fix pre-commit checks and added proper type safety

This commit is contained in:
Ken Steele
2025-10-02 04:53:49 -07:00
parent 94803317a3
commit 21905e8ace
7 changed files with 135 additions and 94 deletions

View File

@@ -615,7 +615,17 @@ def convert( # noqa: C901
# Auto-detect pipeline based on input file formats
if pipeline == ProcessingPipeline.STANDARD:
# Check if any input files are audio files by extension
audio_extensions = {'.mp3', '.wav', '.m4a', '.aac', '.ogg', '.flac', '.mp4', '.avi', '.mov'}
audio_extensions = {
".mp3",
".wav",
".m4a",
".aac",
".ogg",
".flac",
".mp4",
".avi",
".mov",
}
for path in input_doc_paths:
if path.suffix.lower() in audio_extensions:
pipeline = ProcessingPipeline.ASR

View File

@@ -10,13 +10,14 @@ from docling.datamodel.pipeline_options_asr_model import (
# AsrResponseFormat,
# ApiAsrOptions,
InferenceAsrFramework,
InlineAsrNativeWhisperOptions,
InlineAsrMlxWhisperOptions,
InlineAsrNativeWhisperOptions,
TransformersModelType,
)
_log = logging.getLogger(__name__)
def _get_whisper_tiny_model():
"""
Get the best Whisper Tiny model for the current hardware.
@@ -27,6 +28,7 @@ def _get_whisper_tiny_model():
# Check if MPS is available (Apple Silicon)
try:
import torch
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
except ImportError:
has_mps = False
@@ -34,6 +36,7 @@ def _get_whisper_tiny_model():
# Check if mlx-whisper is available
try:
import mlx_whisper # type: ignore
has_mlx_whisper = True
except ImportError:
has_mlx_whisper = False
@@ -66,6 +69,7 @@ def _get_whisper_tiny_model():
# Create the model instance
WHISPER_TINY = _get_whisper_tiny_model()
def _get_whisper_small_model():
"""
Get the best Whisper Small model for the current hardware.
@@ -76,6 +80,7 @@ def _get_whisper_small_model():
# Check if MPS is available (Apple Silicon)
try:
import torch
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
except ImportError:
has_mps = False
@@ -83,6 +88,7 @@ def _get_whisper_small_model():
# Check if mlx-whisper is available
try:
import mlx_whisper # type: ignore
has_mlx_whisper = True
except ImportError:
has_mlx_whisper = False
@@ -115,6 +121,7 @@ def _get_whisper_small_model():
# Create the model instance
WHISPER_SMALL = _get_whisper_small_model()
def _get_whisper_medium_model():
"""
Get the best Whisper Medium model for the current hardware.
@@ -125,6 +132,7 @@ def _get_whisper_medium_model():
# Check if MPS is available (Apple Silicon)
try:
import torch
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
except ImportError:
has_mps = False
@@ -132,6 +140,7 @@ def _get_whisper_medium_model():
# Check if mlx-whisper is available
try:
import mlx_whisper # type: ignore
has_mlx_whisper = True
except ImportError:
has_mlx_whisper = False
@@ -164,6 +173,7 @@ def _get_whisper_medium_model():
# Create the model instance
WHISPER_MEDIUM = _get_whisper_medium_model()
def _get_whisper_base_model():
"""
Get the best Whisper Base model for the current hardware.
@@ -174,6 +184,7 @@ def _get_whisper_base_model():
# Check if MPS is available (Apple Silicon)
try:
import torch
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
except ImportError:
has_mps = False
@@ -181,6 +192,7 @@ def _get_whisper_base_model():
# Check if mlx-whisper is available
try:
import mlx_whisper # type: ignore
has_mlx_whisper = True
except ImportError:
has_mlx_whisper = False
@@ -213,6 +225,7 @@ def _get_whisper_base_model():
# Create the model instance
WHISPER_BASE = _get_whisper_base_model()
def _get_whisper_large_model():
"""
Get the best Whisper Large model for the current hardware.
@@ -223,6 +236,7 @@ def _get_whisper_large_model():
# Check if MPS is available (Apple Silicon)
try:
import torch
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
except ImportError:
has_mps = False
@@ -230,6 +244,7 @@ def _get_whisper_large_model():
# Check if mlx-whisper is available
try:
import mlx_whisper # type: ignore
has_mlx_whisper = True
except ImportError:
has_mlx_whisper = False
@@ -262,6 +277,7 @@ def _get_whisper_large_model():
# Create the model instance
WHISPER_LARGE = _get_whisper_large_model()
def _get_whisper_turbo_model():
"""
Get the best Whisper Turbo model for the current hardware.
@@ -272,6 +288,7 @@ def _get_whisper_turbo_model():
# Check if MPS is available (Apple Silicon)
try:
import torch
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
except ImportError:
has_mps = False
@@ -279,6 +296,7 @@ def _get_whisper_turbo_model():
# Check if mlx-whisper is available
try:
import mlx_whisper # type: ignore
has_mlx_whisper = True
except ImportError:
has_mlx_whisper = False

View File

@@ -63,6 +63,7 @@ class InlineAsrMlxWhisperOptions(InlineAsrOptions):
Uses mlx-whisper library for efficient inference on Apple Silicon devices.
"""
inference_framework: InferenceAsrFramework = InferenceAsrFramework.MLX
language: str = "en"

View File

@@ -4,7 +4,7 @@ import re
import tempfile
from io import BytesIO
from pathlib import Path
from typing import List, Optional, Union, cast
from typing import TYPE_CHECKING, List, Optional, Union, cast
from docling_core.types.doc import DoclingDocument, DocumentOrigin
@@ -32,8 +32,8 @@ from docling.datamodel.pipeline_options import (
AsrPipelineOptions,
)
from docling.datamodel.pipeline_options_asr_model import (
InlineAsrNativeWhisperOptions,
InlineAsrMlxWhisperOptions,
InlineAsrNativeWhisperOptions,
# AsrResponseFormat,
InlineAsrOptions,
)
@@ -334,7 +334,7 @@ class _MlxWhisperModel:
start_time=segment.get("start"),
end_time=segment.get("end"),
text=segment.get("text", "").strip(),
words=[]
words=[],
)
# Add word-level timestamps if available
@@ -359,26 +359,27 @@ class AsrPipeline(BasePipeline):
self.keep_backend = True
self.pipeline_options: AsrPipelineOptions = pipeline_options
self._model: Union[_NativeWhisperModel, _MlxWhisperModel]
if isinstance(self.pipeline_options.asr_options, InlineAsrNativeWhisperOptions):
asr_options: InlineAsrNativeWhisperOptions = (
native_asr_options: InlineAsrNativeWhisperOptions = (
self.pipeline_options.asr_options
)
self._model = _NativeWhisperModel(
enabled=True, # must be always enabled for this pipeline to make sense.
artifacts_path=self.artifacts_path,
accelerator_options=pipeline_options.accelerator_options,
asr_options=asr_options,
asr_options=native_asr_options,
)
elif isinstance(self.pipeline_options.asr_options, InlineAsrMlxWhisperOptions):
asr_options: InlineAsrMlxWhisperOptions = (
mlx_asr_options: InlineAsrMlxWhisperOptions = (
self.pipeline_options.asr_options
)
self._model = _MlxWhisperModel(
enabled=True, # must be always enabled for this pipeline to make sense.
artifacts_path=self.artifacts_path,
accelerator_options=pipeline_options.accelerator_options,
asr_options=asr_options,
asr_options=mlx_asr_options,
)
else:
_log.error(f"No model support for {self.pipeline_options.asr_options}")

View File

@@ -12,19 +12,19 @@ from pathlib import Path
# Add the repository root to the path so we can import docling
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
from docling.datamodel.asr_model_specs import (
WHISPER_TINY,
WHISPER_BASE,
WHISPER_SMALL,
WHISPER_MEDIUM,
WHISPER_LARGE,
WHISPER_MEDIUM,
WHISPER_SMALL,
WHISPER_TINY,
WHISPER_TURBO,
)
from docling.datamodel.accelerator_options import AcceleratorOptions, AcceleratorDevice
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import AsrPipelineOptions
from docling.document_converter import AudioFormatOption, DocumentConverter
from docling.pipeline.asr_pipeline import AsrPipeline
from docling.document_converter import DocumentConverter, AudioFormatOption
def transcribe_audio_with_mlx_whisper(audio_file_path: str, model_size: str = "base"):
@@ -51,7 +51,9 @@ def transcribe_audio_with_mlx_whisper(audio_file_path: str, model_size: str = "b
}
if model_size not in model_map:
raise ValueError(f"Invalid model size: {model_size}. Choose from: {list(model_map.keys())}")
raise ValueError(
f"Invalid model size: {model_size}. Choose from: {list(model_map.keys())}"
)
asr_options = model_map[model_size]
@@ -105,10 +107,14 @@ def main():
try:
print(f"Transcribing '{audio_file_path}' using Whisper {model_size} model...")
print("Note: MLX optimization is automatically used on Apple Silicon when available.")
print(
"Note: MLX optimization is automatically used on Apple Silicon when available."
)
print()
transcribed_text = transcribe_audio_with_mlx_whisper(audio_file_path, model_size)
transcribed_text = transcribe_audio_with_mlx_whisper(
audio_file_path, model_size
)
print("Transcription Result:")
print("=" * 50)

View File

@@ -1,25 +1,27 @@
"""
Test MLX Whisper integration for Apple Silicon ASR pipeline.
"""
import pytest
from pathlib import Path
from unittest.mock import Mock, patch
import pytest
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
from docling.datamodel.asr_model_specs import (
WHISPER_TINY,
WHISPER_BASE,
WHISPER_SMALL,
WHISPER_MEDIUM,
WHISPER_LARGE,
WHISPER_MEDIUM,
WHISPER_SMALL,
WHISPER_TINY,
WHISPER_TURBO,
)
from docling.datamodel.pipeline_options import AsrPipelineOptions
from docling.datamodel.pipeline_options_asr_model import (
InferenceAsrFramework,
InlineAsrMlxWhisperOptions,
)
from docling.datamodel.accelerator_options import AcceleratorOptions, AcceleratorDevice
from docling.pipeline.asr_pipeline import AsrPipeline, _MlxWhisperModel
from docling.datamodel.pipeline_options import AsrPipelineOptions
class TestMlxWhisperIntegration:
@@ -47,16 +49,16 @@ class TestMlxWhisperIntegration:
# these models would automatically use MLX
# Check that the models exist and have the correct structure
assert hasattr(WHISPER_TURBO, 'inference_framework')
assert hasattr(WHISPER_TURBO, 'repo_id')
assert hasattr(WHISPER_TURBO, "inference_framework")
assert hasattr(WHISPER_TURBO, "repo_id")
assert hasattr(WHISPER_BASE, 'inference_framework')
assert hasattr(WHISPER_BASE, 'repo_id')
assert hasattr(WHISPER_BASE, "inference_framework")
assert hasattr(WHISPER_BASE, "repo_id")
assert hasattr(WHISPER_SMALL, 'inference_framework')
assert hasattr(WHISPER_SMALL, 'repo_id')
assert hasattr(WHISPER_SMALL, "inference_framework")
assert hasattr(WHISPER_SMALL, "repo_id")
@patch('builtins.__import__')
@patch("builtins.__import__")
def test_mlx_whisper_model_initialization(self, mock_import):
"""Test MLX Whisper model initialization."""
# Mock the mlx_whisper import
@@ -102,7 +104,10 @@ class TestMlxWhisperIntegration:
compression_ratio_threshold=2.4,
)
with patch('builtins.__import__', side_effect=ImportError("No module named 'mlx_whisper'")):
with patch(
"builtins.__import__",
side_effect=ImportError("No module named 'mlx_whisper'"),
):
with pytest.raises(ImportError, match="mlx-whisper is not installed"):
_MlxWhisperModel(
enabled=True,
@@ -111,7 +116,7 @@ class TestMlxWhisperIntegration:
asr_options=asr_options,
)
@patch('builtins.__import__')
@patch("builtins.__import__")
def test_mlx_whisper_transcribe(self, mock_import):
"""Test MLX Whisper transcription method."""
# Mock the mlx_whisper module and its transcribe function
@@ -128,7 +133,7 @@ class TestMlxWhisperIntegration:
"words": [
{"start": 0.0, "end": 0.5, "word": "Hello"},
{"start": 0.5, "end": 1.0, "word": "world"},
]
],
}
]
}
@@ -178,7 +183,7 @@ class TestMlxWhisperIntegration:
compression_ratio_threshold=2.4,
)
@patch('builtins.__import__')
@patch("builtins.__import__")
def test_asr_pipeline_with_mlx_whisper(self, mock_import):
"""Test that AsrPipeline can be initialized with MLX Whisper options."""
# Mock the mlx_whisper import