mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-26 20:14:47 +00:00
Cleaned up logs, added pages to vlm_pipeline, basic timing per page measurement in smol_docling models
Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>
This commit is contained in:
parent
61bb9dbba2
commit
2a43c199d5
@ -1,4 +1,5 @@
|
||||
import logging
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Iterable, List, Optional
|
||||
|
||||
@ -10,14 +11,7 @@ from transformers import ( # type: ignore
|
||||
Idefics3ForConditionalGeneration,
|
||||
)
|
||||
|
||||
from docling.datamodel.base_models import (
|
||||
BoundingBox,
|
||||
Cell,
|
||||
Cluster,
|
||||
DocTagsPrediction,
|
||||
LayoutPrediction,
|
||||
Page,
|
||||
)
|
||||
from docling.datamodel.base_models import DocTagsPrediction, Page
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options import AcceleratorDevice, AcceleratorOptions
|
||||
from docling.datamodel.settings import settings
|
||||
@ -31,7 +25,6 @@ _log = logging.getLogger(__name__)
|
||||
class SmolDoclingModel(BasePageModel):
|
||||
|
||||
def __init__(self, artifacts_path: Path, accelerator_options: AcceleratorOptions):
|
||||
print("SmolDocling, init...")
|
||||
device = decide_device(accelerator_options.device)
|
||||
self.device = device
|
||||
_log.info("Available device for SmolDocling: {}".format(device))
|
||||
@ -59,12 +52,10 @@ class SmolDoclingModel(BasePageModel):
|
||||
torch_dtype="auto",
|
||||
quantization_config=self.param_quantization_config,
|
||||
)
|
||||
print("SmolDocling, init... done!")
|
||||
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
print("SmolDocling, processing...")
|
||||
for page in page_batch:
|
||||
assert page._backend is not None
|
||||
if not page._backend.is_valid():
|
||||
@ -72,6 +63,7 @@ class SmolDoclingModel(BasePageModel):
|
||||
else:
|
||||
with TimeRecorder(conv_res, "smolvlm"):
|
||||
assert page.size is not None
|
||||
start_time = time.time()
|
||||
|
||||
hi_res_image = page.get_image(scale=2.0) # 144dpi
|
||||
# populate page_tags with predicted doc tags
|
||||
@ -113,6 +105,9 @@ class SmolDoclingModel(BasePageModel):
|
||||
)[0]
|
||||
generated_texts = generated_texts.replace("Assistant: ", "")
|
||||
page_tags = generated_texts
|
||||
|
||||
inference_time = time.time() - start_time
|
||||
print(f"Page Inference Time: {inference_time:.2f} seconds")
|
||||
print("Page predictions:")
|
||||
print(page_tags)
|
||||
|
||||
|
@ -16,10 +16,12 @@ from docling_core.types.doc import (
|
||||
ImageRefMode,
|
||||
PictureItem,
|
||||
ProvenanceItem,
|
||||
Size,
|
||||
TableCell,
|
||||
TableData,
|
||||
TableItem,
|
||||
)
|
||||
from docling_core.types.doc.tokens import DocumentToken, TableToken
|
||||
from PIL.Image import Image
|
||||
|
||||
from docling.backend.abstract_backend import AbstractDocumentBackend
|
||||
@ -39,7 +41,6 @@ class VlmPipeline(PaginatedPipeline):
|
||||
|
||||
def __init__(self, pipeline_options: PdfPipelineOptions):
|
||||
super().__init__(pipeline_options)
|
||||
print("------> Init VLM Pipeline!")
|
||||
self.pipeline_options: PdfPipelineOptions
|
||||
|
||||
if pipeline_options.artifacts_path is None:
|
||||
@ -91,7 +92,6 @@ class VlmPipeline(PaginatedPipeline):
|
||||
return page
|
||||
|
||||
def _assemble_document(self, conv_res: ConversionResult) -> ConversionResult:
|
||||
print("VLM, assembling document...")
|
||||
with TimeRecorder(conv_res, "doc_assemble", scope=ProfilingScope.DOCUMENT):
|
||||
|
||||
# Read and concatenate the page doctags:
|
||||
@ -202,7 +202,6 @@ class VlmPipeline(PaginatedPipeline):
|
||||
if not x
|
||||
]
|
||||
table_cells = []
|
||||
# print("\nText parts:")
|
||||
r_idx = 0
|
||||
c_idx = 0
|
||||
|
||||
@ -227,7 +226,6 @@ class VlmPipeline(PaginatedPipeline):
|
||||
return span
|
||||
|
||||
for i, text in enumerate(texts):
|
||||
# print(f" {text}")
|
||||
cell_text = ""
|
||||
if text in ["<fcel>", "<ecel>", "<ched>", "<rhed>", "<srow>"]:
|
||||
row_span = 1
|
||||
@ -323,8 +321,13 @@ class VlmPipeline(PaginatedPipeline):
|
||||
for pg_idx, xml_content in enumerate(full_doc_xml_content):
|
||||
pil_image = pil_images[pg_idx]
|
||||
page_no = pg_idx + 1
|
||||
|
||||
if pil_image:
|
||||
pg_width, pg_height = pil_image.size
|
||||
size = Size(width=pg_width, height=pg_height)
|
||||
parent_page = doc.add_page(page_no=page_no, size=size)
|
||||
|
||||
lines = xml_content.split("\n")
|
||||
# pil_image = input_image #Image.open(BytesIO(image_bytes))
|
||||
bounding_boxes = []
|
||||
|
||||
for line in lines:
|
||||
|
@ -1,4 +1,7 @@
|
||||
import os
|
||||
import time
|
||||
from pathlib import Path
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
|
||||
from docling.datamodel.base_models import InputFormat
|
||||
@ -6,12 +9,18 @@ from docling.datamodel.pipeline_options import PdfPipelineOptions
|
||||
from docling.document_converter import DocumentConverter, PdfFormatOption
|
||||
from docling.pipeline.vlm_pipeline import VlmPipeline
|
||||
|
||||
source = "https://arxiv.org/pdf/2408.09869" # document per local path or URL
|
||||
# source = "https://arxiv.org/pdf/2408.09869" # document per local path or URL
|
||||
# source = "tests/data/2305.03393v1-pg9-img.png"
|
||||
# source = "tests/data/2305.03393v1-pg9.pdf"
|
||||
source = "tests/data/2305.03393v1-pg9.pdf"
|
||||
# source = "demo_data/page.png"
|
||||
# source = "demo_data/original_tables.pdf"
|
||||
|
||||
parsed = urlparse(source)
|
||||
if parsed.scheme in ("http", "https"):
|
||||
out_name = os.path.basename(parsed.path)
|
||||
else:
|
||||
out_name = os.path.basename(source)
|
||||
|
||||
pipeline_options = PdfPipelineOptions()
|
||||
pipeline_options.generate_page_images = True
|
||||
pipeline_options.artifacts_path = "model_artifacts"
|
||||
@ -32,6 +41,7 @@ converter = DocumentConverter(
|
||||
}
|
||||
)
|
||||
|
||||
start_time = time.time()
|
||||
print("============")
|
||||
print("starting...")
|
||||
print("============")
|
||||
@ -39,12 +49,6 @@ print("")
|
||||
|
||||
result = converter.convert(source)
|
||||
|
||||
# print("------------")
|
||||
# print("result:")
|
||||
# print("------------")
|
||||
# print("")
|
||||
# print(result)
|
||||
|
||||
print("------------")
|
||||
print("MD:")
|
||||
print("------------")
|
||||
@ -53,12 +57,16 @@ print(result.document.export_to_markdown())
|
||||
|
||||
Path("scratch").mkdir(parents=True, exist_ok=True)
|
||||
result.document.save_as_html(
|
||||
filename=Path("scratch/smol_export.html"),
|
||||
filename=Path("scratch/{}.html".format(out_name)),
|
||||
image_mode=ImageRefMode.REFERENCED,
|
||||
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
|
||||
)
|
||||
|
||||
pg_num = result.document.num_pages()
|
||||
|
||||
print("")
|
||||
inference_time = time.time() - start_time
|
||||
print(f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}")
|
||||
print("============")
|
||||
print("done!")
|
||||
print("============")
|
||||
|
Loading…
Reference in New Issue
Block a user