feat!: simplify conversion API (#139)

Signed-off-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
This commit is contained in:
Panos Vagenas 2024-10-11 14:52:37 +02:00 committed by GitHub
parent 753f67a434
commit 136f16e85a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 164 additions and 303 deletions

View File

@ -13,7 +13,7 @@ from docling_core.utils.file import resolve_file_source
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.base_models import ConversionStatus, InputFormat
from docling.datamodel.document import ConversionResult, DocumentConversionInput
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
EasyOcrOptions,
PdfPipelineOptions,
@ -231,12 +231,9 @@ def convert(
}
)
# Define input files
input = DocumentConversionInput.from_paths(input_doc_paths)
start_time = time.time()
conv_results = doc_converter.convert_batch(input)
conv_results = doc_converter.convert_all(input_doc_paths)
output.mkdir(parents=True, exist_ok=True)
export_documents(

View File

@ -19,6 +19,7 @@ from docling_core.types.experimental import (
DocItemLabel,
DoclingDocument,
)
from docling_core.utils.file import resolve_file_source
from pydantic import BaseModel
from typing_extensions import deprecated
@ -162,8 +163,7 @@ class DocumentFormat(str, Enum):
V1 = "v1"
@deprecated("Use `ConversionResult` instead.")
class ConvertedDocument(BaseModel):
class ConversionResult(BaseModel):
input: InputDocument
status: ConversionStatus = ConversionStatus.PENDING # failure, success
@ -457,20 +457,16 @@ class ConvertedDocument(BaseModel):
yield element, cropped_im
class ConversionResult(ConvertedDocument):
pass
class _DocumentConversionInput(BaseModel):
class DocumentConversionInput(BaseModel):
_path_or_stream_iterator: Iterable[Union[Path, DocumentStream]] = None
path_or_stream_iterator: Iterable[Union[Path, str, DocumentStream]]
limits: Optional[DocumentLimits] = DocumentLimits()
def docs(
self, format_options: Dict[InputFormat, "FormatOption"]
) -> Iterable[InputDocument]:
for obj in self._path_or_stream_iterator:
for item in self.path_or_stream_iterator:
obj = resolve_file_source(item) if isinstance(item, str) else item
format = self._guess_format(obj)
if format not in format_options.keys():
_log.debug(
@ -496,6 +492,8 @@ class DocumentConversionInput(BaseModel):
limits=self.limits,
backend=backend,
)
else:
raise RuntimeError(f"Unexpected obj type in iterator: {type(obj)}")
def _guess_format(self, obj):
content = None
@ -531,21 +529,3 @@ class DocumentConversionInput(BaseModel):
return "text/html"
return None
@classmethod
def from_paths(cls, paths: Iterable[Path], limits: Optional[DocumentLimits] = None):
paths = [Path(p) for p in paths]
doc_input = cls(limits=limits)
doc_input._path_or_stream_iterator = paths
return doc_input
@classmethod
def from_streams(
cls, streams: Iterable[DocumentStream], limits: Optional[DocumentLimits] = None
):
doc_input = cls(limits=limits)
doc_input._path_or_stream_iterator = streams
return doc_input

View File

@ -1,34 +1,24 @@
import logging
import tempfile
import sys
import time
from pathlib import Path
from typing import Dict, Iterable, List, Optional, Type
import requests
from pydantic import (
AnyHttpUrl,
BaseModel,
ConfigDict,
TypeAdapter,
ValidationError,
field_validator,
model_validator,
)
from typing_extensions import deprecated
from pydantic import BaseModel, ConfigDict, model_validator, validate_call
from docling.backend.abstract_backend import AbstractDocumentBackend
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.backend.html_backend import HTMLDocumentBackend
from docling.backend.mspowerpoint_backend import MsPowerpointDocumentBackend
from docling.backend.msword_backend import MsWordDocumentBackend
from docling.datamodel.base_models import ConversionStatus, InputFormat
from docling.datamodel.base_models import ConversionStatus, DocumentStream, InputFormat
from docling.datamodel.document import (
ConversionResult,
DocumentConversionInput,
InputDocument,
_DocumentConversionInput,
)
from docling.datamodel.pipeline_options import PipelineOptions
from docling.datamodel.settings import settings
from docling.datamodel.settings import DocumentLimits, settings
from docling.pipeline.base_model_pipeline import AbstractModelPipeline
from docling.pipeline.simple_model_pipeline import SimpleModelPipeline
from docling.pipeline.standard_pdf_model_pipeline import StandardPdfModelPipeline
@ -119,16 +109,56 @@ class DocumentConverter:
Type[AbstractModelPipeline], AbstractModelPipeline
] = {}
@deprecated("Use convert_batch instead.")
def convert(self, input: DocumentConversionInput) -> Iterable[ConversionResult]:
yield from self.convert_batch(input=input)
@validate_call(config=ConfigDict(strict=True))
def convert(
self,
source: Path | str | DocumentStream, # TODO review naming
raises_on_error: bool = True,
max_num_pages: int = sys.maxsize,
max_file_size: int = sys.maxsize,
) -> ConversionResult:
def convert_batch(
self, input: DocumentConversionInput, raise_on_error: bool = False
all_res = self.convert_all(
source=[source],
raises_on_error=raises_on_error,
max_num_pages=max_num_pages,
max_file_size=max_file_size,
)
return next(all_res)
@validate_call(config=ConfigDict(strict=True))
def convert_all(
self,
source: Iterable[Path | str | DocumentStream], # TODO review naming
raises_on_error: bool = True, # True: raises on first conversion error; False: does not raise on conv error
max_num_pages: int = sys.maxsize,
max_file_size: int = sys.maxsize,
) -> Iterable[ConversionResult]:
limits = DocumentLimits(
max_num_pages=max_num_pages,
max_file_size=max_file_size,
)
conv_input = _DocumentConversionInput(
path_or_stream_iterator=source,
limit=limits,
)
conv_res_iter = self._convert(conv_input)
for conv_res in conv_res_iter:
if raises_on_error and conv_res.status not in {
ConversionStatus.SUCCESS,
ConversionStatus.PARTIAL_SUCCESS,
}:
raise RuntimeError(
f"Conversion failed for: {conv_res.input.file} with status: {conv_res.status}"
)
else:
yield conv_res
def _convert(
self, conv_input: _DocumentConversionInput
) -> Iterable[ConversionResult]:
for input_batch in chunkify(
input.docs(self.format_to_options),
conv_input.docs(self.format_to_options),
settings.perf.doc_batch_size, # pass format_options
):
_log.info(f"Going to convert document batch...")
@ -143,58 +173,6 @@ class DocumentConverter:
if item is not None:
yield item
def convert_single(
self, source: Path | AnyHttpUrl | str, raise_on_error: bool = False
) -> ConversionResult:
"""Convert a single document.
Args:
source (Path | AnyHttpUrl | str): The PDF input source. Can be a path or URL.
Raises:
ValueError: If source is of unexpected type.
RuntimeError: If conversion fails.
Returns:
ConversionResult: The conversion result object.
"""
with tempfile.TemporaryDirectory() as temp_dir:
try:
http_url: AnyHttpUrl = TypeAdapter(AnyHttpUrl).validate_python(source)
res = requests.get(http_url, stream=True)
res.raise_for_status()
fname = None
# try to get filename from response header
if cont_disp := res.headers.get("Content-Disposition"):
for par in cont_disp.strip().split(";"):
# currently only handling directive "filename" (not "*filename")
if (split := par.split("=")) and split[0].strip() == "filename":
fname = "=".join(split[1:]).strip().strip("'\"") or None
break
# otherwise, use name from URL:
if fname is None:
fname = Path(http_url.path).name or self._default_download_filename
local_path = Path(temp_dir) / fname
with open(local_path, "wb") as f:
for chunk in res.iter_content(chunk_size=1024): # using 1-KB chunks
f.write(chunk)
except ValidationError:
try:
local_path = TypeAdapter(Path).validate_python(source)
except ValidationError:
raise ValueError(
f"Unexpected file path type encountered: {type(source)}"
)
conv_inp = DocumentConversionInput.from_paths(paths=[local_path])
conv_res_iter = self.convert_batch(conv_inp)
conv_res: ConversionResult = next(conv_res_iter)
if conv_res.status not in {
ConversionStatus.SUCCESS,
ConversionStatus.PARTIAL_SUCCESS,
}:
raise RuntimeError(f"Conversion failed with status: {conv_res.status}")
return conv_res
def _get_pipeline(self, doc: InputDocument) -> Optional[AbstractModelPipeline]:
fopt = self.format_to_options.get(doc.format)

View File

@ -14,13 +14,15 @@ from docling_core.types import Ref
from docling_core.types.experimental import BoundingBox, CoordOrigin
from docling_core.types.experimental.document import DoclingDocument
from PIL import ImageDraw
from pydantic import BaseModel
from pydantic import BaseModel, ConfigDict
from docling.datamodel.base_models import Cluster
from docling.datamodel.document import ConversionResult
class GlmOptions(BaseModel):
model_config = ConfigDict(protected_namespaces=())
create_legacy_output: bool = True
model_names: str = "" # e.g. "language;term;reference"

View File

@ -7,7 +7,7 @@ from typing import Iterable
import yaml
from docling.datamodel.base_models import ConversionStatus
from docling.datamodel.document import ConversionResult, DocumentConversionInput
from docling.datamodel.document import ConversionResult
from docling.document_converter import DocumentConverter
_log = logging.getLogger(__name__)
@ -125,18 +125,19 @@ def main():
doc_converter = DocumentConverter()
input = DocumentConversionInput.from_paths(input_doc_paths)
start_time = time.time()
conv_results = doc_converter.convert_batch(input)
conv_results = doc_converter.convert_all(
input_doc_paths,
raises_on_error=False, # to let conversion run through all and examine results at the end
)
success_count, partial_success_count, failure_count = export_documents(
conv_results, output_dir=Path("./scratch")
)
end_time = time.time() - start_time
_log.info(f"All documents were converted in {end_time:.2f} seconds.")
_log.info(f"Document conversion complete in {end_time:.2f} seconds.")
if failure_count > 0:
raise RuntimeError(

View File

@ -5,7 +5,7 @@ from pathlib import Path
from typing import Iterable
from docling.datamodel.base_models import ConversionStatus, InputFormat
from docling.datamodel.document import ConversionResult, DocumentConversionInput
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
PdfPipelineOptions,
TesseractCliOcrOptions,
@ -65,9 +65,7 @@ def export_documents(
def main():
logging.basicConfig(level=logging.INFO)
input_doc_paths = [
Path("./tests/data/2206.01062.pdf"),
]
input_doc_path = Path("./tests/data/2206.01062.pdf")
###########################################################################
@ -152,24 +150,13 @@ def main():
###########################################################################
# Define input files
input = DocumentConversionInput.from_paths(input_doc_paths)
start_time = time.time()
conv_results = doc_converter.convert_batch(input)
success_count, failure_count = export_documents(
conv_results, output_dir=Path("./scratch")
)
conv_result = doc_converter.convert(input_doc_path)
end_time = time.time() - start_time
_log.info(f"All documents were converted in {end_time:.2f} seconds.")
if failure_count > 0:
raise RuntimeError(
f"The example failed converting {failure_count} on {len(input_doc_paths)}."
)
_log.info(f"Document converted in {end_time:.2f} seconds.")
if __name__ == "__main__":

View File

@ -2,13 +2,7 @@ import logging
import time
from pathlib import Path
from docling.datamodel.base_models import (
ConversionStatus,
FigureElement,
InputFormat,
Table,
)
from docling.datamodel.document import DocumentConversionInput
from docling.datamodel.base_models import FigureElement, InputFormat, Table
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
@ -20,13 +14,9 @@ IMAGE_RESOLUTION_SCALE = 2.0
def main():
logging.basicConfig(level=logging.INFO)
input_doc_paths = [
Path("./tests/data/2206.01062.pdf"),
]
input_doc_path = Path("./tests/data/2206.01062.pdf")
output_dir = Path("./scratch")
input_files = DocumentConversionInput.from_paths(input_doc_paths)
# Important: For operating with page images, we must keep them, otherwise the DocumentConverter
# will destroy them for cleaning up memory.
# This is done by setting AssembleOptions.images_scale, which also defines the scale of images.
@ -42,17 +32,9 @@ def main():
start_time = time.time()
conv_results = doc_converter.convert_batch(input_files)
conv_res = doc_converter.convert(input_doc_path)
success_count = 0
failure_count = 0
output_dir.mkdir(parents=True, exist_ok=True)
for conv_res in conv_results:
if conv_res.status != ConversionStatus.SUCCESS:
_log.info(f"Document {conv_res.input.file} failed to convert.")
failure_count += 1
continue
doc_filename = conv_res.input.file.stem
# Export page images
@ -66,22 +48,13 @@ def main():
for element, image in conv_res.render_element_images(
element_types=(FigureElement, Table)
):
element_image_filename = (
output_dir / f"{doc_filename}-element-{element.id}.png"
)
element_image_filename = output_dir / f"{doc_filename}-element-{element.id}.png"
with element_image_filename.open("wb") as fp:
image.save(fp, "PNG")
success_count += 1
end_time = time.time() - start_time
_log.info(f"All documents were converted in {end_time:.2f} seconds.")
if failure_count > 0:
raise RuntimeError(
f"The example failed converting {failure_count} on {len(input_doc_paths)}."
)
_log.info(f"Document converted and figures exported in {end_time:.2f} seconds.")
if __name__ == "__main__":

View File

@ -5,8 +5,7 @@ from pathlib import Path
import pandas as pd
from docling.datamodel.base_models import ConversionStatus, InputFormat
from docling.datamodel.document import DocumentConversionInput
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.utils.export import generate_multimodal_pages
@ -19,13 +18,9 @@ IMAGE_RESOLUTION_SCALE = 2.0
def main():
logging.basicConfig(level=logging.INFO)
input_doc_paths = [
Path("./tests/data/2206.01062.pdf"),
]
input_doc_path = Path("./tests/data/2206.01062.pdf")
output_dir = Path("./scratch")
input_files = DocumentConversionInput.from_paths(input_doc_paths)
# Important: For operating with page images, we must keep them, otherwise the DocumentConverter
# will destroy them for cleaning up memory.
# This is done by setting AssembleOptions.images_scale, which also defines the scale of images.
@ -41,16 +36,9 @@ def main():
start_time = time.time()
converted_docs = doc_converter.convert_batch(input_files)
conv_res = doc_converter.convert(input_doc_path)
success_count = 0
failure_count = 0
output_dir.mkdir(parents=True, exist_ok=True)
for doc in converted_docs:
if doc.status != ConversionStatus.SUCCESS:
_log.info(f"Document {doc.input.file} failed to convert.")
failure_count += 1
continue
rows = []
for (
@ -60,14 +48,14 @@ def main():
page_cells,
page_segments,
page,
) in generate_multimodal_pages(doc):
) in generate_multimodal_pages(conv_res):
dpi = page._default_image_scale * 72
rows.append(
{
"document": doc.input.file.name,
"hash": doc.input.document_hash,
"document": conv_res.input.file.name,
"hash": conv_res.input.document_hash,
"page_hash": page.page_hash,
"image": {
"width": page.image.width,
@ -87,7 +75,6 @@ def main():
},
}
)
success_count += 1
# Generate one parquet from all documents
df = pd.json_normalize(rows)
@ -97,11 +84,8 @@ def main():
end_time = time.time() - start_time
_log.info(f"All documents were converted in {end_time:.2f} seconds.")
if failure_count > 0:
raise RuntimeError(
f"The example failed converting {failure_count} on {len(input_doc_paths)}."
_log.info(
f"Document converted and multimodal pages generated in {end_time:.2f} seconds."
)
# This block demonstrates how the file can be opened with the HF datasets library

View File

@ -4,8 +4,6 @@ from pathlib import Path
import pandas as pd
from docling.datamodel.base_models import ConversionStatus
from docling.datamodel.document import DocumentConversionInput
from docling.document_converter import DocumentConverter
_log = logging.getLogger(__name__)
@ -14,27 +12,16 @@ _log = logging.getLogger(__name__)
def main():
logging.basicConfig(level=logging.INFO)
input_doc_paths = [
Path("./tests/data/2206.01062.pdf"),
]
input_doc_path = Path("./tests/data/2206.01062.pdf")
output_dir = Path("./scratch")
input_files = DocumentConversionInput.from_paths(input_doc_paths)
doc_converter = DocumentConverter()
start_time = time.time()
conv_results = doc_converter.convert_batch(input_files)
conv_res = doc_converter.convert(input_doc_path)
success_count = 0
failure_count = 0
output_dir.mkdir(parents=True, exist_ok=True)
for conv_res in conv_results:
if conv_res.status != ConversionStatus.SUCCESS:
_log.info(f"Document {conv_res.input.file} failed to convert.")
failure_count += 1
continue
doc_filename = conv_res.input.file.stem
@ -50,23 +37,14 @@ def main():
table_df.to_csv(element_csv_filename)
# Save the table as html
element_html_filename = (
output_dir / f"{doc_filename}-table-{table_ix+1}.html"
)
element_html_filename = output_dir / f"{doc_filename}-table-{table_ix+1}.html"
_log.info(f"Saving HTML table to {element_html_filename}")
with element_html_filename.open("w") as fp:
fp.write(table.export_to_html())
success_count += 1
end_time = time.time() - start_time
_log.info(f"All documents were converted in {end_time:.2f} seconds.")
if failure_count > 0:
raise RuntimeError(
f"The example failed converting {failure_count} on {len(input_doc_paths)}."
)
_log.info(f"Document converted and tables exported in {end_time:.2f} seconds.")
if __name__ == "__main__":

View File

@ -2,7 +2,7 @@ from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL
converter = DocumentConverter()
result = converter.convert_single(source)
result = converter.convert(source)
print(result.output.export_to_markdown()) # output: ## Docling Technical Report [...]"
# if the legacy output is needed, use this version
# print(result.render_as_markdown_v1()) # output: ## Docling Technical Report [...]"

View File

@ -6,7 +6,6 @@ from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.backend.msword_backend import MsWordDocumentBackend
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.base_models import InputFormat
from docling.datamodel.document import DocumentConversionInput
from docling.document_converter import (
DocumentConverter,
FormatOption,
@ -28,7 +27,6 @@ input_paths = [
Path("tests/data/2206.01062.pdf"),
# Path("tests/data/2305.03393v1-pg9-img.png"),
]
input = DocumentConversionInput.from_paths(input_paths)
## for defaults use:
# doc_converter = DocumentConverter()
@ -52,12 +50,12 @@ doc_converter = DocumentConverter( # all of the below is optional, has internal
},
)
conv_results = doc_converter.convert_batch(input)
conv_results = doc_converter.convert_all(input_paths)
for res in conv_results:
out_path = Path("./scratch")
print(
f"Document {res.input.file.name} converted with status {res.status}."
f"Document {res.input.file.name} converted."
f"\nSaved markdown output to: {str(out_path)}"
)
# print(res.experimental.export_to_markdown())

View File

@ -3,7 +3,7 @@ from pathlib import Path
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.datamodel.base_models import InputFormat
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import PdfPipelineOptions, PipelineOptions
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
from .verify_utils import verify_conversion_result_v1, verify_conversion_result_v2
@ -48,7 +48,7 @@ def test_e2e_conversions():
for pdf_path in pdf_paths:
print(f"converting {pdf_path}")
doc_result: ConversionResult = converter.convert_single(pdf_path)
doc_result: ConversionResult = converter.convert(pdf_path)
verify_conversion_result_v1(
input_path=pdf_path, doc_result=doc_result, generate=GENERATE_V1

View File

@ -8,7 +8,6 @@ from docling.datamodel.pipeline_options import (
EasyOcrOptions,
OcrOptions,
PdfPipelineOptions,
PipelineOptions,
TesseractCliOcrOptions,
TesseractOcrOptions,
)
@ -90,7 +89,7 @@ def test_e2e_conversions():
for pdf_path in pdf_paths:
print(f"converting {pdf_path}")
doc_result: ConversionResult = converter.convert_single(pdf_path)
doc_result: ConversionResult = converter.convert(pdf_path)
# Save conversions
# save_output(pdf_path, doc_result, None)

View File

@ -5,8 +5,7 @@ import pytest
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.datamodel.base_models import DocumentStream, InputFormat
from docling.datamodel.document import ConversionResult, DocumentConversionInput
from docling.datamodel.pipeline_options import PdfPipelineOptions, PipelineOptions
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
from .verify_utils import verify_conversion_result_v1, verify_conversion_result_v2
@ -37,39 +36,24 @@ def converter():
return converter
def test_convert_single(converter: DocumentConverter):
def test_convert_path(converter: DocumentConverter):
pdf_path = get_pdf_path()
print(f"converting {pdf_path}")
doc_result: ConversionResult = converter.convert_single(pdf_path)
doc_result = converter.convert(pdf_path)
verify_conversion_result_v1(input_path=pdf_path, doc_result=doc_result)
verify_conversion_result_v2(input_path=pdf_path, doc_result=doc_result)
def test_batch_path(converter: DocumentConverter):
pdf_path = get_pdf_path()
print(f"converting {pdf_path}")
conv_input = DocumentConversionInput.from_paths([pdf_path])
results = converter.convert_batch(conv_input)
for doc_result in results:
verify_conversion_result_v1(input_path=pdf_path, doc_result=doc_result)
verify_conversion_result_v2(input_path=pdf_path, doc_result=doc_result)
def test_batch_bytes(converter: DocumentConverter):
def test_convert_stream(converter: DocumentConverter):
pdf_path = get_pdf_path()
print(f"converting {pdf_path}")
buf = BytesIO(pdf_path.open("rb").read())
docs = [DocumentStream(name=pdf_path.name, stream=buf)]
conv_input = DocumentConversionInput.from_streams(docs)
stream = DocumentStream(name=pdf_path.name, stream=buf)
results = converter.convert_batch(conv_input)
for doc_result in results:
doc_result = converter.convert(stream)
verify_conversion_result_v1(input_path=pdf_path, doc_result=doc_result)
verify_conversion_result_v2(input_path=pdf_path, doc_result=doc_result)

View File

@ -39,6 +39,6 @@ def test_e2e_conversions(test_doc_path):
for converter in get_converters_with_table_options():
print(f"converting {test_doc_path}")
doc_result: ConversionResult = converter.convert_single(test_doc_path)
doc_result: ConversionResult = converter.convert(test_doc_path)
assert doc_result.status == ConversionStatus.SUCCESS