mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-27 04:24:45 +00:00
feat: Full implementation of OllamaVlmModel
Branch: OllamaVlmModel Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This commit is contained in:
parent
5902d9e1c1
commit
219d8db626
94
docling/models/ollama_vlm_model.py
Normal file
94
docling/models/ollama_vlm_model.py
Normal file
@ -0,0 +1,94 @@
|
||||
import base64
|
||||
import io
|
||||
import logging
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Iterable, Optional
|
||||
|
||||
from PIL import Image
|
||||
import ollama
|
||||
|
||||
from docling.datamodel.base_models import Page, VlmPrediction
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options import (
|
||||
AcceleratorDevice,
|
||||
AcceleratorOptions,
|
||||
OllamaVlmOptions,
|
||||
)
|
||||
from docling.datamodel.settings import settings
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.utils.accelerator_utils import decide_device
|
||||
from docling.utils.profiling import TimeRecorder
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OllamaVlmModel(BasePageModel):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
enabled: bool,
|
||||
vlm_options: OllamaVlmOptions,
|
||||
):
|
||||
self.enabled = enabled
|
||||
self.vlm_options = vlm_options
|
||||
if self.enabled:
|
||||
self.client = ollama.Client(self.vlm_options.base_url)
|
||||
self.model_id = self.vlm_options.model_id
|
||||
self.client.pull(self.model_id)
|
||||
self.options = {}
|
||||
self.prompt_content = f"This is a page from a document.\n{self.vlm_options.prompt}"
|
||||
if self.vlm_options.num_ctx:
|
||||
self.options["num_ctx"] = self.vlm_options.num_ctx
|
||||
|
||||
@staticmethod
|
||||
def _encode_image(image: Image) -> str:
|
||||
img_byte_arr = io.BytesIO()
|
||||
image.save(img_byte_arr, format="png")
|
||||
return base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
|
||||
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
for page in page_batch:
|
||||
assert page._backend is not None
|
||||
if not page._backend.is_valid():
|
||||
yield page
|
||||
else:
|
||||
with TimeRecorder(conv_res, "vlm"):
|
||||
assert page.size is not None
|
||||
|
||||
hi_res_image = page.get_image(scale=self.vlm_options.scale)
|
||||
|
||||
# populate page_tags with predicted doc tags
|
||||
page_tags = ""
|
||||
|
||||
if hi_res_image:
|
||||
if hi_res_image.mode != "RGB":
|
||||
hi_res_image = hi_res_image.convert("RGB")
|
||||
|
||||
res = self.client.chat(
|
||||
model=self.model_id,
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": self.prompt_content,
|
||||
"images": [self._encode_image(hi_res_image)],
|
||||
},
|
||||
],
|
||||
options={
|
||||
"temperature": 0,
|
||||
}
|
||||
)
|
||||
page_tags = res.message.content
|
||||
|
||||
# inference_time = time.time() - start_time
|
||||
# tokens_per_second = num_tokens / generation_time
|
||||
# print("")
|
||||
# print(f"Page Inference Time: {inference_time:.2f} seconds")
|
||||
# print(f"Total tokens on page: {num_tokens:.2f}")
|
||||
# print(f"Tokens/sec: {tokens_per_second:.2f}")
|
||||
# print("")
|
||||
page.predictions.vlm_response = VlmPrediction(text=page_tags)
|
||||
|
||||
yield page
|
Loading…
Reference in New Issue
Block a user