mirror of
https://github.com/DS4SD/docling.git
synced 2025-12-08 20:58:11 +00:00
feat: Layout model specification and multiple choices (#1910)
* Establish layout_model spec and example instantations Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Updated naming Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Back to uppercase constants Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * fix deps issue with openai-whipser>numba>llvmlite Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Pull v1 changed test GT from main Signed-off-by: Christoph Auer <cau@zurich.ibm.com> --------- Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
This commit is contained in:
@@ -6806,7 +6806,7 @@
|
||||
],
|
||||
"orig": "1. Left-looking cell rule : The left neighbour of an \"L\" cell must be either another \"L\" cell or a \"C\" cell.",
|
||||
"text": "Left-looking cell rule : The left neighbour of an \"L\" cell must be either another \"L\" cell or a \"C\" cell.",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "1."
|
||||
},
|
||||
{
|
||||
@@ -6835,7 +6835,7 @@
|
||||
],
|
||||
"orig": "2. Up-looking cell rule : The upper neighbour of a \"U\" cell must be either another \"U\" cell or a \"C\" cell.",
|
||||
"text": "Up-looking cell rule : The upper neighbour of a \"U\" cell must be either another \"U\" cell or a \"C\" cell.",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "2."
|
||||
},
|
||||
{
|
||||
@@ -6921,7 +6921,7 @@
|
||||
],
|
||||
"orig": "4. First row rule : Only \"L\" cells and \"C\" cells are allowed in the first row.",
|
||||
"text": "First row rule : Only \"L\" cells and \"C\" cells are allowed in the first row.",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "4."
|
||||
},
|
||||
{
|
||||
@@ -6950,7 +6950,7 @@
|
||||
],
|
||||
"orig": "5. First column rule : Only \"U\" cells and \"C\" cells are allowed in the first column.",
|
||||
"text": "First column rule : Only \"U\" cells and \"C\" cells are allowed in the first column.",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "5."
|
||||
},
|
||||
{
|
||||
@@ -6979,7 +6979,7 @@
|
||||
],
|
||||
"orig": "6. Rectangular rule : The table representation is always rectangular - all rows must have an equal number of tokens, terminated with \"NL\" token.",
|
||||
"text": "Rectangular rule : The table representation is always rectangular - all rows must have an equal number of tokens, terminated with \"NL\" token.",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "6."
|
||||
},
|
||||
{
|
||||
@@ -12901,7 +12901,7 @@
|
||||
],
|
||||
"orig": "1. Auer, C., Dolfi, M., Carvalho, A., Ramis, C.B., Staar, P.W.J.: Delivering document conversion as a cloud service with high throughput and responsiveness. CoRR abs/2206.00785 (2022). https://doi.org/10.48550/arXiv.2206.00785 , https://doi.org/10.48550/arXiv.2206.00785",
|
||||
"text": "Auer, C., Dolfi, M., Carvalho, A., Ramis, C.B., Staar, P.W.J.: Delivering document conversion as a cloud service with high throughput and responsiveness. CoRR abs/2206.00785 (2022). https://doi.org/10.48550/arXiv.2206.00785 , https://doi.org/10.48550/arXiv.2206.00785",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "1."
|
||||
},
|
||||
{
|
||||
@@ -12930,7 +12930,7 @@
|
||||
],
|
||||
"orig": "2. Chen, B., Peng, D., Zhang, J., Ren, Y., Jin, L.: Complex table structure recognition in the wild using transformer and identity matrix-based augmentation. In: Porwal, U., Forn\u00e9s, A., Shafait, F. (eds.) Frontiers in Handwriting Recognition. pp. 545561. Springer International Publishing, Cham (2022)",
|
||||
"text": "Chen, B., Peng, D., Zhang, J., Ren, Y., Jin, L.: Complex table structure recognition in the wild using transformer and identity matrix-based augmentation. In: Porwal, U., Forn\u00e9s, A., Shafait, F. (eds.) Frontiers in Handwriting Recognition. pp. 545561. Springer International Publishing, Cham (2022)",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "2."
|
||||
},
|
||||
{
|
||||
@@ -12959,7 +12959,7 @@
|
||||
],
|
||||
"orig": "3. Chi, Z., Huang, H., Xu, H.D., Yu, H., Yin, W., Mao, X.L.: Complicated table structure recognition. arXiv preprint arXiv:1908.04729 (2019)",
|
||||
"text": "Chi, Z., Huang, H., Xu, H.D., Yu, H., Yin, W., Mao, X.L.: Complicated table structure recognition. arXiv preprint arXiv:1908.04729 (2019)",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "3."
|
||||
},
|
||||
{
|
||||
@@ -12988,7 +12988,7 @@
|
||||
],
|
||||
"orig": "4. Deng, Y., Rosenberg, D., Mann, G.: Challenges in end-to-end neural scientific table recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 894-901. IEEE (2019)",
|
||||
"text": "Deng, Y., Rosenberg, D., Mann, G.: Challenges in end-to-end neural scientific table recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 894-901. IEEE (2019)",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "4."
|
||||
},
|
||||
{
|
||||
@@ -13071,7 +13071,7 @@
|
||||
],
|
||||
"orig": "5. Kayal, P., Anand, M., Desai, H., Singh, M.: Tables to latex: structure and content extraction from scientific tables. International Journal on Document Analysis and Recognition (IJDAR) pp. 1-10 (2022)",
|
||||
"text": "Kayal, P., Anand, M., Desai, H., Singh, M.: Tables to latex: structure and content extraction from scientific tables. International Journal on Document Analysis and Recognition (IJDAR) pp. 1-10 (2022)",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "5."
|
||||
},
|
||||
{
|
||||
@@ -13100,7 +13100,7 @@
|
||||
],
|
||||
"orig": "6. Lee, E., Kwon, J., Yang, H., Park, J., Lee, S., Koo, H.I., Cho, N.I.: Table structure recognition based on grid shape graph. In: 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). pp. 18681873. IEEE (2022)",
|
||||
"text": "Lee, E., Kwon, J., Yang, H., Park, J., Lee, S., Koo, H.I., Cho, N.I.: Table structure recognition based on grid shape graph. In: 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). pp. 18681873. IEEE (2022)",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "6."
|
||||
},
|
||||
{
|
||||
@@ -13129,7 +13129,7 @@
|
||||
],
|
||||
"orig": "7. Li, M., Cui, L., Huang, S., Wei, F., Zhou, M., Li, Z.: Tablebank: A benchmark dataset for table detection and recognition (2019)",
|
||||
"text": "Li, M., Cui, L., Huang, S., Wei, F., Zhou, M., Li, Z.: Tablebank: A benchmark dataset for table detection and recognition (2019)",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "7."
|
||||
},
|
||||
{
|
||||
@@ -13158,7 +13158,7 @@
|
||||
],
|
||||
"orig": "8. Livathinos, N., Berrospi, C., Lysak, M., Kuropiatnyk, V., Nassar, A., Carvalho, A., Dolfi, M., Auer, C., Dinkla, K., Staar, P.: Robust pdf document conversion using recurrent neural networks. Proceedings of the AAAI Conference on Artificial Intelligence 35 (17), 15137-15145 (May 2021), https://ojs.aaai.org/index.php/ AAAI/article/view/17777",
|
||||
"text": "Livathinos, N., Berrospi, C., Lysak, M., Kuropiatnyk, V., Nassar, A., Carvalho, A., Dolfi, M., Auer, C., Dinkla, K., Staar, P.: Robust pdf document conversion using recurrent neural networks. Proceedings of the AAAI Conference on Artificial Intelligence 35 (17), 15137-15145 (May 2021), https://ojs.aaai.org/index.php/ AAAI/article/view/17777",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "8."
|
||||
},
|
||||
{
|
||||
@@ -13187,7 +13187,7 @@
|
||||
],
|
||||
"orig": "9. Nassar, A., Livathinos, N., Lysak, M., Staar, P.: Tableformer: Table structure understanding with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4614-4623 (June 2022)",
|
||||
"text": "Nassar, A., Livathinos, N., Lysak, M., Staar, P.: Tableformer: Table structure understanding with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4614-4623 (June 2022)",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "9."
|
||||
},
|
||||
{
|
||||
@@ -13216,7 +13216,7 @@
|
||||
],
|
||||
"orig": "10. Pfitzmann, B., Auer, C., Dolfi, M., Nassar, A.S., Staar, P.W.J.: Doclaynet: A large human-annotated dataset for document-layout segmentation. In: Zhang, A., Rangwala, H. (eds.) KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022. pp. 3743-3751. ACM (2022). https://doi.org/10.1145/3534678.3539043 , https:// doi.org/10.1145/3534678.3539043",
|
||||
"text": "Pfitzmann, B., Auer, C., Dolfi, M., Nassar, A.S., Staar, P.W.J.: Doclaynet: A large human-annotated dataset for document-layout segmentation. In: Zhang, A., Rangwala, H. (eds.) KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022. pp. 3743-3751. ACM (2022). https://doi.org/10.1145/3534678.3539043 , https:// doi.org/10.1145/3534678.3539043",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "10."
|
||||
},
|
||||
{
|
||||
@@ -13245,7 +13245,7 @@
|
||||
],
|
||||
"orig": "11. Prasad, D., Gadpal, A., Kapadni, K., Visave, M., Sultanpure, K.: Cascadetabnet: An approach for end to end table detection and structure recognition from imagebased documents. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. pp. 572-573 (2020)",
|
||||
"text": "Prasad, D., Gadpal, A., Kapadni, K., Visave, M., Sultanpure, K.: Cascadetabnet: An approach for end to end table detection and structure recognition from imagebased documents. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. pp. 572-573 (2020)",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "11."
|
||||
},
|
||||
{
|
||||
@@ -13274,7 +13274,7 @@
|
||||
],
|
||||
"orig": "12. Schreiber, S., Agne, S., Wolf, I., Dengel, A., Ahmed, S.: Deepdesrt: Deep learning for detection and structure recognition of tables in document images. In: 2017 14th IAPR international conference on document analysis and recognition (ICDAR). vol. 1, pp. 1162-1167. IEEE (2017)",
|
||||
"text": "Schreiber, S., Agne, S., Wolf, I., Dengel, A., Ahmed, S.: Deepdesrt: Deep learning for detection and structure recognition of tables in document images. In: 2017 14th IAPR international conference on document analysis and recognition (ICDAR). vol. 1, pp. 1162-1167. IEEE (2017)",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "12."
|
||||
},
|
||||
{
|
||||
@@ -13303,7 +13303,7 @@
|
||||
],
|
||||
"orig": "13. Siddiqui, S.A., Fateh, I.A., Rizvi, S.T.R., Dengel, A., Ahmed, S.: Deeptabstr: Deep learning based table structure recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 1403-1409 (2019). https:// doi.org/10.1109/ICDAR.2019.00226",
|
||||
"text": "Siddiqui, S.A., Fateh, I.A., Rizvi, S.T.R., Dengel, A., Ahmed, S.: Deeptabstr: Deep learning based table structure recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 1403-1409 (2019). https:// doi.org/10.1109/ICDAR.2019.00226",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "13."
|
||||
},
|
||||
{
|
||||
@@ -13332,7 +13332,7 @@
|
||||
],
|
||||
"orig": "14. Smock, B., Pesala, R., Abraham, R.: PubTables-1M: Towards comprehensive table extraction from unstructured documents. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4634-4642 (June 2022)",
|
||||
"text": "Smock, B., Pesala, R., Abraham, R.: PubTables-1M: Towards comprehensive table extraction from unstructured documents. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4634-4642 (June 2022)",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "14."
|
||||
},
|
||||
{
|
||||
@@ -13361,7 +13361,7 @@
|
||||
],
|
||||
"orig": "15. Staar, P.W.J., Dolfi, M., Auer, C., Bekas, C.: Corpus conversion service: A machine learning platform to ingest documents at scale. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 774-782. KDD '18, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3219819.3219834 , https://doi.org/10. 1145/3219819.3219834",
|
||||
"text": "Staar, P.W.J., Dolfi, M., Auer, C., Bekas, C.: Corpus conversion service: A machine learning platform to ingest documents at scale. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 774-782. KDD '18, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3219819.3219834 , https://doi.org/10. 1145/3219819.3219834",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "15."
|
||||
},
|
||||
{
|
||||
@@ -13390,7 +13390,7 @@
|
||||
],
|
||||
"orig": "16. Wang, X.: Tabular Abstraction, Editing, and Formatting. Ph.D. thesis, CAN (1996), aAINN09397",
|
||||
"text": "Wang, X.: Tabular Abstraction, Editing, and Formatting. Ph.D. thesis, CAN (1996), aAINN09397",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "16."
|
||||
},
|
||||
{
|
||||
@@ -13419,7 +13419,7 @@
|
||||
],
|
||||
"orig": "17. Xue, W., Li, Q., Tao, D.: Res2tim: Reconstruct syntactic structures from table images. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 749-755. IEEE (2019)",
|
||||
"text": "Xue, W., Li, Q., Tao, D.: Res2tim: Reconstruct syntactic structures from table images. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 749-755. IEEE (2019)",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "17."
|
||||
},
|
||||
{
|
||||
@@ -13502,7 +13502,7 @@
|
||||
],
|
||||
"orig": "18. Xue, W., Yu, B., Wang, W., Tao, D., Li, Q.: Tgrnet: A table graph reconstruction network for table structure recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 1295-1304 (2021)",
|
||||
"text": "Xue, W., Yu, B., Wang, W., Tao, D., Li, Q.: Tgrnet: A table graph reconstruction network for table structure recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 1295-1304 (2021)",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "18."
|
||||
},
|
||||
{
|
||||
@@ -13531,7 +13531,7 @@
|
||||
],
|
||||
"orig": "19. Ye, J., Qi, X., He, Y., Chen, Y., Gu, D., Gao, P., Xiao, R.: Pingan-vcgroup's solution for icdar 2021 competition on scientific literature parsing task b: Table recognition to html (2021). https://doi.org/10.48550/ARXIV.2105.01848 , https://arxiv.org/abs/2105.01848",
|
||||
"text": "Ye, J., Qi, X., He, Y., Chen, Y., Gu, D., Gao, P., Xiao, R.: Pingan-vcgroup's solution for icdar 2021 competition on scientific literature parsing task b: Table recognition to html (2021). https://doi.org/10.48550/ARXIV.2105.01848 , https://arxiv.org/abs/2105.01848",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "19."
|
||||
},
|
||||
{
|
||||
@@ -13560,7 +13560,7 @@
|
||||
],
|
||||
"orig": "20. Zhang, Z., Zhang, J., Du, J., Wang, F.: Split, embed and merge: An accurate table structure recognizer. Pattern Recognition 126 , 108565 (2022)",
|
||||
"text": "Zhang, Z., Zhang, J., Du, J., Wang, F.: Split, embed and merge: An accurate table structure recognizer. Pattern Recognition 126 , 108565 (2022)",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "20."
|
||||
},
|
||||
{
|
||||
@@ -13589,7 +13589,7 @@
|
||||
],
|
||||
"orig": "21. Zheng, X., Burdick, D., Popa, L., Zhong, X., Wang, N.X.R.: Global table extractor (gte): A framework for joint table identification and cell structure recognition using visual context. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 697-706 (2021). https://doi.org/10.1109/WACV48630.2021. 00074",
|
||||
"text": "Zheng, X., Burdick, D., Popa, L., Zhong, X., Wang, N.X.R.: Global table extractor (gte): A framework for joint table identification and cell structure recognition using visual context. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 697-706 (2021). https://doi.org/10.1109/WACV48630.2021. 00074",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "21."
|
||||
},
|
||||
{
|
||||
@@ -13618,7 +13618,7 @@
|
||||
],
|
||||
"orig": "22. Zhong, X., ShafieiBavani, E., Jimeno Yepes, A.: Image-based table recognition: Data, model, and evaluation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision - ECCV 2020. pp. 564-580. Springer International Publishing, Cham (2020)",
|
||||
"text": "Zhong, X., ShafieiBavani, E., Jimeno Yepes, A.: Image-based table recognition: Data, model, and evaluation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision - ECCV 2020. pp. 564-580. Springer International Publishing, Cham (2020)",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "22."
|
||||
},
|
||||
{
|
||||
@@ -13647,7 +13647,7 @@
|
||||
],
|
||||
"orig": "23. Zhong, X., Tang, J., Yepes, A.J.: Publaynet: largest dataset ever for document layout analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 1015-1022. IEEE (2019)",
|
||||
"text": "Zhong, X., Tang, J., Yepes, A.J.: Publaynet: largest dataset ever for document layout analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 1015-1022. IEEE (2019)",
|
||||
"enumerated": false,
|
||||
"enumerated": true,
|
||||
"marker": "23."
|
||||
}
|
||||
],
|
||||
|
||||
Reference in New Issue
Block a user