mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-26 20:14:47 +00:00
add examples for swtching OCR engine and CLI support
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
parent
8d1c1d6dd5
commit
0b76211eed
@ -14,7 +14,12 @@ from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
|
||||
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
|
||||
from docling.datamodel.base_models import ConversionStatus
|
||||
from docling.datamodel.document import ConversionResult, DocumentConversionInput
|
||||
from docling.datamodel.pipeline_options import PipelineOptions
|
||||
from docling.datamodel.pipeline_options import (
|
||||
EasyOcrOptions,
|
||||
PipelineOptions,
|
||||
TesseractOcrOptions,
|
||||
TesserOcrOptions,
|
||||
)
|
||||
from docling.document_converter import DocumentConverter
|
||||
|
||||
warnings.filterwarnings(action="ignore", category=UserWarning, module="pydantic|torch")
|
||||
@ -53,6 +58,13 @@ class Backend(str, Enum):
|
||||
DOCLING = "docling"
|
||||
|
||||
|
||||
# Define an enum for the ocr engines
|
||||
class OcrEngine(str, Enum):
|
||||
EASYOCR = "easyocr"
|
||||
TESSERACT = "tesseract"
|
||||
TESSEROCR = "tesserocr"
|
||||
|
||||
|
||||
def export_documents(
|
||||
conv_results: Iterable[ConversionResult],
|
||||
output_dir: Path,
|
||||
@ -152,6 +164,9 @@ def convert(
|
||||
backend: Annotated[
|
||||
Backend, typer.Option(..., help="The PDF backend to use.")
|
||||
] = Backend.DOCLING,
|
||||
ocr_engine: Annotated[
|
||||
OcrEngine, typer.Option(..., help="The OCR engine to use.")
|
||||
] = OcrEngine.EASYOCR,
|
||||
output: Annotated[
|
||||
Path, typer.Option(..., help="Output directory where results are saved.")
|
||||
] = Path("."),
|
||||
@ -191,8 +206,19 @@ def convert(
|
||||
case _:
|
||||
raise RuntimeError(f"Unexpected backend type {backend}")
|
||||
|
||||
match ocr_engine:
|
||||
case OcrEngine.EASYOCR:
|
||||
ocr_options = EasyOcrOptions()
|
||||
case OcrEngine.TESSERACT:
|
||||
ocr_options = TesseractOcrOptions()
|
||||
case OcrEngine.TESSEROCR:
|
||||
ocr_options = TesserOcrOptions()
|
||||
case _:
|
||||
raise RuntimeError(f"Unexpected backend type {backend}")
|
||||
|
||||
pipeline_options = PipelineOptions(
|
||||
do_ocr=ocr,
|
||||
ocr_options=ocr_options,
|
||||
do_table_structure=True,
|
||||
)
|
||||
pipeline_options.table_structure_options.do_cell_matching = do_cell_matching
|
||||
|
@ -32,11 +32,15 @@ class TesseractOcrOptions(OcrOptions):
|
||||
kind: Literal["tesseract"] = "tesseract"
|
||||
|
||||
|
||||
class TesserOcrOptions(OcrOptions):
|
||||
kind: Literal["tesseract"] = "tesserocr"
|
||||
|
||||
|
||||
class PipelineOptions(BaseModel):
|
||||
do_table_structure: bool = True # True: perform table structure extraction
|
||||
do_ocr: bool = True # True: perform OCR, replace programmatic PDF text
|
||||
|
||||
table_structure_options: TableStructureOptions = TableStructureOptions()
|
||||
ocr_options: Union[EasyOcrOptions, TesseractOcrOptions] = Field(
|
||||
ocr_options: Union[EasyOcrOptions, TesseractOcrOptions, TesserOcrOptions] = Field(
|
||||
EasyOcrOptions(), discriminator="kind"
|
||||
)
|
||||
|
@ -1,7 +1,7 @@
|
||||
import logging
|
||||
from typing import Iterable
|
||||
from subprocess import PIPE, Popen
|
||||
from typing import Iterable, Tuple
|
||||
|
||||
import numpy
|
||||
import pandas as pd
|
||||
|
||||
from docling.datamodel.base_models import BoundingBox, CoordOrigin, OcrCell, Page
|
||||
@ -10,7 +10,8 @@ from docling.models.base_ocr_model import BaseOcrModel
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
class TesseractModel(BaseOcrModel):
|
||||
|
||||
class TesseractOcrModel(BaseOcrModel):
|
||||
|
||||
def __init__(self, enabled: bool, options: TesseractOcrOptions):
|
||||
super().__init__(enabled=enabled, options=options)
|
||||
@ -21,34 +22,38 @@ class TesseractModel(BaseOcrModel):
|
||||
if self.enabled:
|
||||
try:
|
||||
self._get_name_and_version()
|
||||
|
||||
|
||||
except Exception as exc:
|
||||
_log.error(f"Tesseract is not supported, aborting ...")
|
||||
_log.error(f"Tesseract is not available, aborting ...")
|
||||
self.enabled = False
|
||||
|
||||
|
||||
def _get_name_and_version(self) -> Tuple[str, str]:
|
||||
|
||||
if self._name!=None and self._version!=None:
|
||||
if self._name != None and self._version != None:
|
||||
return self._name, self._version
|
||||
|
||||
cmd = ['tesseract', '--version']
|
||||
cmd = ["tesseract", "--version"]
|
||||
|
||||
proc = Popen(cmd, stdout=PIPE, stderr=PIPE)
|
||||
stdout, stderr = proc.communicate()
|
||||
|
||||
proc.wait()
|
||||
|
||||
# HACK: Windows versions of Tesseract output the version to stdout, Linux versions
|
||||
# HACK: Windows versions of Tesseract output the version to stdout, Linux versions
|
||||
# to stderr, so check both.
|
||||
version_line = (stdout.decode('utf8').strip() or stderr.decode('utf8').strip()).split('\n')[0].strip()
|
||||
version_line = (
|
||||
(stdout.decode("utf8").strip() or stderr.decode("utf8").strip())
|
||||
.split("\n")[0]
|
||||
.strip()
|
||||
)
|
||||
|
||||
# If everything else fails...
|
||||
if not version_line:
|
||||
version_line = 'tesseract XXX'
|
||||
version_line = "tesseract XXX"
|
||||
|
||||
name, version = version_line.split(' ')
|
||||
name, version = version_line.split(" ")
|
||||
|
||||
self._name = name
|
||||
self._name = name
|
||||
self._version = version
|
||||
|
||||
return name, version
|
||||
@ -58,26 +63,25 @@ class TesseractModel(BaseOcrModel):
|
||||
cmd = ["tesseract"]
|
||||
|
||||
if languages:
|
||||
cmd += ['-l', '+'.join(languages)]
|
||||
cmd += ["-l", "+".join(languages)]
|
||||
|
||||
cmd += [ifilename, 'stdout', "tsv"]
|
||||
logger.info("command: {}".format(" ".join(cmd)))
|
||||
cmd += [ifilename, "stdout", "tsv"]
|
||||
_log.info("command: {}".format(" ".join(cmd)))
|
||||
|
||||
proc = Popen(cmd, stdout=PIPE)
|
||||
output, _ = proc.communicate()
|
||||
|
||||
# Read the TSV file generated by Tesseract
|
||||
df = pd.read_csv('output_file_name.tsv', sep='\t')
|
||||
df = pd.read_csv("output_file_name.tsv", sep="\t")
|
||||
|
||||
# Display the dataframe (optional)
|
||||
print(df.head())
|
||||
|
||||
|
||||
# Filter rows that contain actual text (ignore header or empty rows)
|
||||
df_filtered = df[df['text'].notnull() & (df['text'].str.strip() != '')]
|
||||
df_filtered = df[df["text"].notnull() & (df["text"].str.strip() != "")]
|
||||
|
||||
return df_filtered
|
||||
|
||||
|
||||
|
||||
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||
|
||||
if not self.enabled:
|
||||
@ -93,7 +97,7 @@ class TesseractModel(BaseOcrModel):
|
||||
scale=self.scale, cropbox=ocr_rect
|
||||
)
|
||||
print(high_res_image)
|
||||
|
||||
|
||||
# FIXME: do we really need to save the image to a file
|
||||
fname = "temporary-file.png"
|
||||
high_res_image.save(fname)
|
||||
@ -103,22 +107,22 @@ class TesseractModel(BaseOcrModel):
|
||||
os.remove(fname)
|
||||
else:
|
||||
_log.error(f"no image file: {fname}")
|
||||
|
||||
|
||||
# Print relevant columns (bounding box and text)
|
||||
for index, row in df_filtered.iterrows():
|
||||
print(row)
|
||||
|
||||
|
||||
text = row["text"]
|
||||
conf = row["confidence"]
|
||||
|
||||
l = float(row['left'])
|
||||
t = float(row['top'])
|
||||
w = float(row['width'])
|
||||
h = float(row['height'])
|
||||
|
||||
b = t-h
|
||||
r = l+w
|
||||
|
||||
l = float(row["left"])
|
||||
t = float(row["top"])
|
||||
w = float(row["width"])
|
||||
h = float(row["height"])
|
||||
|
||||
b = t - h
|
||||
r = l + w
|
||||
|
||||
cell = OcrCell(
|
||||
id=ix,
|
||||
text=text,
|
||||
@ -134,7 +138,7 @@ class TesseractModel(BaseOcrModel):
|
||||
),
|
||||
)
|
||||
all_ocr_cells.append(cell)
|
||||
|
||||
|
||||
## Remove OCR cells which overlap with programmatic cells.
|
||||
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
|
||||
|
||||
|
@ -4,11 +4,13 @@ from docling.datamodel.pipeline_options import (
|
||||
EasyOcrOptions,
|
||||
PipelineOptions,
|
||||
TesseractOcrOptions,
|
||||
TesserOcrOptions,
|
||||
)
|
||||
from docling.models.base_ocr_model import BaseOcrModel
|
||||
from docling.models.easyocr_model import EasyOcrModel
|
||||
from docling.models.layout_model import LayoutModel
|
||||
from docling.models.table_structure_model import TableStructureModel
|
||||
from docling.models.tesseract_model import TesseractOcrModel
|
||||
from docling.pipeline.base_model_pipeline import BaseModelPipeline
|
||||
|
||||
|
||||
@ -26,6 +28,11 @@ class StandardModelPipeline(BaseModelPipeline):
|
||||
options=pipeline_options.ocr_options,
|
||||
)
|
||||
elif isinstance(pipeline_options.ocr_options, TesseractOcrOptions):
|
||||
ocr_model = TesseractOcrModel(
|
||||
enabled=pipeline_options.do_ocr,
|
||||
options=pipeline_options.ocr_options,
|
||||
)
|
||||
elif isinstance(pipeline_options.ocr_options, TesserOcrOptions):
|
||||
raise NotImplemented()
|
||||
# TODO
|
||||
# ocr_model = TesseractOcrModel(
|
||||
|
@ -8,6 +8,7 @@ from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
|
||||
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
|
||||
from docling.datamodel.base_models import ConversionStatus, PipelineOptions
|
||||
from docling.datamodel.document import ConversionResult, DocumentConversionInput
|
||||
from docling.datamodel.pipeline_options import TesseractOcrOptions, TesserOcrOptions
|
||||
from docling.document_converter import DocumentConverter
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
@ -115,6 +116,27 @@ def main():
|
||||
# pdf_backend=DoclingParseDocumentBackend,
|
||||
# )
|
||||
|
||||
# Docling Parse with Tesseract OCR
|
||||
# ----------------------
|
||||
pipeline_options = PipelineOptions()
|
||||
pipeline_options.do_ocr = True
|
||||
pipeline_options.do_table_structure = True
|
||||
pipeline_options.table_structure_options.do_cell_matching = True
|
||||
pipeline_options.ocr_options = TesseractOcrOptions()
|
||||
|
||||
# Docling Parse with TesserOCR
|
||||
# ----------------------
|
||||
# pipeline_options = PipelineOptions()
|
||||
# pipeline_options.do_ocr=True
|
||||
# pipeline_options.do_table_structure=True
|
||||
# pipeline_options.table_structure_options.do_cell_matching = True
|
||||
# pipeline_options.ocr_options = TesserOcrOptions()
|
||||
|
||||
doc_converter = DocumentConverter(
|
||||
pipeline_options=pipeline_options,
|
||||
pdf_backend=DoclingParseDocumentBackend,
|
||||
)
|
||||
|
||||
###########################################################################
|
||||
|
||||
# Define input files
|
||||
|
@ -12,8 +12,7 @@ GENERATE = False
|
||||
|
||||
# Debug
|
||||
def save_output(pdf_path: Path, doc_result: ConversionResult):
|
||||
r"""
|
||||
"""
|
||||
r""" """
|
||||
import json
|
||||
import os
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user