mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-27 04:24:45 +00:00
chore: add simple convert script
Signed-off-by: Peter Staar <taa@zurich.ibm.com>
This commit is contained in:
parent
53569a1023
commit
14ab351fdb
169
examples/convert.py
Normal file
169
examples/convert.py
Normal file
@ -0,0 +1,169 @@
|
|||||||
|
import json
|
||||||
|
import logging
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Iterable
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
|
||||||
|
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
|
||||||
|
from docling.datamodel.base_models import ConversionStatus, PipelineOptions
|
||||||
|
from docling.datamodel.document import ConversionResult, DocumentConversionInput
|
||||||
|
from docling.document_converter import DocumentConverter
|
||||||
|
|
||||||
|
_log = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
from enum import Enum
|
||||||
|
|
||||||
|
# Define an enum for the backend options
|
||||||
|
class Backend(Enum):
|
||||||
|
PDFIUM = "pdfium"
|
||||||
|
DOCLING = "docling"
|
||||||
|
|
||||||
|
|
||||||
|
def export_documents(
|
||||||
|
conv_results: Iterable[ConversionResult],
|
||||||
|
output_dir: Path,
|
||||||
|
):
|
||||||
|
output_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
success_count = 0
|
||||||
|
failure_count = 0
|
||||||
|
|
||||||
|
for conv_res in conv_results:
|
||||||
|
if conv_res.status == ConversionStatus.SUCCESS:
|
||||||
|
success_count += 1
|
||||||
|
doc_filename = conv_res.input.file.stem
|
||||||
|
|
||||||
|
# Export Deep Search document JSON format:
|
||||||
|
fname = output_dir / f"{doc_filename}.json"
|
||||||
|
with fname.open("w") as fp:
|
||||||
|
_log.info(f"writing {fname}")
|
||||||
|
fp.write(json.dumps(conv_res.render_as_dict()))
|
||||||
|
|
||||||
|
# Export Text format:
|
||||||
|
with (output_dir / f"{doc_filename}.txt").open("w") as fp:
|
||||||
|
fp.write(conv_res.render_as_text())
|
||||||
|
|
||||||
|
# Export Markdown format:
|
||||||
|
with (output_dir / f"{doc_filename}.md").open("w") as fp:
|
||||||
|
fp.write(conv_res.render_as_markdown())
|
||||||
|
|
||||||
|
# Export Document Tags format:
|
||||||
|
with (output_dir / f"{doc_filename}.doctags").open("w") as fp:
|
||||||
|
fp.write(conv_res.render_as_doctags())
|
||||||
|
|
||||||
|
else:
|
||||||
|
_log.info(f"Document {conv_res.input.file} failed to convert.")
|
||||||
|
failure_count += 1
|
||||||
|
|
||||||
|
_log.info(
|
||||||
|
f"Processed {success_count + failure_count} docs, of which {failure_count} failed"
|
||||||
|
)
|
||||||
|
|
||||||
|
return success_count, failure_count
|
||||||
|
|
||||||
|
|
||||||
|
def main(pdf, ocr, backend):
|
||||||
|
logging.basicConfig(level=logging.INFO)
|
||||||
|
|
||||||
|
input_doc_paths = [
|
||||||
|
Path(pdf)
|
||||||
|
]
|
||||||
|
|
||||||
|
###########################################################################
|
||||||
|
|
||||||
|
# The following sections contain a combination of PipelineOptions
|
||||||
|
# and PDF Backends for various configurations.
|
||||||
|
# Uncomment one section at the time to see the differences in the output.
|
||||||
|
|
||||||
|
doc_converter = None
|
||||||
|
if backend==Backend.PDFIUM.value and not ocr: # PyPdfium without OCR
|
||||||
|
pipeline_options = PipelineOptions()
|
||||||
|
pipeline_options.do_ocr=False
|
||||||
|
pipeline_options.do_table_structure=True
|
||||||
|
pipeline_options.table_structure_options.do_cell_matching = False
|
||||||
|
|
||||||
|
doc_converter = DocumentConverter(
|
||||||
|
pipeline_options=pipeline_options,
|
||||||
|
pdf_backend=PyPdfiumDocumentBackend,
|
||||||
|
)
|
||||||
|
|
||||||
|
elif backend==Backend.PDFIUM.value and ocr: # PyPdfium with OCR
|
||||||
|
pipeline_options = PipelineOptions()
|
||||||
|
pipeline_options.do_ocr=False
|
||||||
|
pipeline_options.do_table_structure=True
|
||||||
|
pipeline_options.table_structure_options.do_cell_matching = True
|
||||||
|
|
||||||
|
doc_converter = DocumentConverter(
|
||||||
|
pipeline_options=pipeline_options,
|
||||||
|
pdf_backend=PyPdfiumDocumentBackend,
|
||||||
|
)
|
||||||
|
|
||||||
|
elif backend==Backend.DOCLING.value and not ocr: # Docling Parse without OCR
|
||||||
|
pipeline_options = PipelineOptions()
|
||||||
|
pipeline_options.do_ocr = False
|
||||||
|
pipeline_options.do_table_structure = True
|
||||||
|
pipeline_options.table_structure_options.do_cell_matching = True
|
||||||
|
|
||||||
|
doc_converter = DocumentConverter(
|
||||||
|
pipeline_options=pipeline_options,
|
||||||
|
pdf_backend=DoclingParseDocumentBackend,
|
||||||
|
)
|
||||||
|
|
||||||
|
elif backend==Backend.DOCLING.value and ocr:# Docling Parse with OCR
|
||||||
|
pipeline_options = PipelineOptions()
|
||||||
|
pipeline_options.do_ocr=True
|
||||||
|
pipeline_options.do_table_structure=True
|
||||||
|
pipeline_options.table_structure_options.do_cell_matching = True
|
||||||
|
|
||||||
|
doc_converter = DocumentConverter(
|
||||||
|
pipeline_options=pipeline_options,
|
||||||
|
pdf_backend=DoclingParseDocumentBackend,
|
||||||
|
)
|
||||||
|
|
||||||
|
else:
|
||||||
|
return
|
||||||
|
###########################################################################
|
||||||
|
|
||||||
|
# Define input files
|
||||||
|
input = DocumentConversionInput.from_paths(input_doc_paths)
|
||||||
|
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
conv_results = doc_converter.convert(input)
|
||||||
|
success_count, failure_count = export_documents(
|
||||||
|
conv_results, output_dir=Path("./scratch")
|
||||||
|
)
|
||||||
|
|
||||||
|
end_time = time.time() - start_time
|
||||||
|
|
||||||
|
_log.info(f"All documents were converted in {end_time:.2f} seconds.")
|
||||||
|
|
||||||
|
if failure_count > 0:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"The example failed converting {failure_count} on {len(input_doc_paths)}."
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
# Create an argument parser
|
||||||
|
parser = argparse.ArgumentParser(description="Process PDF files with optional OCR.")
|
||||||
|
|
||||||
|
# Add arguments
|
||||||
|
parser.add_argument("--pdf", type=str, help="Path to the PDF file.")
|
||||||
|
parser.add_argument("--ocr", type=bool, default=False, help="Enable OCR (True or False).")
|
||||||
|
|
||||||
|
# Add the backend option as an enum
|
||||||
|
parser.add_argument("--backend", type=lambda b: Backend[b.upper()],
|
||||||
|
choices=list(Backend), default=Backend.DOCLING,
|
||||||
|
help="Select backend (pdfium or docling). Default is docling.")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Parse the arguments
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
main(args.pdf, args.ocr, args.backend.value)
|
Loading…
Reference in New Issue
Block a user