Merge branch 'DS4SD:main' into simonas/base-options

This commit is contained in:
Simonas Jakubonis 2024-12-03 16:25:35 +02:00 committed by GitHub
commit 1c14a2ac56
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 933 additions and 807 deletions

View File

@ -1,3 +1,21 @@
## [v2.8.2](https://github.com/DS4SD/docling/releases/tag/v2.8.2) - 2024-12-03
### Fix
* ParserError EOF inside string (#470) ([#472](https://github.com/DS4SD/docling/issues/472)) ([`c90c41c`](https://github.com/DS4SD/docling/commit/c90c41c391de4366db554d7a71ce9a35467c981e))
* PermissionError when using tesseract_ocr_cli_model ([#496](https://github.com/DS4SD/docling/issues/496)) ([`d3f84b2`](https://github.com/DS4SD/docling/commit/d3f84b2457125feacd0c21d6513e7ae69a308ea5))
### Documentation
* Add styling for faq ([#502](https://github.com/DS4SD/docling/issues/502)) ([`5ba3807`](https://github.com/DS4SD/docling/commit/5ba3807f315a01b1a4e8df9bab40e34a4238205a))
* Typo in faq ([#484](https://github.com/DS4SD/docling/issues/484)) ([`33cff98`](https://github.com/DS4SD/docling/commit/33cff98d360c02a382a66850c696a0cf511659ac))
* Add automatic api reference ([#475](https://github.com/DS4SD/docling/issues/475)) ([`d487210`](https://github.com/DS4SD/docling/commit/d4872103b8f24e38b37a8cd3ac414d3e02e7d6e8))
* Introduce faq section ([#468](https://github.com/DS4SD/docling/issues/468)) ([`8ccb3c6`](https://github.com/DS4SD/docling/commit/8ccb3c6db69318789af7deec26cfa2a3fd71302e))
### Performance
* Prevent temp file leftovers, reuse core type ([#487](https://github.com/DS4SD/docling/issues/487)) ([`051789d`](https://github.com/DS4SD/docling/commit/051789d01706d3823dd6307eca4dc5faacd1b7ce))
## [v2.8.1](https://github.com/DS4SD/docling/releases/tag/v2.8.1) - 2024-11-29
### Fix

View File

@ -2,6 +2,7 @@ import importlib
import json
import logging
import re
import tempfile
import time
import warnings
from enum import Enum
@ -9,7 +10,7 @@ from pathlib import Path
from typing import Annotated, Dict, Iterable, List, Optional, Type
import typer
from docling_core.utils.file import resolve_file_source
from docling_core.utils.file import resolve_source_to_path
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.backend.docling_parse_v2_backend import DoclingParseV2DocumentBackend
@ -256,95 +257,98 @@ def convert(
if from_formats is None:
from_formats = [e for e in InputFormat]
input_doc_paths: List[Path] = []
for src in input_sources:
source = resolve_file_source(source=src)
if not source.exists():
err_console.print(
f"[red]Error: The input file {source} does not exist.[/red]"
)
raise typer.Abort()
elif source.is_dir():
for fmt in from_formats:
for ext in FormatToExtensions[fmt]:
input_doc_paths.extend(list(source.glob(f"**/*.{ext}")))
input_doc_paths.extend(list(source.glob(f"**/*.{ext.upper()}")))
with tempfile.TemporaryDirectory() as tempdir:
input_doc_paths: List[Path] = []
for src in input_sources:
source = resolve_source_to_path(source=src, workdir=Path(tempdir))
if not source.exists():
err_console.print(
f"[red]Error: The input file {source} does not exist.[/red]"
)
raise typer.Abort()
elif source.is_dir():
for fmt in from_formats:
for ext in FormatToExtensions[fmt]:
input_doc_paths.extend(list(source.glob(f"**/*.{ext}")))
input_doc_paths.extend(list(source.glob(f"**/*.{ext.upper()}")))
else:
input_doc_paths.append(source)
if to_formats is None:
to_formats = [OutputFormat.MARKDOWN]
export_json = OutputFormat.JSON in to_formats
export_md = OutputFormat.MARKDOWN in to_formats
export_txt = OutputFormat.TEXT in to_formats
export_doctags = OutputFormat.DOCTAGS in to_formats
if ocr_engine == OcrEngine.EASYOCR:
ocr_options: OcrOptions = EasyOcrOptions(force_full_page_ocr=force_ocr)
elif ocr_engine == OcrEngine.TESSERACT_CLI:
ocr_options = TesseractCliOcrOptions(force_full_page_ocr=force_ocr)
elif ocr_engine == OcrEngine.TESSERACT:
ocr_options = TesseractOcrOptions(force_full_page_ocr=force_ocr)
elif ocr_engine == OcrEngine.OCRMAC:
ocr_options = OcrMacOptions(force_full_page_ocr=force_ocr)
elif ocr_engine == OcrEngine.RAPIDOCR:
ocr_options = RapidOcrOptions(force_full_page_ocr=force_ocr)
else:
input_doc_paths.append(source)
raise RuntimeError(f"Unexpected OCR engine type {ocr_engine}")
if to_formats is None:
to_formats = [OutputFormat.MARKDOWN]
ocr_lang_list = _split_list(ocr_lang)
if ocr_lang_list is not None:
ocr_options.lang = ocr_lang_list
export_json = OutputFormat.JSON in to_formats
export_md = OutputFormat.MARKDOWN in to_formats
export_txt = OutputFormat.TEXT in to_formats
export_doctags = OutputFormat.DOCTAGS in to_formats
if ocr_engine == OcrEngine.EASYOCR:
ocr_options: OcrOptions = EasyOcrOptions(force_full_page_ocr=force_ocr)
elif ocr_engine == OcrEngine.TESSERACT_CLI:
ocr_options = TesseractCliOcrOptions(force_full_page_ocr=force_ocr)
elif ocr_engine == OcrEngine.TESSERACT:
ocr_options = TesseractOcrOptions(force_full_page_ocr=force_ocr)
elif ocr_engine == OcrEngine.OCRMAC:
ocr_options = OcrMacOptions(force_full_page_ocr=force_ocr)
elif ocr_engine == OcrEngine.RAPIDOCR:
ocr_options = RapidOcrOptions(force_full_page_ocr=force_ocr)
else:
raise RuntimeError(f"Unexpected OCR engine type {ocr_engine}")
ocr_lang_list = _split_list(ocr_lang)
if ocr_lang_list is not None:
ocr_options.lang = ocr_lang_list
pipeline_options = PdfPipelineOptions(
do_ocr=ocr,
ocr_options=ocr_options,
do_table_structure=True,
)
pipeline_options.table_structure_options.do_cell_matching = True # do_cell_matching
pipeline_options.table_structure_options.mode = table_mode
if artifacts_path is not None:
pipeline_options.artifacts_path = artifacts_path
if pdf_backend == PdfBackend.DLPARSE_V1:
backend: Type[PdfDocumentBackend] = DoclingParseDocumentBackend
elif pdf_backend == PdfBackend.DLPARSE_V2:
backend = DoclingParseV2DocumentBackend
elif pdf_backend == PdfBackend.PYPDFIUM2:
backend = PyPdfiumDocumentBackend
else:
raise RuntimeError(f"Unexpected PDF backend type {pdf_backend}")
format_options: Dict[InputFormat, FormatOption] = {
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
backend=backend, # pdf_backend
pipeline_options = PdfPipelineOptions(
do_ocr=ocr,
ocr_options=ocr_options,
do_table_structure=True,
)
}
doc_converter = DocumentConverter(
allowed_formats=from_formats,
format_options=format_options,
)
pipeline_options.table_structure_options.do_cell_matching = (
True # do_cell_matching
)
pipeline_options.table_structure_options.mode = table_mode
start_time = time.time()
if artifacts_path is not None:
pipeline_options.artifacts_path = artifacts_path
conv_results = doc_converter.convert_all(
input_doc_paths, raises_on_error=abort_on_error
)
if pdf_backend == PdfBackend.DLPARSE_V1:
backend: Type[PdfDocumentBackend] = DoclingParseDocumentBackend
elif pdf_backend == PdfBackend.DLPARSE_V2:
backend = DoclingParseV2DocumentBackend
elif pdf_backend == PdfBackend.PYPDFIUM2:
backend = PyPdfiumDocumentBackend
else:
raise RuntimeError(f"Unexpected PDF backend type {pdf_backend}")
output.mkdir(parents=True, exist_ok=True)
export_documents(
conv_results,
output_dir=output,
export_json=export_json,
export_md=export_md,
export_txt=export_txt,
export_doctags=export_doctags,
)
format_options: Dict[InputFormat, FormatOption] = {
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
backend=backend, # pdf_backend
)
}
doc_converter = DocumentConverter(
allowed_formats=from_formats,
format_options=format_options,
)
end_time = time.time() - start_time
start_time = time.time()
conv_results = doc_converter.convert_all(
input_doc_paths, raises_on_error=abort_on_error
)
output.mkdir(parents=True, exist_ok=True)
export_documents(
conv_results,
output_dir=output,
export_json=export_json,
export_md=export_md,
export_txt=export_txt,
export_doctags=export_doctags,
)
end_time = time.time() - start_time
_log.info(f"All documents were converted in {end_time:.2f} seconds.")

View File

@ -1,5 +1,4 @@
from enum import Enum, auto
from io import BytesIO
from typing import TYPE_CHECKING, Dict, List, Optional, Union
from docling_core.types.doc import (
@ -9,6 +8,9 @@ from docling_core.types.doc import (
Size,
TableCell,
)
from docling_core.types.io import ( # DO ΝΟΤ REMOVE; explicitly exposed from this location
DocumentStream,
)
from PIL.Image import Image
from pydantic import BaseModel, ConfigDict
@ -22,6 +24,7 @@ class ConversionStatus(str, Enum):
FAILURE = auto()
SUCCESS = auto()
PARTIAL_SUCCESS = auto()
SKIPPED = auto()
class InputFormat(str, Enum):
@ -93,6 +96,7 @@ class DoclingComponentType(str, Enum):
DOCUMENT_BACKEND = auto()
MODEL = auto()
DOC_ASSEMBLER = auto()
USER_INPUT = auto()
class ErrorItem(BaseModel):
@ -207,10 +211,3 @@ class Page(BaseModel):
@property
def image(self) -> Optional[Image]:
return self.get_image(scale=self._default_image_scale)
class DocumentStream(BaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True)
name: str
stream: BytesIO

View File

@ -3,7 +3,7 @@ import re
from enum import Enum
from io import BytesIO
from pathlib import Path, PurePath
from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Type, Union
from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Set, Type, Union
import filetype
from docling_core.types.doc import (
@ -32,7 +32,7 @@ from docling_core.types.legacy_doc.document import (
)
from docling_core.types.legacy_doc.document import CCSFileInfoObject as DsFileInfoObject
from docling_core.types.legacy_doc.document import ExportedCCSDocument as DsDocument
from docling_core.utils.file import resolve_file_source
from docling_core.utils.file import resolve_source_to_stream
from pydantic import BaseModel
from typing_extensions import deprecated
@ -164,12 +164,6 @@ class InputDocument(BaseModel):
backend: Type[AbstractDocumentBackend],
path_or_stream: Union[BytesIO, Path],
) -> None:
if backend is None:
raise RuntimeError(
f"No backend configuration provided for file {self.file.name} with format {self.format}. "
f"Please check your format configuration on DocumentConverter."
)
self._backend = backend(self, path_or_stream=path_or_stream)
if not self._backend.is_valid():
self.valid = False
@ -450,6 +444,25 @@ class ConversionResult(BaseModel):
return ds_doc
class _DummyBackend(AbstractDocumentBackend):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def is_valid(self) -> bool:
return False
@classmethod
def supported_formats(cls) -> Set[InputFormat]:
return set()
@classmethod
def supports_pagination(cls) -> bool:
return False
def unload(self):
return super().unload()
class _DocumentConversionInput(BaseModel):
path_or_stream_iterator: Iterable[Union[Path, str, DocumentStream]]
@ -459,13 +472,14 @@ class _DocumentConversionInput(BaseModel):
self, format_options: Dict[InputFormat, "FormatOption"]
) -> Iterable[InputDocument]:
for item in self.path_or_stream_iterator:
obj = resolve_file_source(item) if isinstance(item, str) else item
obj = resolve_source_to_stream(item) if isinstance(item, str) else item
format = self._guess_format(obj)
backend: Type[AbstractDocumentBackend]
if format not in format_options.keys():
_log.info(
f"Skipping input document {obj.name} because it isn't matching any of the allowed formats."
_log.error(
f"Input document {obj.name} does not match any allowed format."
)
continue
backend = _DummyBackend
else:
backend = format_options[format].backend

View File

@ -15,7 +15,13 @@ from docling.backend.md_backend import MarkdownDocumentBackend
from docling.backend.msexcel_backend import MsExcelDocumentBackend
from docling.backend.mspowerpoint_backend import MsPowerpointDocumentBackend
from docling.backend.msword_backend import MsWordDocumentBackend
from docling.datamodel.base_models import ConversionStatus, DocumentStream, InputFormat
from docling.datamodel.base_models import (
ConversionStatus,
DoclingComponentType,
DocumentStream,
ErrorItem,
InputFormat,
)
from docling.datamodel.document import (
ConversionResult,
InputDocument,
@ -23,6 +29,7 @@ from docling.datamodel.document import (
)
from docling.datamodel.pipeline_options import PipelineOptions
from docling.datamodel.settings import DocumentLimits, settings
from docling.exceptions import ConversionError
from docling.pipeline.base_pipeline import BasePipeline
from docling.pipeline.simple_pipeline import SimplePipeline
from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline
@ -85,32 +92,37 @@ class ImageFormatOption(FormatOption):
backend: Type[AbstractDocumentBackend] = DoclingParseDocumentBackend
_format_to_default_options = {
InputFormat.XLSX: FormatOption(
pipeline_cls=SimplePipeline, backend=MsExcelDocumentBackend
),
InputFormat.DOCX: FormatOption(
pipeline_cls=SimplePipeline, backend=MsWordDocumentBackend
),
InputFormat.PPTX: FormatOption(
pipeline_cls=SimplePipeline, backend=MsPowerpointDocumentBackend
),
InputFormat.MD: FormatOption(
pipeline_cls=SimplePipeline, backend=MarkdownDocumentBackend
),
InputFormat.ASCIIDOC: FormatOption(
pipeline_cls=SimplePipeline, backend=AsciiDocBackend
),
InputFormat.HTML: FormatOption(
pipeline_cls=SimplePipeline, backend=HTMLDocumentBackend
),
InputFormat.IMAGE: FormatOption(
pipeline_cls=StandardPdfPipeline, backend=DoclingParseDocumentBackend
),
InputFormat.PDF: FormatOption(
pipeline_cls=StandardPdfPipeline, backend=DoclingParseDocumentBackend
),
}
def _get_default_option(format: InputFormat) -> FormatOption:
format_to_default_options = {
InputFormat.XLSX: FormatOption(
pipeline_cls=SimplePipeline, backend=MsExcelDocumentBackend
),
InputFormat.DOCX: FormatOption(
pipeline_cls=SimplePipeline, backend=MsWordDocumentBackend
),
InputFormat.PPTX: FormatOption(
pipeline_cls=SimplePipeline, backend=MsPowerpointDocumentBackend
),
InputFormat.MD: FormatOption(
pipeline_cls=SimplePipeline, backend=MarkdownDocumentBackend
),
InputFormat.ASCIIDOC: FormatOption(
pipeline_cls=SimplePipeline, backend=AsciiDocBackend
),
InputFormat.HTML: FormatOption(
pipeline_cls=SimplePipeline, backend=HTMLDocumentBackend
),
InputFormat.IMAGE: FormatOption(
pipeline_cls=StandardPdfPipeline, backend=DoclingParseDocumentBackend
),
InputFormat.PDF: FormatOption(
pipeline_cls=StandardPdfPipeline, backend=DoclingParseDocumentBackend
),
}
if (options := format_to_default_options.get(format)) is not None:
return options
else:
raise RuntimeError(f"No default options configured for {format}")
class DocumentConverter:
@ -121,36 +133,26 @@ class DocumentConverter:
allowed_formats: Optional[List[InputFormat]] = None,
format_options: Optional[Dict[InputFormat, FormatOption]] = None,
):
self.allowed_formats = allowed_formats
self.format_to_options = format_options
if self.allowed_formats is None:
# if self.format_to_options is not None:
# self.allowed_formats = self.format_to_options.keys()
# else:
self.allowed_formats = [e for e in InputFormat] # all formats
if self.format_to_options is None:
self.format_to_options = _format_to_default_options
else:
for f in self.allowed_formats:
if f not in self.format_to_options.keys():
_log.debug(f"Requested format {f} will use default options.")
self.format_to_options[f] = _format_to_default_options[f]
remove_keys = []
for f in self.format_to_options.keys():
if f not in self.allowed_formats:
remove_keys.append(f)
for f in remove_keys:
self.format_to_options.pop(f)
self.allowed_formats = (
allowed_formats if allowed_formats is not None else [e for e in InputFormat]
)
self.format_to_options = {
format: (
_get_default_option(format=format)
if (custom_option := (format_options or {}).get(format)) is None
else custom_option
)
for format in self.allowed_formats
}
self.initialized_pipelines: Dict[Type[BasePipeline], BasePipeline] = {}
def initialize_pipeline(self, format: InputFormat):
"""Initialize the conversion pipeline for the selected format."""
self._get_pipeline(doc_format=format)
pipeline = self._get_pipeline(doc_format=format)
if pipeline is None:
raise ConversionError(
f"No pipeline could be initialized for format {format}"
)
@validate_call(config=ConfigDict(strict=True))
def convert(
@ -186,22 +188,28 @@ class DocumentConverter:
limits=limits,
)
conv_res_iter = self._convert(conv_input, raises_on_error=raises_on_error)
had_result = False
for conv_res in conv_res_iter:
had_result = True
if raises_on_error and conv_res.status not in {
ConversionStatus.SUCCESS,
ConversionStatus.PARTIAL_SUCCESS,
}:
raise RuntimeError(
raise ConversionError(
f"Conversion failed for: {conv_res.input.file} with status: {conv_res.status}"
)
else:
yield conv_res
if not had_result and raises_on_error:
raise ConversionError(
f"Conversion failed because the provided file has no recognizable format or it wasn't in the list of allowed formats."
)
def _convert(
self, conv_input: _DocumentConversionInput, raises_on_error: bool
) -> Iterator[ConversionResult]:
assert self.format_to_options is not None
start_time = time.monotonic()
for input_batch in chunkify(
@ -223,27 +231,22 @@ class DocumentConverter:
):
elapsed = time.monotonic() - start_time
start_time = time.monotonic()
if item is not None:
_log.info(
f"Finished converting document {item.input.file.name} in {elapsed:.2f} sec."
)
yield item
else:
_log.info(f"Skipped a document. We lost {elapsed:.2f} sec.")
_log.info(
f"Finished converting document {item.input.file.name} in {elapsed:.2f} sec."
)
yield item
def _get_pipeline(self, doc_format: InputFormat) -> Optional[BasePipeline]:
assert self.format_to_options is not None
fopt = self.format_to_options.get(doc_format)
if fopt is None:
raise RuntimeError(f"Could not get pipeline for {doc_format}")
return None
else:
pipeline_class = fopt.pipeline_cls
pipeline_options = fopt.pipeline_options
assert pipeline_options is not None
if pipeline_options is None:
return None
# TODO this will ignore if different options have been defined for the same pipeline class.
if (
pipeline_class not in self.initialized_pipelines
@ -257,11 +260,26 @@ class DocumentConverter:
def _process_document(
self, in_doc: InputDocument, raises_on_error: bool
) -> Optional[ConversionResult]:
assert self.allowed_formats is not None
assert in_doc.format in self.allowed_formats
) -> ConversionResult:
conv_res = self._execute_pipeline(in_doc, raises_on_error=raises_on_error)
valid = (
self.allowed_formats is not None and in_doc.format in self.allowed_formats
)
if valid:
conv_res = self._execute_pipeline(in_doc, raises_on_error=raises_on_error)
else:
error_message = f"File format not allowed: {in_doc.file}"
if raises_on_error:
raise ConversionError(error_message)
else:
error_item = ErrorItem(
component_type=DoclingComponentType.USER_INPUT,
module_name="",
error_message=error_message,
)
conv_res = ConversionResult(
input=in_doc, status=ConversionStatus.SKIPPED, errors=[error_item]
)
return conv_res
@ -270,26 +288,28 @@ class DocumentConverter:
) -> ConversionResult:
if in_doc.valid:
pipeline = self._get_pipeline(in_doc.format)
if pipeline is None: # Can't find a default pipeline. Should this raise?
if pipeline is not None:
conv_res = pipeline.execute(in_doc, raises_on_error=raises_on_error)
else:
if raises_on_error:
raise RuntimeError(
raise ConversionError(
f"No pipeline could be initialized for {in_doc.file}."
)
else:
conv_res = ConversionResult(input=in_doc)
conv_res.status = ConversionStatus.FAILURE
return conv_res
conv_res = pipeline.execute(in_doc, raises_on_error=raises_on_error)
conv_res = ConversionResult(
input=in_doc,
status=ConversionStatus.FAILURE,
)
else:
if raises_on_error:
raise RuntimeError(f"Input document {in_doc.file} is not valid.")
raise ConversionError(f"Input document {in_doc.file} is not valid.")
else:
# invalid doc or not of desired format
conv_res = ConversionResult(input=in_doc)
conv_res.status = ConversionStatus.FAILURE
conv_res = ConversionResult(
input=in_doc,
status=ConversionStatus.FAILURE,
)
# TODO add error log why it failed.
return conv_res

6
docling/exceptions.py Normal file
View File

@ -0,0 +1,6 @@
class BaseError(RuntimeError):
pass
class ConversionError(BaseError):
pass

View File

@ -1,5 +1,7 @@
import csv
import io
import logging
import os
import tempfile
from subprocess import DEVNULL, PIPE, Popen
from typing import Iterable, Optional, Tuple
@ -95,7 +97,7 @@ class TesseractOcrCliModel(BaseOcrModel):
# _log.info(decoded_data)
# Read the TSV file generated by Tesseract
df = pd.read_csv(io.StringIO(decoded_data), sep="\t")
df = pd.read_csv(io.StringIO(decoded_data), quoting=csv.QUOTE_NONE, sep="\t")
# Display the dataframe (optional)
# _log.info("df: ", df.head())
@ -130,14 +132,17 @@ class TesseractOcrCliModel(BaseOcrModel):
high_res_image = page._backend.get_page_image(
scale=self.scale, cropbox=ocr_rect
)
with tempfile.NamedTemporaryFile(
suffix=".png", mode="w"
) as image_file:
fname = image_file.name
high_res_image.save(fname)
try:
with tempfile.NamedTemporaryFile(
suffix=".png", mode="w+b", delete=False
) as image_file:
fname = image_file.name
high_res_image.save(image_file)
df = self._run_tesseract(fname)
finally:
if os.path.exists(fname):
os.remove(fname)
# _log.info(df)

View File

@ -3,132 +3,145 @@
This is a collection of FAQ collected from the user questions on <https://github.com/DS4SD/docling/discussions>.
### Python 3.13 support
??? question "Is Python 3.13 supported?"
Full support for Python 3.13 is currently waiting for [pytorch](https://github.com/pytorch/pytorch).
### Is Python 3.13 supported?
At the moment, no release has full support, but nightly builds are available. Docling was tested on Python 3.13 with the following steps:
Full support for Python 3.13 is currently waiting for [pytorch](https://github.com/pytorch/pytorch).
```sh
# Create a python 3.13 virtualenv
python3.13 -m venv venv
source ./venv/bin/activate
At the moment, no release has full support, but nightly builds are available. Docling was tested on Python 3.13 with the following steps:
# Install torch nightly builds, see https://pytorch.org/
pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu
```sh
# Create a python 3.13 virtualenv
python3.13 -m venv venv
source ./venv/bin/activate
# Install docling
pip3 install docling
# Install torch nightly builds, see https://pytorch.org/
pip3 install --pre torch torchvision --index-url https://download.pytorch.org/whl/nightly/cpu
# Run docling
docling --no-ocr https://arxiv.org/pdf/2408.09869
```
# Install docling
pip3 install docling
_Note: we are disabling OCR since easyocr and the nightly torch builds have some conflicts._
# Run docling
docling --no-ocr https://arxiv.org/pdf/2408.09869
```
Source: Issue [#136](https://github.com/DS4SD/docling/issues/136)
_Note: we are disabling OCR since easyocr and the nightly torch builds have some conflicts._
Source: Issue [#136](https://github.com/DS4SD/docling/issues/136)
### Install conflicts with numpy (python 3.13)
??? question "Install conflicts with numpy (python 3.13)"
### Install conflicts with numpy (python 3.13)
When using `docling-ibm-models>=2.0.7` and `deepsearch-glm>=0.26.2` these issues should not show up anymore.
Docling supports numpy versions `>=1.24.4,<3.0.0` which should match all usages.
**For older versions**
This has been observed installing docling and langchain via poetry.
```
...
Thus, docling (>=2.7.0,<3.0.0) requires numpy (>=1.26.4,<2.0.0).
So, because ... depends on both numpy (>=2.0.2,<3.0.0) and docling (^2.7.0), version solving failed.
```
Numpy is only adding Python 3.13 support starting in some 2.x.y version. In order to prepare for 3.13, Docling depends on a 2.x.y for 3.13, otherwise depending an 1.x.y version. If you are allowing 3.13 in your pyproject.toml, Poetry will try to find some way to reconcile Docling's numpy version for 3.13 (some 2.x.y) with LangChain's version for that (some 1.x.y) — leading to the error above.
Check if Python 3.13 is among the Python versions allowed by your pyproject.toml and if so, remove it and try again.
E.g., if you have python = "^3.10", use python = ">=3.10,<3.13" instead.
If you want to retain compatibility with python 3.9-3.13, you can also use a selector in pyproject.toml similar to the following
```toml
numpy = [
{ version = "^2.1.0", markers = 'python_version >= "3.13"' },
{ version = "^1.24.4", markers = 'python_version < "3.13"' },
]
```
Source: Issue [#283](https://github.com/DS4SD/docling/issues/283#issuecomment-2465035868)
This has been observed installing docling and langchain via poetry.
??? question "Are text styles (bold, underline, etc) supported?"
```
...
Thus, docling (>=2.7.0,<3.0.0) requires numpy (>=1.26.4,<2.0.0).
So, because ... depends on both numpy (>=2.0.2,<3.0.0) and docling (^2.7.0), version solving failed.
```
### Are text styles (bold, underline, etc) supported?
Numpy is only adding Python 3.13 support starting in some 2.x.y version. In order to prepare for 3.13, Docling depends on a 2.x.y for 3.13, otherwise depending an 1.x.y version. If you are allowing 3.13 in your pyproject.toml, Poetry will try to find some way to reconcile Docling's numpy version for 3.13 (some 2.x.y) with LangChain's version for that (some 1.x.y) — leading to the error above.
Currently text styles are not supported in the `DoclingDocument` format.
If you are interest in contributing this feature, please open a discussion topic to brainstorm on the design.
Check if Python 3.13 is among the Python versions allowed by your pyproject.toml and if so, remove it and try again.
E.g., if you have python = "^3.10", use python = ">=3.10,<3.13" instead.
If you want to retain compatibility with python 3.9-3.13, you can also use a selector in pyproject.toml similar to the following
```toml
numpy = [
{ version = "^2.1.0", markers = 'python_version >= "3.13"' },
{ version = "^1.24.4", markers = 'python_version < "3.13"' },
]
```
_Note: this is not a simple topic_
Source: Issue [#283](https://github.com/DS4SD/docling/issues/283#issuecomment-2465035868)
??? question "How do I run completely offline?"
### How do I run completely offline?
Docling is not using any remote service, hence it can run in completely isolated air-gapped environments.
The only requirement is pointing the Docling runtime to the location where the model artifacts have been stored.
For example
```py
pipeline_options = PdfPipelineOptions(artifacts_path="your location")
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
```
Source: Issue [#326](https://github.com/DS4SD/docling/issues/326)
### GPU support
??? question " Which model weights are needed to run Docling?"
### Which model weights are needed to run Docling?
TBA
Model weights are needed for the AI models used in the PDF pipeline. Other document types (docx, pptx, etc) do not have any such requirement.
For processing PDF documents, Docling requires the model weights from <https://huggingface.co/ds4sd/docling-models>.
When OCR is enabled, some engines also require model artifacts. For example EasyOCR, for which Docling has [special pipeline options](https://github.com/DS4SD/docling/blob/main/docling/datamodel/pipeline_options.py#L68) to control the runtime behavior.
### Text styles (bold, underline, etc)
??? question "SSL error downloading model weights"
TBA
### SSL error downloading model weights
```
URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1000)>
```
Similar SSL download errors have been observed by some users. This happens when model weights are fetched from Hugging Face.
The error could happen when the python environment doesn't have an up-to-date list of trusted certificates.
Possible solutions were
- Update to the latest version of [certifi](https://pypi.org/project/certifi/), i.e. `pip install --upgrade certifi`
- Use [pip-system-certs](https://pypi.org/project/pip-system-certs/) to use the latest trusted certificates on your system.
### How do I run completely offline?
??? question "Which OCR languages are supported?"
Docling is not using any remote service, hence it can run in completely isolated air-gapped environments.
### Which OCR languages are supported?
The only requirement is pointing the Docling runtime to the location where the model artifacts have been stored.
Docling supports multiple OCR engine, each one has its own list of supported languages.
Here is a collection of links to the original OCR engine's documentation listing the OCR languages.
For example
- [EasyOCR](https://www.jaided.ai/easyocr/)
- [Tesseract](https://tesseract-ocr.github.io/tessdoc/Data-Files-in-different-versions.html)
- [RapidOCR](https://rapidai.github.io/RapidOCRDocs/blog/2022/09/28/%E6%94%AF%E6%8C%81%E8%AF%86%E5%88%AB%E8%AF%AD%E8%A8%80/)
- [Mac OCR](https://github.com/straussmaximilian/ocrmac/tree/main?tab=readme-ov-file#example-select-language-preference)
```py
Setting the OCR language in Docling is done via the OCR pipeline options:
pipeline_options = PdfPipelineOptions(artifacts_path="your location")
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
```
```py
from docling.datamodel.pipeline_options import PdfPipelineOptions
Source: Issue [#326](https://github.com/DS4SD/docling/issues/326)
### Which model weights are needed to run Docling?
Model weights are needed for the AI models used in the PDF pipeline. Other document types (docx, pptx, etc) do not have any such requirement.
For processing PDF documents, Docling requires the model weights from <https://huggingface.co/ds4sd/docling-models>.
When OCR is enabled, some engines also require model artifacts. For example EasyOCR, for which Docling has [special pipeline options](https://github.com/DS4SD/docling/blob/main/docling/datamodel/pipeline_options.py#L68) to control the runtime behavior.
### SSL error downloading model weights
```
URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1000)>
```
Similar SSL download errors have been observed by some users. This happens when model weights are fetched from Hugging Face.
The error could happen when the python environment doesn't have an up-to-date list of trusted certificates.
Possible solutions were
- Update to the latest version of [certifi](https://pypi.org/project/certifi/), i.e. `pip install --upgrade certifi`
- Use [pip-system-certs](https://pypi.org/project/pip-system-certs/) to use the latest trusted certificates on your system.
### Which OCR languages are supported?
Docling supports multiple OCR engine, each one has its own list of supported languages.
Here is a collection of links to the original OCR engine's documentation listing the OCR languages.
- [EasyOCR](https://www.jaided.ai/easyocr/)
- [Tesseract](https://tesseract-ocr.github.io/tessdoc/Data-Files-in-different-versions.html)
- [RapidOCR](https://rapidai.github.io/RapidOCRDocs/blog/2022/09/28/%E6%94%AF%E6%8C%81%E8%AF%86%E5%88%AB%E8%AF%AD%E8%A8%80/)
- [Mac OCR](https://github.com/straussmaximilian/ocrmac/tree/main?tab=readme-ov-file#example-select-language-preference)
Setting the OCR language in Docling is done via the OCR pipeline options:
```py
from docling.datamodel.pipeline_options import PdfPipelineOptions
pipeline_options = PdfPipelineOptions()
pipeline_options.ocr_options.lang = ["fr", "de", "es", "en"] # example of languages for EasyOCR
```
pipeline_options = PdfPipelineOptions()
pipeline_options.ocr_options.lang = ["fr", "de", "es", "en"] # example of languages for EasyOCR
```

1025
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,6 @@
[tool.poetry]
name = "docling"
version = "2.8.1" # DO NOT EDIT, updated automatically
version = "2.8.2" # DO NOT EDIT, updated automatically
description = "SDK and CLI for parsing PDF, DOCX, HTML, and more, to a unified document representation for powering downstream workflows such as gen AI applications."
authors = ["Christoph Auer <cau@zurich.ibm.com>", "Michele Dolfi <dol@zurich.ibm.com>", "Maxim Lysak <mly@zurich.ibm.com>", "Nikos Livathinos <nli@zurich.ibm.com>", "Ahmed Nassar <ahn@zurich.ibm.com>", "Panos Vagenas <pva@zurich.ibm.com>", "Peter Staar <taa@zurich.ibm.com>"]
license = "MIT"
@ -26,7 +26,7 @@ packages = [{include = "docling"}]
######################
python = "^3.9"
pydantic = ">=2.0.0,<2.10"
docling-core = "^2.5.1"
docling-core = "^2.6.1"
docling-ibm-models = "^2.0.6"
deepsearch-glm = "^0.26.1"
filetype = "^1.2.0"
@ -90,10 +90,13 @@ langchain-huggingface = "^0.0.3"
langchain-milvus = "^0.1.4"
langchain-text-splitters = "^0.2.4"
[tool.poetry.group.constraints]
optional = true
[tool.poetry.group.constraints.dependencies]
numpy = [
{ version = "^2.1.0", markers = 'python_version >= "3.13"' },
{ version = "^1.24.4", markers = 'python_version < "3.13"' },
{ version = ">=1.24.4,<3.0.0", markers = 'python_version >= "3.10"' },
{ version = ">=1.24.4,<2.1.0", markers = 'python_version < "3.10"' },
]
[tool.poetry.group.mac_intel]

View File

@ -10,7 +10,7 @@ from docling.document_converter import DocumentConverter, PdfFormatOption
from .verify_utils import verify_conversion_result_v1, verify_conversion_result_v2
GENERATE = True
GENERATE = False
def get_pdf_path():

View File

@ -0,0 +1,45 @@
from io import BytesIO
from pathlib import Path
import pytest
from docling.datamodel.base_models import ConversionStatus, DocumentStream
from docling.document_converter import ConversionError, DocumentConverter
def get_pdf_path():
pdf_path = Path("./tests/data/2305.03393v1-pg9.pdf")
return pdf_path
@pytest.fixture
def converter():
converter = DocumentConverter()
return converter
def test_convert_unsupported_doc_format_wout_exception(converter: DocumentConverter):
result = converter.convert(
DocumentStream(name="input.xyz", stream=BytesIO(b"xyz")), raises_on_error=False
)
assert result.status == ConversionStatus.SKIPPED
def test_convert_unsupported_doc_format_with_exception(converter: DocumentConverter):
with pytest.raises(ConversionError):
converter.convert(
DocumentStream(name="input.xyz", stream=BytesIO(b"xyz")),
raises_on_error=True,
)
def test_convert_too_small_filesize_limit_wout_exception(converter: DocumentConverter):
result = converter.convert(get_pdf_path(), max_file_size=1, raises_on_error=False)
assert result.status == ConversionStatus.FAILURE
def test_convert_too_small_filesize_limit_with_exception(converter: DocumentConverter):
with pytest.raises(ConversionError):
converter.convert(get_pdf_path(), max_file_size=1, raises_on_error=True)