images_scale)
)
cropped_im = page.image.crop(crop_bbox.as_tuple())
element.image = ImageRef.from_pil(cropped_im, dpi=int(72 * scale))
# Generate images of the requested element types
if (
self.pipeline_options.generate_picture_images
or self.pipeline_options.generate_table_images
):
scale = self.pipeline_options.images_scale
for element, _level in conv_res.document.iterate_items():
if not isinstance(element, DocItem) or len(element.prov) == 0:
continue
if (
isinstance(element, PictureItem)
and self.pipeline_options.generate_picture_images
) or (
isinstance(element, TableItem)
and self.pipeline_options.generate_table_images
):
page_ix = element.prov[0].page_no - 1
page = conv_res.pages[page_ix]
assert page.size is not None
assert page.image is not None
crop_bbox = (
element.prov[0]
.bbox.scaled(scale=scale)
.to_top_left_origin(page_height=page.size.height * scale)
)
cropped_im = page.image.crop(crop_bbox.as_tuple())
element.image = ImageRef.from_pil(
cropped_im, dpi=int(72 * scale)
)
return conv_res