mirror of
https://github.com/DS4SD/docling.git
synced 2025-12-08 12:48:28 +00:00
Prepare existing codes for use with new multi-stage VLM pipeline
Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
import math
|
||||
from collections import defaultdict
|
||||
from enum import Enum
|
||||
from typing import TYPE_CHECKING, Annotated, Dict, List, Literal, Optional, Union
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
from docling_core.types.doc import (
|
||||
|
||||
@@ -282,6 +282,9 @@ class LayoutOptions(BaseModel):
|
||||
keep_empty_clusters: bool = (
|
||||
False # Whether to keep clusters that contain no text cells
|
||||
)
|
||||
skip_cell_assignment: bool = (
|
||||
False # Skip cell-to-cluster assignment for VLM-only processing
|
||||
)
|
||||
model_spec: LayoutModelConfig = DOCLING_LAYOUT_V2
|
||||
|
||||
|
||||
|
||||
@@ -1,11 +1,17 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Iterable
|
||||
from typing import Generic, Optional, Protocol, Type
|
||||
from typing import Generic, Optional, Protocol, Type, Union
|
||||
|
||||
import numpy as np
|
||||
from docling_core.types.doc import BoundingBox, DocItem, DoclingDocument, NodeItem
|
||||
from PIL.Image import Image
|
||||
from typing_extensions import TypeVar
|
||||
|
||||
from docling.datamodel.base_models import ItemAndImageEnrichmentElement, Page
|
||||
from docling.datamodel.base_models import (
|
||||
ItemAndImageEnrichmentElement,
|
||||
Page,
|
||||
VlmPrediction,
|
||||
)
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options import BaseOptions
|
||||
from docling.datamodel.settings import settings
|
||||
@@ -26,6 +32,46 @@ class BasePageModel(ABC):
|
||||
pass
|
||||
|
||||
|
||||
class BaseVlmModel(ABC):
|
||||
"""Base class for Vision-Language Models that adds image processing capability."""
|
||||
|
||||
@abstractmethod
|
||||
def process_images(
|
||||
self, image_batch: Iterable[Union[Image, np.ndarray]]
|
||||
) -> Iterable[VlmPrediction]:
|
||||
"""Process raw images without page metadata."""
|
||||
|
||||
|
||||
class BaseVlmPageModel(BasePageModel, BaseVlmModel):
|
||||
"""Base implementation for VLM models that inherit from BasePageModel.
|
||||
|
||||
Provides a default __call__ implementation that extracts images from pages,
|
||||
processes them using process_images, and attaches results back to pages.
|
||||
"""
|
||||
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
"""Extract images from pages, process them, and attach results back."""
|
||||
|
||||
@abstractmethod
|
||||
def process_images(
|
||||
self,
|
||||
image_batch: Iterable[Union[Image, np.ndarray]],
|
||||
prompt: Optional[str] = None,
|
||||
) -> Iterable[VlmPrediction]:
|
||||
"""Process raw images without page metadata.
|
||||
|
||||
Args:
|
||||
image_batch: Iterable of PIL Images or numpy arrays
|
||||
prompt: Optional prompt string. If None, uses vlm_options.prompt if it's a string.
|
||||
If vlm_options.prompt is callable and no prompt is provided, raises ValueError.
|
||||
|
||||
Raises:
|
||||
ValueError: If vlm_options.prompt is callable and no prompt parameter is provided.
|
||||
"""
|
||||
|
||||
|
||||
EnrichElementT = TypeVar("EnrichElementT", default=NodeItem)
|
||||
|
||||
|
||||
|
||||
@@ -17,6 +17,9 @@ from docling.utils.profiling import TimeRecorder
|
||||
|
||||
class PagePreprocessingOptions(BaseModel):
|
||||
images_scale: Optional[float]
|
||||
skip_cell_extraction: bool = (
|
||||
False # Skip text cell extraction for VLM-only processing
|
||||
)
|
||||
|
||||
|
||||
class PagePreprocessingModel(BasePageModel):
|
||||
@@ -41,7 +44,8 @@ class PagePreprocessingModel(BasePageModel):
|
||||
else:
|
||||
with TimeRecorder(conv_res, "page_parse"):
|
||||
page = self._populate_page_images(page)
|
||||
page = self._parse_page_cells(conv_res, page)
|
||||
if not self.options.skip_cell_extraction:
|
||||
page = self._parse_page_cells(conv_res, page)
|
||||
yield page
|
||||
|
||||
# Generate the page image and store it in the page object
|
||||
|
||||
@@ -3,7 +3,10 @@ import logging
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from pathlib import Path
|
||||
from typing import Any, Optional
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
from PIL.Image import Image
|
||||
|
||||
from docling.datamodel.accelerator_options import (
|
||||
AcceleratorOptions,
|
||||
@@ -15,7 +18,7 @@ from docling.datamodel.pipeline_options_vlm_model import (
|
||||
TransformersModelType,
|
||||
TransformersPromptStyle,
|
||||
)
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.models.base_model import BaseVlmPageModel
|
||||
from docling.models.utils.hf_model_download import (
|
||||
HuggingFaceModelDownloadMixin,
|
||||
)
|
||||
@@ -25,7 +28,7 @@ from docling.utils.profiling import TimeRecorder
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class HuggingFaceTransformersVlmModel(BasePageModel, HuggingFaceModelDownloadMixin):
|
||||
class HuggingFaceTransformersVlmModel(BaseVlmPageModel, HuggingFaceModelDownloadMixin):
|
||||
def __init__(
|
||||
self,
|
||||
enabled: bool,
|
||||
@@ -159,7 +162,7 @@ class HuggingFaceTransformersVlmModel(BasePageModel, HuggingFaceModelDownloadMix
|
||||
generation_time = time.time() - start_time
|
||||
generated_texts = self.processor.batch_decode(
|
||||
generated_ids[:, inputs["input_ids"].shape[1] :],
|
||||
skip_special_tokens=False,
|
||||
skip_special_tokens=True,
|
||||
)[0]
|
||||
|
||||
num_tokens = len(generated_ids[0])
|
||||
@@ -214,3 +217,101 @@ class HuggingFaceTransformersVlmModel(BasePageModel, HuggingFaceModelDownloadMix
|
||||
raise RuntimeError(
|
||||
f"Uknown prompt style `{self.vlm_options.transformers_prompt_style}`. Valid values are {', '.join(s.value for s in TransformersPromptStyle)}."
|
||||
)
|
||||
|
||||
def process_images(
|
||||
self,
|
||||
image_batch: Iterable[Union[Image, np.ndarray]],
|
||||
prompt: Optional[str] = None,
|
||||
) -> Iterable[VlmPrediction]:
|
||||
"""Process raw images without page metadata in a single batched inference call."""
|
||||
pil_images: list[Image] = []
|
||||
|
||||
for img in image_batch:
|
||||
# Convert numpy array to PIL Image if needed
|
||||
if isinstance(img, np.ndarray):
|
||||
if img.ndim == 3 and img.shape[2] in [3, 4]:
|
||||
from PIL import Image as PILImage
|
||||
|
||||
pil_img = PILImage.fromarray(img.astype(np.uint8))
|
||||
elif img.ndim == 2:
|
||||
from PIL import Image as PILImage
|
||||
|
||||
pil_img = PILImage.fromarray(img.astype(np.uint8), mode="L")
|
||||
else:
|
||||
raise ValueError(f"Unsupported numpy array shape: {img.shape}")
|
||||
else:
|
||||
pil_img = img
|
||||
|
||||
# Ensure image is in RGB mode (handles RGBA, L, etc.)
|
||||
if pil_img.mode != "RGB":
|
||||
pil_img = pil_img.convert("RGB")
|
||||
|
||||
pil_images.append(pil_img)
|
||||
|
||||
if len(pil_images) == 0:
|
||||
return
|
||||
|
||||
# Handle prompt with priority: parameter > vlm_options.prompt > error
|
||||
if prompt is not None:
|
||||
user_prompt = prompt
|
||||
elif not callable(self.vlm_options.prompt):
|
||||
user_prompt = self.vlm_options.prompt
|
||||
else:
|
||||
raise ValueError(
|
||||
"vlm_options.prompt is callable but no prompt parameter provided to process_images. "
|
||||
"Please provide a prompt parameter when calling process_images directly."
|
||||
)
|
||||
|
||||
formatted_prompt = self.formulate_prompt(user_prompt)
|
||||
prompts: list[str] = [formatted_prompt] * len(pil_images)
|
||||
|
||||
inputs = self.processor(
|
||||
text=prompts, images=pil_images, return_tensors="pt", padding=True
|
||||
).to(self.device)
|
||||
|
||||
start_time = time.time()
|
||||
generated_ids = self.vlm_model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=self.max_new_tokens,
|
||||
use_cache=self.use_cache,
|
||||
temperature=self.temperature,
|
||||
generation_config=self.generation_config,
|
||||
**self.vlm_options.extra_generation_config,
|
||||
)
|
||||
generation_time = time.time() - start_time
|
||||
|
||||
# Determine per-sample prompt lengths
|
||||
try:
|
||||
attention_mask = inputs["attention_mask"]
|
||||
input_lengths: list[int] = attention_mask.sum(dim=1).tolist()
|
||||
except KeyError:
|
||||
tokenizer = (
|
||||
self.processor.tokenizer
|
||||
) # Expect tokenizer to be present when text is provided
|
||||
pad_token_id = tokenizer.pad_token_id
|
||||
if pad_token_id is not None:
|
||||
input_lengths = (
|
||||
(inputs["input_ids"] != pad_token_id).sum(dim=1).tolist()
|
||||
)
|
||||
else:
|
||||
# Fallback: assume uniform prompt length (least accurate but preserves execution)
|
||||
uniform_len = int(inputs["input_ids"].shape[1])
|
||||
input_lengths = [uniform_len] * int(inputs["input_ids"].shape[0])
|
||||
|
||||
trimmed_sequences: list[list[int]] = [
|
||||
generated_ids[i, int(input_lengths[i]) :].tolist()
|
||||
for i in range(generated_ids.shape[0])
|
||||
]
|
||||
decoded_texts: list[str] = self.processor.batch_decode(
|
||||
trimmed_sequences, skip_special_tokens=True
|
||||
)
|
||||
|
||||
# Logging tokens count for the first sample as a representative metric
|
||||
if generated_ids.shape[0] > 0:
|
||||
num_tokens = int(generated_ids[0].shape[0])
|
||||
_log.debug(
|
||||
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
|
||||
)
|
||||
|
||||
for text in decoded_texts:
|
||||
yield VlmPrediction(text=text, generation_time=generation_time)
|
||||
|
||||
@@ -1,8 +1,12 @@
|
||||
import logging
|
||||
import threading
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
from typing import Optional, Union
|
||||
|
||||
import numpy as np
|
||||
from PIL.Image import Image
|
||||
|
||||
from docling.datamodel.accelerator_options import (
|
||||
AcceleratorOptions,
|
||||
@@ -10,7 +14,7 @@ from docling.datamodel.accelerator_options import (
|
||||
from docling.datamodel.base_models import Page, VlmPrediction, VlmPredictionToken
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options_vlm_model import InlineVlmOptions
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.models.base_model import BaseVlmPageModel
|
||||
from docling.models.utils.hf_model_download import (
|
||||
HuggingFaceModelDownloadMixin,
|
||||
)
|
||||
@@ -18,8 +22,12 @@ from docling.utils.profiling import TimeRecorder
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
# Global lock for MLX model calls - MLX models are not thread-safe
|
||||
# All MLX models share this lock to prevent concurrent MLX operations
|
||||
_MLX_GLOBAL_LOCK = threading.Lock()
|
||||
|
||||
class HuggingFaceMlxModel(BasePageModel, HuggingFaceModelDownloadMixin):
|
||||
|
||||
class HuggingFaceMlxModel(BaseVlmPageModel, HuggingFaceModelDownloadMixin):
|
||||
def __init__(
|
||||
self,
|
||||
enabled: bool,
|
||||
@@ -92,51 +100,57 @@ class HuggingFaceMlxModel(BasePageModel, HuggingFaceModelDownloadMixin):
|
||||
self.processor, self.config, user_prompt, num_images=1
|
||||
)
|
||||
|
||||
start_time = time.time()
|
||||
_log.debug("start generating ...")
|
||||
# MLX models are not thread-safe - use global lock to serialize access
|
||||
with _MLX_GLOBAL_LOCK:
|
||||
_log.debug(
|
||||
"MLX model: Acquired global lock for __call__ method"
|
||||
)
|
||||
start_time = time.time()
|
||||
_log.debug("start generating ...")
|
||||
|
||||
# Call model to generate:
|
||||
tokens: list[VlmPredictionToken] = []
|
||||
# Call model to generate:
|
||||
tokens: list[VlmPredictionToken] = []
|
||||
|
||||
output = ""
|
||||
for token in self.stream_generate(
|
||||
self.vlm_model,
|
||||
self.processor,
|
||||
prompt,
|
||||
[hi_res_image],
|
||||
max_tokens=self.max_tokens,
|
||||
verbose=False,
|
||||
temp=self.temperature,
|
||||
):
|
||||
if len(token.logprobs.shape) == 1:
|
||||
tokens.append(
|
||||
VlmPredictionToken(
|
||||
text=token.text,
|
||||
token=token.token,
|
||||
logprob=token.logprobs[token.token],
|
||||
)
|
||||
)
|
||||
elif (
|
||||
len(token.logprobs.shape) == 2
|
||||
and token.logprobs.shape[0] == 1
|
||||
output = ""
|
||||
for token in self.stream_generate(
|
||||
self.vlm_model,
|
||||
self.processor,
|
||||
prompt,
|
||||
[hi_res_image],
|
||||
max_tokens=self.max_tokens,
|
||||
verbose=False,
|
||||
temp=self.temperature,
|
||||
):
|
||||
tokens.append(
|
||||
VlmPredictionToken(
|
||||
text=token.text,
|
||||
token=token.token,
|
||||
logprob=token.logprobs[0, token.token],
|
||||
if len(token.logprobs.shape) == 1:
|
||||
tokens.append(
|
||||
VlmPredictionToken(
|
||||
text=token.text,
|
||||
token=token.token,
|
||||
logprob=token.logprobs[token.token],
|
||||
)
|
||||
)
|
||||
elif (
|
||||
len(token.logprobs.shape) == 2
|
||||
and token.logprobs.shape[0] == 1
|
||||
):
|
||||
tokens.append(
|
||||
VlmPredictionToken(
|
||||
text=token.text,
|
||||
token=token.token,
|
||||
logprob=token.logprobs[0, token.token],
|
||||
)
|
||||
)
|
||||
else:
|
||||
_log.warning(
|
||||
f"incompatible shape for logprobs: {token.logprobs.shape}"
|
||||
)
|
||||
)
|
||||
else:
|
||||
_log.warning(
|
||||
f"incompatible shape for logprobs: {token.logprobs.shape}"
|
||||
)
|
||||
|
||||
output += token.text
|
||||
if "</doctag>" in token.text:
|
||||
break
|
||||
output += token.text
|
||||
if "</doctag>" in token.text:
|
||||
break
|
||||
|
||||
generation_time = time.time() - start_time
|
||||
generation_time = time.time() - start_time
|
||||
_log.debug("MLX model: Released global lock")
|
||||
page_tags = output
|
||||
|
||||
_log.debug(
|
||||
@@ -149,3 +163,82 @@ class HuggingFaceMlxModel(BasePageModel, HuggingFaceModelDownloadMixin):
|
||||
)
|
||||
|
||||
yield page
|
||||
|
||||
def process_images(
|
||||
self,
|
||||
image_batch: Iterable[Union[Image, np.ndarray]],
|
||||
prompt: Optional[str] = None,
|
||||
) -> Iterable[VlmPrediction]:
|
||||
from mlx_vlm import generate
|
||||
|
||||
# MLX models are not thread-safe - use global lock to serialize access
|
||||
with _MLX_GLOBAL_LOCK:
|
||||
_log.debug("MLX model: Acquired global lock for thread safety")
|
||||
for image in image_batch:
|
||||
# Convert numpy array to PIL Image if needed
|
||||
if isinstance(image, np.ndarray):
|
||||
if image.ndim == 3 and image.shape[2] in [3, 4]:
|
||||
# RGB or RGBA array
|
||||
from PIL import Image as PILImage
|
||||
|
||||
image = PILImage.fromarray(image.astype(np.uint8))
|
||||
elif image.ndim == 2:
|
||||
# Grayscale array
|
||||
from PIL import Image as PILImage
|
||||
|
||||
image = PILImage.fromarray(image.astype(np.uint8), mode="L")
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported numpy array shape: {image.shape}"
|
||||
)
|
||||
|
||||
# Ensure image is in RGB mode (handles RGBA, L, etc.)
|
||||
if image.mode != "RGB":
|
||||
image = image.convert("RGB")
|
||||
|
||||
# Handle prompt with priority: parameter > vlm_options.prompt > error
|
||||
if prompt is not None:
|
||||
user_prompt = prompt
|
||||
elif not callable(self.vlm_options.prompt):
|
||||
user_prompt = self.vlm_options.prompt
|
||||
else:
|
||||
raise ValueError(
|
||||
"vlm_options.prompt is callable but no prompt parameter provided to process_images. "
|
||||
"Please provide a prompt parameter when calling process_images directly."
|
||||
)
|
||||
|
||||
# Use the MLX chat template approach like in the __call__ method
|
||||
formatted_prompt = self.apply_chat_template(
|
||||
self.processor, self.config, user_prompt, num_images=1
|
||||
)
|
||||
|
||||
# Generate text from the image - MLX can accept PIL Images directly despite type annotations
|
||||
start_time = time.time()
|
||||
generated_result = generate(
|
||||
self.vlm_model,
|
||||
self.processor,
|
||||
formatted_prompt,
|
||||
image=image, # Pass PIL Image directly - much more efficient than disk I/O
|
||||
verbose=False,
|
||||
temp=self.temperature,
|
||||
max_tokens=self.max_tokens,
|
||||
)
|
||||
generation_time = time.time() - start_time
|
||||
|
||||
# MLX generate returns a tuple (text, info_dict), extract just the text
|
||||
if isinstance(generated_result, tuple):
|
||||
generated_text = generated_result[0]
|
||||
_log.debug(
|
||||
f"MLX generate returned tuple with additional info: {generated_result[1] if len(generated_result) > 1 else 'N/A'}"
|
||||
)
|
||||
else:
|
||||
generated_text = generated_result
|
||||
|
||||
_log.debug(f"Generated text in {generation_time:.2f}s.")
|
||||
yield VlmPrediction(
|
||||
text=generated_text,
|
||||
generation_time=generation_time,
|
||||
# MLX generate doesn't expose tokens directly, so we leave it empty
|
||||
generated_tokens=[],
|
||||
)
|
||||
_log.debug("MLX model: Released global lock")
|
||||
|
||||
@@ -239,15 +239,18 @@ class LayoutPostprocessor:
|
||||
final_clusters = self._sort_clusters(
|
||||
self.regular_clusters + self.special_clusters, mode="id"
|
||||
)
|
||||
for cluster in final_clusters:
|
||||
cluster.cells = self._sort_cells(cluster.cells)
|
||||
# Also sort cells in children if any
|
||||
for child in cluster.children:
|
||||
child.cells = self._sort_cells(child.cells)
|
||||
|
||||
assert self.page.parsed_page is not None
|
||||
self.page.parsed_page.textline_cells = self.cells
|
||||
self.page.parsed_page.has_lines = len(self.cells) > 0
|
||||
# Conditionally process cells if not skipping cell assignment
|
||||
if not self.options.skip_cell_assignment:
|
||||
for cluster in final_clusters:
|
||||
cluster.cells = self._sort_cells(cluster.cells)
|
||||
# Also sort cells in children if any
|
||||
for child in cluster.children:
|
||||
child.cells = self._sort_cells(child.cells)
|
||||
|
||||
assert self.page.parsed_page is not None
|
||||
self.page.parsed_page.textline_cells = self.cells
|
||||
self.page.parsed_page.has_lines = len(self.cells) > 0
|
||||
|
||||
return final_clusters, self.cells
|
||||
|
||||
@@ -264,36 +267,38 @@ class LayoutPostprocessor:
|
||||
if cluster.label in self.LABEL_REMAPPING:
|
||||
cluster.label = self.LABEL_REMAPPING[cluster.label]
|
||||
|
||||
# Initial cell assignment
|
||||
clusters = self._assign_cells_to_clusters(clusters)
|
||||
# Conditionally assign cells to clusters
|
||||
if not self.options.skip_cell_assignment:
|
||||
# Initial cell assignment
|
||||
clusters = self._assign_cells_to_clusters(clusters)
|
||||
|
||||
# Remove clusters with no cells (if keep_empty_clusters is False),
|
||||
# but always keep clusters with label DocItemLabel.FORMULA
|
||||
if not self.options.keep_empty_clusters:
|
||||
clusters = [
|
||||
cluster
|
||||
for cluster in clusters
|
||||
if cluster.cells or cluster.label == DocItemLabel.FORMULA
|
||||
]
|
||||
# Remove clusters with no cells (if keep_empty_clusters is False),
|
||||
# but always keep clusters with label DocItemLabel.FORMULA
|
||||
if not self.options.keep_empty_clusters:
|
||||
clusters = [
|
||||
cluster
|
||||
for cluster in clusters
|
||||
if cluster.cells or cluster.label == DocItemLabel.FORMULA
|
||||
]
|
||||
|
||||
# Handle orphaned cells
|
||||
unassigned = self._find_unassigned_cells(clusters)
|
||||
if unassigned and self.options.create_orphan_clusters:
|
||||
next_id = max((c.id for c in self.all_clusters), default=0) + 1
|
||||
orphan_clusters = []
|
||||
for i, cell in enumerate(unassigned):
|
||||
conf = cell.confidence
|
||||
# Handle orphaned cells
|
||||
unassigned = self._find_unassigned_cells(clusters)
|
||||
if unassigned and self.options.create_orphan_clusters:
|
||||
next_id = max((c.id for c in self.all_clusters), default=0) + 1
|
||||
orphan_clusters = []
|
||||
for i, cell in enumerate(unassigned):
|
||||
conf = cell.confidence
|
||||
|
||||
orphan_clusters.append(
|
||||
Cluster(
|
||||
id=next_id + i,
|
||||
label=DocItemLabel.TEXT,
|
||||
bbox=cell.to_bounding_box(),
|
||||
confidence=conf,
|
||||
cells=[cell],
|
||||
orphan_clusters.append(
|
||||
Cluster(
|
||||
id=next_id + i,
|
||||
label=DocItemLabel.TEXT,
|
||||
bbox=cell.to_bounding_box(),
|
||||
confidence=conf,
|
||||
cells=[cell],
|
||||
)
|
||||
)
|
||||
)
|
||||
clusters.extend(orphan_clusters)
|
||||
clusters.extend(orphan_clusters)
|
||||
|
||||
# Iterative refinement
|
||||
prev_count = len(clusters) + 1
|
||||
@@ -350,12 +355,15 @@ class LayoutPostprocessor:
|
||||
b=max(c.bbox.b for c in contained),
|
||||
)
|
||||
|
||||
# Collect all cells from children
|
||||
all_cells = []
|
||||
for child in contained:
|
||||
all_cells.extend(child.cells)
|
||||
special.cells = self._deduplicate_cells(all_cells)
|
||||
special.cells = self._sort_cells(special.cells)
|
||||
# Conditionally collect cells from children
|
||||
if not self.options.skip_cell_assignment:
|
||||
all_cells = []
|
||||
for child in contained:
|
||||
all_cells.extend(child.cells)
|
||||
special.cells = self._deduplicate_cells(all_cells)
|
||||
special.cells = self._sort_cells(special.cells)
|
||||
else:
|
||||
special.cells = []
|
||||
|
||||
picture_clusters = [
|
||||
c for c in special_clusters if c.label == DocItemLabel.PICTURE
|
||||
|
||||
Reference in New Issue
Block a user