feat: adding new vlm-models support

Signed-off-by: Peter Staar <taa@zurich.ibm.com>
This commit is contained in:
Peter Staar 2025-05-11 09:30:10 +02:00
parent f1658edbad
commit 18e1ec4df2
10 changed files with 1214 additions and 301 deletions

View File

@ -267,7 +267,8 @@ class InferenceFramework(str, Enum):
MLX = "mlx"
TRANSFORMERS = "transformers"
OPENAI = "openai"
TRANSFORMERS_AutoModelForVision2Seq = "transformers-AutoModelForVision2Seq"
TRANSFORMERS_AutoModelForCausalLM = "transformers-AutoModelForCausalLM"
class HuggingFaceVlmOptions(BaseVlmOptions):
kind: Literal["hf_model_options"] = "hf_model_options"
@ -310,7 +311,7 @@ smoldocling_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="ds4sd/SmolDocling-256M-preview",
prompt="Convert this page to docling.",
response_format=ResponseFormat.DOCTAGS,
inference_framework=InferenceFramework.TRANSFORMERS,
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForVision2Seq,
)
granite_vision_vlm_conversion_options = HuggingFaceVlmOptions(
@ -318,7 +319,7 @@ granite_vision_vlm_conversion_options = HuggingFaceVlmOptions(
# prompt="OCR the full page to markdown.",
prompt="OCR this image.",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.TRANSFORMERS,
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForVision2Seq,
)
granite_vision_vlm_ollama_conversion_options = ApiVlmOptions(

View File

@ -57,11 +57,14 @@ class HuggingFaceVlmModel(BasePageModel):
)
self.param_quantized = vlm_options.quantized # False
self.processor = AutoProcessor.from_pretrained(artifacts_path)
self.processor = AutoProcessor.from_pretrained(
artifacts_path,
# trust_remote_code=True,
)
if not self.param_quantized:
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
artifacts_path,
device_map=device,
device_map=self.device,
torch_dtype=torch.bfloat16,
_attn_implementation=(
"flash_attention_2"
@ -69,12 +72,13 @@ class HuggingFaceVlmModel(BasePageModel):
and accelerator_options.cuda_use_flash_attention2
else "eager"
),
# trust_remote_code=True,
) # .to(self.device)
else:
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
artifacts_path,
device_map=device,
device_map=self.device,
torch_dtype="auto",
quantization_config=self.param_quantization_config,
_attn_implementation=(
@ -83,6 +87,7 @@ class HuggingFaceVlmModel(BasePageModel):
and accelerator_options.cuda_use_flash_attention2
else "eager"
),
# trust_remote_code=True,
) # .to(self.device)
@staticmethod

View File

View File

@ -0,0 +1,233 @@
import logging
import time
from collections.abc import Iterable
from pathlib import Path
from typing import Optional
from docling.datamodel.base_models import Page, VlmPrediction
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
AcceleratorOptions,
HuggingFaceVlmOptions,
)
from docling.models.base_model import BasePageModel
from docling.utils.accelerator_utils import decide_device
from docling.utils.profiling import TimeRecorder
_log = logging.getLogger(__name__)
class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
def __init__(
self,
enabled: bool,
artifacts_path: Optional[Path],
accelerator_options: AcceleratorOptions,
vlm_options: HuggingFaceVlmOptions,
):
self.enabled = enabled
self.trust_remote_code = True
self.vlm_options = vlm_options
if self.enabled:
import torch
from transformers import ( # type: ignore
AutoModelForCausalLM,
AutoProcessor,
GenerationConfig,
BitsAndBytesConfig,
)
device = decide_device(accelerator_options.device)
self.device = 'cpu' #device
_log.debug(f"Available device for HuggingFace VLM: {device}")
print(f"Available device for HuggingFace VLM: {device}")
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
# PARAMETERS:
if artifacts_path is None:
artifacts_path = self.download_models(self.vlm_options.repo_id)
elif (artifacts_path / repo_cache_folder).exists():
artifacts_path = artifacts_path / repo_cache_folder
self.param_question = vlm_options.prompt # "Perform Layout Analysis."
self.param_quantization_config = BitsAndBytesConfig(
load_in_8bit=vlm_options.load_in_8bit, # True,
llm_int8_threshold=vlm_options.llm_int8_threshold, # 6.0
)
self.param_quantized = vlm_options.quantized # False
self.processor = AutoProcessor.from_pretrained(
artifacts_path,
trust_remote_code=self.trust_remote_code,
)
if not self.param_quantized:
self.vlm_model = AutoModelForCausalLM.from_pretrained(
artifacts_path,
device_map=self.device,
torch_dtype=torch.bfloat16,
_attn_implementation=(
"flash_attention_2"
if self.device.startswith("cuda")
and accelerator_options.cuda_use_flash_attention2
else "eager"
),
trust_remote_code=self.trust_remote_code,
).to(self.device)
else:
self.vlm_model = AutoModelForCausalLM.from_pretrained(
artifacts_path,
device_map=self.device,
torch_dtype="auto",
quantization_config=self.param_quantization_config,
_attn_implementation=(
"flash_attention_2"
if self.device.startswith("cuda")
and accelerator_options.cuda_use_flash_attention2
else "eager"
),
trust_remote_code=self.trust_remote_code,
).to(self.device)
model_path = artifacts_path
print(f"model: {model_path}")
# Load generation config
self.generation_config = GenerationConfig.from_pretrained(model_path)
@staticmethod
def download_models(
repo_id: str,
local_dir: Optional[Path] = None,
force: bool = False,
progress: bool = False,
) -> Path:
from huggingface_hub import snapshot_download
from huggingface_hub.utils import disable_progress_bars
if not progress:
disable_progress_bars()
download_path = snapshot_download(
repo_id=repo_id,
force_download=force,
local_dir=local_dir,
# revision="v0.0.1",
)
return Path(download_path)
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "vlm"):
assert page.size is not None
# hi_res_image = page.get_image(scale=2.0) # 144dpi
hi_res_image = page.get_image(scale=1.0) # 72dpi
if hi_res_image is not None:
im_width, im_height = hi_res_image.size
# populate page_tags with predicted doc tags
page_tags = ""
if hi_res_image:
if hi_res_image.mode != "RGB":
hi_res_image = hi_res_image.convert("RGB")
"""
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "This is a page from a document.",
},
{"type": "image"},
{"type": "text", "text": self.param_question},
],
}
]
prompt = self.processor.apply_chat_template(
messages, add_generation_prompt=False
)
inputs = self.processor(
text=prompt, images=[hi_res_image], return_tensors="pt"
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
start_time = time.time()
# Call model to generate:
generated_ids = self.vlm_model.generate(
**inputs, max_new_tokens=4096, use_cache=True
)
generation_time = time.time() - start_time
generated_texts = self.processor.batch_decode(
generated_ids[:, inputs["input_ids"].shape[1] :],
skip_special_tokens=False,
)[0]
num_tokens = len(generated_ids[0])
page_tags = generated_texts
"""
hi_res_image.show()
# Define prompt structure
user_prompt = '<|user|>'
assistant_prompt = '<|assistant|>'
prompt_suffix = '<|end|>'
# Part 1: Image Processing
print("\n--- IMAGE PROCESSING ---")
# image_url = 'https://www.ilankelman.org/stopsigns/australia.jpg'
prompt = f'{user_prompt}<|image_1|>OCR this image into MarkDown?{prompt_suffix}{assistant_prompt}'
print(f'>>> Prompt\n{prompt}')
inputs = self.processor(text=prompt, images=hi_res_image, return_tensors='pt').to(self.device) #.to('cuda:0')
print("inputs: ", inputs.keys())
# Generate response
generate_ids = self.vlm_model.generate(
**inputs,
max_new_tokens=128,
generation_config=self.generation_config,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
num_tokens = len(generated_ids[0])
response = self.processor.batch_decode(
generate_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
print(f'>>> Response\n{response}')
_log.debug(
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
)
# inference_time = time.time() - start_time
# tokens_per_second = num_tokens / generation_time
# print("")
# print(f"Page Inference Time: {inference_time:.2f} seconds")
# print(f"Total tokens on page: {num_tokens:.2f}")
# print(f"Tokens/sec: {tokens_per_second:.2f}")
# print("")
page.predictions.vlm_response = VlmPrediction(text=response)
yield page

View File

@ -0,0 +1,187 @@
import logging
import time
from collections.abc import Iterable
from pathlib import Path
from typing import Optional
from docling.datamodel.base_models import Page, VlmPrediction
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
AcceleratorOptions,
HuggingFaceVlmOptions,
)
from docling.models.base_model import BasePageModel
from docling.utils.accelerator_utils import decide_device
from docling.utils.profiling import TimeRecorder
_log = logging.getLogger(__name__)
class HuggingFaceVlmModel_AutoModelForVision2Seq(BasePageModel):
def __init__(
self,
enabled: bool,
artifacts_path: Optional[Path],
accelerator_options: AcceleratorOptions,
vlm_options: HuggingFaceVlmOptions,
):
self.enabled = enabled
self.vlm_options = vlm_options
if self.enabled:
import torch
from transformers import ( # type: ignore
AutoModelForVision2Seq,
AutoProcessor,
BitsAndBytesConfig,
)
device = decide_device(accelerator_options.device)
self.device = device
_log.debug(f"Available device for HuggingFace VLM: {device}")
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
# PARAMETERS:
if artifacts_path is None:
artifacts_path = self.download_models(self.vlm_options.repo_id)
elif (artifacts_path / repo_cache_folder).exists():
artifacts_path = artifacts_path / repo_cache_folder
self.param_question = vlm_options.prompt # "Perform Layout Analysis."
self.param_quantization_config = BitsAndBytesConfig(
load_in_8bit=vlm_options.load_in_8bit, # True,
llm_int8_threshold=vlm_options.llm_int8_threshold, # 6.0
)
self.param_quantized = vlm_options.quantized # False
self.processor = AutoProcessor.from_pretrained(
artifacts_path,
# trust_remote_code=True,
)
if not self.param_quantized:
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
artifacts_path,
device_map=device,
torch_dtype=torch.bfloat16,
_attn_implementation=(
"flash_attention_2"
if self.device.startswith("cuda")
and accelerator_options.cuda_use_flash_attention2
else "eager"
),
# trust_remote_code=True,
) # .to(self.device)
else:
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
artifacts_path,
device_map=device,
torch_dtype="auto",
quantization_config=self.param_quantization_config,
_attn_implementation=(
"flash_attention_2"
if self.device.startswith("cuda")
and accelerator_options.cuda_use_flash_attention2
else "eager"
),
# trust_remote_code=True,
) # .to(self.device)
@staticmethod
def download_models(
repo_id: str,
local_dir: Optional[Path] = None,
force: bool = False,
progress: bool = False,
) -> Path:
from huggingface_hub import snapshot_download
from huggingface_hub.utils import disable_progress_bars
if not progress:
disable_progress_bars()
download_path = snapshot_download(
repo_id=repo_id,
force_download=force,
local_dir=local_dir,
# revision="v0.0.1",
)
return Path(download_path)
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "vlm"):
assert page.size is not None
hi_res_image = page.get_image(scale=2.0) # 144dpi
# hi_res_image = page.get_image(scale=1.0) # 72dpi
if hi_res_image is not None:
im_width, im_height = hi_res_image.size
# populate page_tags with predicted doc tags
page_tags = ""
if hi_res_image:
if hi_res_image.mode != "RGB":
hi_res_image = hi_res_image.convert("RGB")
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "This is a page from a document.",
},
{"type": "image"},
{"type": "text", "text": self.param_question},
],
}
]
prompt = self.processor.apply_chat_template(
messages, add_generation_prompt=False
)
inputs = self.processor(
text=prompt, images=[hi_res_image], return_tensors="pt"
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
start_time = time.time()
# Call model to generate:
generated_ids = self.vlm_model.generate(
**inputs, max_new_tokens=4096, use_cache=True
)
generation_time = time.time() - start_time
generated_texts = self.processor.batch_decode(
generated_ids[:, inputs["input_ids"].shape[1] :],
skip_special_tokens=False,
)[0]
num_tokens = len(generated_ids[0])
page_tags = generated_texts
_log.debug(
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
)
# inference_time = time.time() - start_time
# tokens_per_second = num_tokens / generation_time
# print("")
# print(f"Page Inference Time: {inference_time:.2f} seconds")
# print(f"Total tokens on page: {num_tokens:.2f}")
# print(f"Tokens/sec: {tokens_per_second:.2f}")
# print("")
page.predictions.vlm_response = VlmPrediction(text=page_tags)
yield page

View File

@ -0,0 +1,33 @@
import logging
import time
from collections.abc import Iterable
from pathlib import Path
from typing import Optional
from docling.datamodel.base_models import Page, VlmPrediction
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
AcceleratorOptions,
HuggingFaceVlmOptions,
)
from docling.models.base_model import BasePageModel
from docling.utils.accelerator_utils import decide_device
from docling.utils.profiling import TimeRecorder
_log = logging.getLogger(__name__)
class HuggingFaceVlmModel_pixtral_12b_2409(BasePageModel):
def __init__(
self,
enabled: bool,
artifacts_path: Optional[Path],
accelerator_options: AcceleratorOptions,
vlm_options: HuggingFaceVlmOptions,
):
self.enabled = enabled
self.vlm_options = vlm_options
if self.enabled:
import torch

View File

@ -24,6 +24,8 @@ from docling.datamodel.settings import settings
from docling.models.api_vlm_model import ApiVlmModel
from docling.models.hf_mlx_model import HuggingFaceMlxModel
from docling.models.hf_vlm_model import HuggingFaceVlmModel
from docling.models.hf_vlm_models.hf_vlm_model_AutoModelForVision2Seq import HuggingFaceVlmModel_AutoModelForVision2Seq
from docling.models.hf_vlm_models.hf_vlm_model_AutoModelForCausalLM import HuggingFaceVlmModel_AutoModelForCausalLM
from docling.pipeline.base_pipeline import PaginatedPipeline
from docling.utils.profiling import ProfilingScope, TimeRecorder
@ -77,7 +79,26 @@ class VlmPipeline(PaginatedPipeline):
vlm_options=vlm_options,
),
]
elif vlm_options.inference_framework == InferenceFramework.TRANSFORMERS_AutoModelForVision2Seq:
self.build_pipe = [
HuggingFaceVlmModel_AutoModelForVision2Seq(
enabled=True, # must be always enabled for this pipeline to make sense.
artifacts_path=artifacts_path,
accelerator_options=pipeline_options.accelerator_options,
vlm_options=vlm_options,
),
]
elif vlm_options.inference_framework == InferenceFramework.TRANSFORMERS_AutoModelForCausalLM:
self.build_pipe = [
HuggingFaceVlmModel_AutoModelForCausalLM(
enabled=True, # must be always enabled for this pipeline to make sense.
artifacts_path=artifacts_path,
accelerator_options=pipeline_options.accelerator_options,
vlm_options=vlm_options,
),
]
else:
_log.warning("falling back to HuggingFaceVlmModel (AutoModelForVision2Seq) pipeline")
self.build_pipe = [
HuggingFaceVlmModel(
enabled=True, # must be always enabled for this pipeline to make sense.

View File

@ -7,6 +7,9 @@ from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import (
InferenceFramework,
ResponseFormat,
HuggingFaceVlmOptions,
VlmPipelineOptions,
smoldocling_vlm_mlx_conversion_options,
)
@ -31,11 +34,30 @@ pipeline_options.force_backend_text = False
# pipeline_options.vlm_options = smoldocling_vlm_conversion_options
## Pick a VLM model. Fast Apple Silicon friendly implementation for SmolDocling-256M via MLX
pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
## pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
## Alternative VLM models:
# pipeline_options.vlm_options = granite_vision_vlm_conversion_options
# pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
# repo_id="mistralai/Pixtral-12B-Base-2409",
# # prompt="OCR the full page to markdown.",
# prompt="OCR this image and export it in MarkDown.",
# response_format=ResponseFormat.MARKDOWN,
# inference_framework=InferenceFramework.TRANSFORMERS,
# )
pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="microsoft/Phi-4-multimodal-instruct",
# prompt="OCR the full page to markdown.",
prompt="OCR this image and export it in MarkDown.",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForCausalLM,
)
pipeline_options.vlm_options = pixtral_vlm_conversion_options
## Set up pipeline for PDF or image inputs
converter = DocumentConverter(
format_options={
@ -67,7 +89,7 @@ for source in sources:
for page in res.pages:
print("")
print("Predicted page in DOCTAGS:")
print(f"Predicted page in {pipeline_options.vlm_options.response_format}:")
print(page.predictions.vlm_response.text)
res.document.save_as_html(

987
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -79,10 +79,7 @@ onnxruntime = [
{ version = "^1.7.0", optional = true, markers = "python_version >= '3.10'" },
]
transformers = [
{ markers = "sys_platform != 'darwin' or platform_machine != 'x86_64'", version = "^4.46.0", optional = true },
{ markers = "sys_platform == 'darwin' and platform_machine == 'x86_64'", version = "~4.42.0", optional = true },
]
transformers = "4.42.0"
accelerate = [
{ markers = "sys_platform != 'darwin' or platform_machine != 'x86_64'", version = "^1.2.1", optional = true },
]
@ -150,6 +147,11 @@ torchvision = [
{ markers = "sys_platform == 'darwin' and platform_machine == 'x86_64'", version = "~0.17.2" },
]
[tool.poetry.group.lm.dependencies]
peft = "^0.15.2"
backoff = "^2.2.1"
[tool.poetry.extras]
tesserocr = ["tesserocr"]
ocrmac = ["ocrmac"]