feat: Full implementation of OllamaVlmModel

Branch: OllamaVlmModel

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This commit is contained in:
Gabe Goodhart 2025-04-08 13:29:26 -06:00
parent 5902d9e1c1
commit 219d8db626

View File

@ -0,0 +1,94 @@
import base64
import io
import logging
import time
from pathlib import Path
from typing import Iterable, Optional
from PIL import Image
import ollama
from docling.datamodel.base_models import Page, VlmPrediction
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
AcceleratorDevice,
AcceleratorOptions,
OllamaVlmOptions,
)
from docling.datamodel.settings import settings
from docling.models.base_model import BasePageModel
from docling.utils.accelerator_utils import decide_device
from docling.utils.profiling import TimeRecorder
_log = logging.getLogger(__name__)
class OllamaVlmModel(BasePageModel):
def __init__(
self,
enabled: bool,
vlm_options: OllamaVlmOptions,
):
self.enabled = enabled
self.vlm_options = vlm_options
if self.enabled:
self.client = ollama.Client(self.vlm_options.base_url)
self.model_id = self.vlm_options.model_id
self.client.pull(self.model_id)
self.options = {}
self.prompt_content = f"This is a page from a document.\n{self.vlm_options.prompt}"
if self.vlm_options.num_ctx:
self.options["num_ctx"] = self.vlm_options.num_ctx
@staticmethod
def _encode_image(image: Image) -> str:
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format="png")
return base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "vlm"):
assert page.size is not None
hi_res_image = page.get_image(scale=self.vlm_options.scale)
# populate page_tags with predicted doc tags
page_tags = ""
if hi_res_image:
if hi_res_image.mode != "RGB":
hi_res_image = hi_res_image.convert("RGB")
res = self.client.chat(
model=self.model_id,
messages=[
{
"role": "user",
"content": self.prompt_content,
"images": [self._encode_image(hi_res_image)],
},
],
options={
"temperature": 0,
}
)
page_tags = res.message.content
# inference_time = time.time() - start_time
# tokens_per_second = num_tokens / generation_time
# print("")
# print(f"Page Inference Time: {inference_time:.2f} seconds")
# print(f"Total tokens on page: {num_tokens:.2f}")
# print(f"Tokens/sec: {tokens_per_second:.2f}")
# print("")
page.predictions.vlm_response = VlmPrediction(text=page_tags)
yield page