Lots of improvements

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
This commit is contained in:
Christoph Auer
2024-10-08 16:38:42 +02:00
parent c0447206af
commit 203cf19b1b
10 changed files with 169 additions and 77 deletions

View File

@@ -6,8 +6,9 @@ from typing import Iterable
import yaml
from docling.datamodel.base_models import ConversionStatus, PdfPipelineOptions
from docling.datamodel.base_models import ConversionStatus
from docling.datamodel.document import ConversionResult, DocumentConversionInput
from docling.document_converter import DocumentConverter
_log = logging.getLogger(__name__)
@@ -110,11 +111,7 @@ def main():
# docs = [DocumentStream(filename="my_doc.pdf", stream=buf)]
# input = DocumentConversionInput.from_streams(docs)
doc_converter = PdfDocumentConverter(
pipeline_options=PdfPipelineOptions(),
pdf_backend=DocumentConversionInput.DEFAULT_BACKEND,
pipeline_cls=StandardModelPipeline,
)
doc_converter = DocumentConverter()
input = DocumentConversionInput.from_paths(input_doc_paths)

View File

@@ -4,10 +4,11 @@ import time
from pathlib import Path
from typing import Iterable
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.datamodel.base_models import ConversionStatus, PdfPipelineOptions
from docling.datamodel.base_models import ConversionStatus, InputFormat
from docling.datamodel.document import ConversionResult, DocumentConversionInput
from docling.pdf_document_converter import PdfDocumentConverter
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, FormatOption
from docling.pipeline.standard_pdf_model_pipeline import StandardPdfModelPipeline
_log = logging.getLogger(__name__)
@@ -101,9 +102,12 @@ def main():
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
doc_converter = PdfDocumentConverter(
pipeline_options=pipeline_options,
pdf_backend=DoclingParseDocumentBackend,
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: FormatOption(
pipeline_cls=StandardPdfModelPipeline, pipeline_options=pipeline_options
)
}
)
# Docling Parse with OCR

View File

@@ -5,11 +5,12 @@ from pathlib import Path
from docling.datamodel.base_models import (
ConversionStatus,
FigureElement,
PdfPipelineOptions,
InputFormat,
Table,
)
from docling.datamodel.document import DocumentConversionInput
from docling.pdf_document_converter import PdfDocumentConverter
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
_log = logging.getLogger(__name__)
@@ -28,12 +29,16 @@ def main():
# Important: For operating with page images, we must keep them, otherwise the DocumentConverter
# will destroy them for cleaning up memory.
# This is done by setting PipelineOptions.images_scale, which also defines the scale of images.
# This is done by setting AssembleOptions.images_scale, which also defines the scale of images.
# scale=1 correspond of a standard 72 DPI image
pipeline_options = PdfPipelineOptions()
pipeline_options.images_scale = IMAGE_RESOLUTION_SCALE
doc_converter = PdfDocumentConverter(pipeline_options=pipeline_options)
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
start_time = time.time()

View File

@@ -5,9 +5,10 @@ from pathlib import Path
import pandas as pd
from docling.datamodel.base_models import ConversionStatus, PdfPipelineOptions
from docling.datamodel.base_models import ConversionStatus, InputFormat
from docling.datamodel.document import DocumentConversionInput
from docling.pdf_document_converter import PdfDocumentConverter
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.utils.export import generate_multimodal_pages
_log = logging.getLogger(__name__)
@@ -27,12 +28,16 @@ def main():
# Important: For operating with page images, we must keep them, otherwise the DocumentConverter
# will destroy them for cleaning up memory.
# This is done by setting PipelineOptions.images_scale, which also defines the scale of images.
# This is done by setting AssembleOptions.images_scale, which also defines the scale of images.
# scale=1 correspond of a standard 72 DPI image
pipeline_options = PdfPipelineOptions()
pipeline_options.images_scale = IMAGE_RESOLUTION_SCALE
doc_converter = PdfDocumentConverter(pipeline_options=pipeline_options)
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
start_time = time.time()

View File

@@ -6,7 +6,7 @@ import pandas as pd
from docling.datamodel.base_models import ConversionStatus
from docling.datamodel.document import DocumentConversionInput
from docling.pdf_document_converter import PdfDocumentConverter
from docling.document_converter import DocumentConverter
_log = logging.getLogger(__name__)
@@ -21,7 +21,7 @@ def main():
input_files = DocumentConversionInput.from_paths(input_doc_paths)
doc_converter = PdfDocumentConverter()
doc_converter = DocumentConverter()
start_time = time.time()

View File

@@ -1,6 +1,6 @@
from docling.pdf_document_converter import PdfDocumentConverter
from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL
converter = PdfDocumentConverter()
converter = DocumentConverter()
doc = converter.convert_single(source)
print(doc.render_as_markdown()) # output: ## Docling Technical Report [...]"

View File

@@ -1,8 +1,13 @@
import logging
from pathlib import Path
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.backend.msword_backend import MsWordDocumentBackend
from docling.datamodel.base_models import InputFormat
from docling.datamodel.document import DocumentConversionInput
from docling.document_converter import DocumentConverter
from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption
from docling.pipeline.simple_model_pipeline import SimpleModelPipeline
from docling.pipeline.standard_pdf_model_pipeline import StandardPdfModelPipeline
_log = logging.getLogger(__name__)
@@ -13,6 +18,7 @@ input_paths = [
Path("tests/data/word_sample.docx"),
Path("tests/data/lorem_ipsum.docx"),
Path("tests/data/powerpoint_sample.pptx"),
Path("tests/data/powerpoint_sample.pptx"),
Path("tests/data/2206.01062.pdf"),
]
input = DocumentConversionInput.from_paths(input_paths)
@@ -21,22 +27,29 @@ input = DocumentConversionInput.from_paths(input_paths)
doc_converter = DocumentConverter()
# to customize use:
# doc_converter = DocumentConverter( # all of the below is optional, has internal defaults.
# formats=[InputFormat.PDF, InputFormat.DOCX],
# doc_converter = DocumentConverter( # all of the below is optional, has internal defaults.
# formats=[
# InputFormat.PDF,
# InputFormat.DOCX,
# ], # whitelist formats, other files are ignored.
# format_options={
# InputFormat.PDF: FormatOption(pipeline_cls=StandardPdfModelPipeline, backend=PyPdfiumDocumentBackend),
# InputFormat.DOCX: FormatOption(pipeline_cls=SimpleModelPipeline, backend=MsWordDocumentBackend)
# }
# InputFormat.PDF: PdfFormatOption(backend=DoclingParseDocumentBackend),
# InputFormat.DOCX: FormatOption(
# pipeline_cls=StandardPdfModelPipeline, backend=MsWordDocumentBackend
# ),
# # InputFormat.IMAGE: PdfFormatOption(),
# },
# )
conv_results = doc_converter.convert(input)
for res in conv_results:
print("")
out_path = Path("./scratch") / f"{res.input.file.name}.experimental.md"
print(
f"Document {res.input.file.name} converted with status {res.status}. Content:"
f"Document {res.input.file.name} converted with status {res.status}."
f"\nSaved markdown output to: {str(out_path)}"
)
print(res.experimental.export_to_markdown())
# print(res.experimental.export_to_markdown())
# Export Docling document format to markdown (experimental):
with (Path("./scratch") / f"{res.input.file.name}.experimental.md").open("w") as fp:
with out_path.open("w") as fp:
fp.write(res.experimental.export_to_markdown())