mirror of
https://github.com/DS4SD/docling.git
synced 2025-12-16 16:48:21 +00:00
all working, now serious refacgtoring necessary
Signed-off-by: Peter Staar <taa@zurich.ibm.com>
This commit is contained in:
@@ -18,7 +18,6 @@ _log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class HuggingFaceVlmModel(BasePageModel):
|
||||
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
@@ -92,7 +91,7 @@ class HuggingFaceVlmModel(BasePageModel):
|
||||
# trust_remote_code=True,
|
||||
) # .to(self.device)
|
||||
"""
|
||||
|
||||
|
||||
@staticmethod
|
||||
def download_models(
|
||||
repo_id: str,
|
||||
|
||||
@@ -42,7 +42,7 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
||||
)
|
||||
|
||||
self.device = decide_device(accelerator_options.device)
|
||||
self.device = "cpu" # FIXME
|
||||
self.device = "cpu" # FIXME
|
||||
|
||||
_log.debug(f"Available device for VLM: {self.device}")
|
||||
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
||||
@@ -165,7 +165,7 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
||||
|
||||
num_tokens = len(generate_ids[0])
|
||||
generation_time = time.time() - start_time
|
||||
|
||||
|
||||
response = self.processor.batch_decode(
|
||||
generate_ids,
|
||||
skip_special_tokens=True,
|
||||
@@ -175,7 +175,7 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
||||
_log.debug(
|
||||
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
|
||||
)
|
||||
|
||||
|
||||
# inference_time = time.time() - start_time
|
||||
# tokens_per_second = num_tokens / generation_time
|
||||
# print("")
|
||||
|
||||
@@ -0,0 +1,141 @@
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from docling.datamodel.base_models import Page, VlmPrediction
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options import (
|
||||
AcceleratorOptions,
|
||||
HuggingFaceVlmOptions,
|
||||
)
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.utils.accelerator_utils import decide_device
|
||||
from docling.utils.profiling import TimeRecorder
|
||||
|
||||
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
|
||||
def __init__(
|
||||
self,
|
||||
enabled: bool,
|
||||
artifacts_path: Optional[Path],
|
||||
accelerator_options: AcceleratorOptions,
|
||||
vlm_options: HuggingFaceVlmOptions,
|
||||
):
|
||||
self.enabled = enabled
|
||||
|
||||
self.trust_remote_code = True
|
||||
|
||||
self.vlm_options = vlm_options
|
||||
print(self.vlm_options)
|
||||
|
||||
if self.enabled:
|
||||
import torch
|
||||
from transformers import ( # type: ignore
|
||||
LlavaForConditionalGeneration,
|
||||
AutoProcessor,
|
||||
)
|
||||
|
||||
self.device = decide_device(accelerator_options.device)
|
||||
self.device = "cpu" # FIXME
|
||||
|
||||
torch.set_num_threads(12) # Adjust the number as needed
|
||||
|
||||
_log.debug(f"Available device for VLM: {self.device}")
|
||||
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
||||
|
||||
# PARAMETERS:
|
||||
if artifacts_path is None:
|
||||
artifacts_path = self.download_models(self.vlm_options.repo_id)
|
||||
elif (artifacts_path / repo_cache_folder).exists():
|
||||
artifacts_path = artifacts_path / repo_cache_folder
|
||||
|
||||
model_path = artifacts_path
|
||||
print(f"model: {model_path}")
|
||||
|
||||
self.max_new_tokens = 64 # FIXME
|
||||
|
||||
self.processor = AutoProcessor.from_pretrained(
|
||||
artifacts_path,
|
||||
trust_remote_code=self.trust_remote_code,
|
||||
)
|
||||
self.vlm_model = LlavaForConditionalGeneration.from_pretrained(artifacts_path).to(self.device)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def download_models(
|
||||
repo_id: str,
|
||||
local_dir: Optional[Path] = None,
|
||||
force: bool = False,
|
||||
progress: bool = False,
|
||||
) -> Path:
|
||||
from huggingface_hub import snapshot_download
|
||||
from huggingface_hub.utils import disable_progress_bars
|
||||
|
||||
if not progress:
|
||||
disable_progress_bars()
|
||||
download_path = snapshot_download(
|
||||
repo_id=repo_id,
|
||||
force_download=force,
|
||||
local_dir=local_dir,
|
||||
# revision="v0.0.1",
|
||||
)
|
||||
|
||||
return Path(download_path)
|
||||
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
for page in page_batch:
|
||||
assert page._backend is not None
|
||||
if not page._backend.is_valid():
|
||||
yield page
|
||||
else:
|
||||
with TimeRecorder(conv_res, "vlm"):
|
||||
assert page.size is not None
|
||||
|
||||
hi_res_image = page.get_image(scale=2.0) # 144dpi
|
||||
# hi_res_image = page.get_image(scale=1.0) # 72dpi
|
||||
|
||||
if hi_res_image is not None:
|
||||
im_width, im_height = hi_res_image.size
|
||||
|
||||
if hi_res_image:
|
||||
if hi_res_image.mode != "RGB":
|
||||
hi_res_image = hi_res_image.convert("RGB")
|
||||
|
||||
images = [
|
||||
hi_res_image
|
||||
]
|
||||
prompt = "<s>[INST]Describe the images.\n[IMG][/INST]"
|
||||
|
||||
inputs = self.processor(text=prompt, images=images, return_tensors="pt", use_fast=False).to(self.device) #.to("cuda")
|
||||
generate_ids = self.vlm_model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=self.max_new_tokens,
|
||||
use_cache=True # Enables KV caching which can improve performance
|
||||
)
|
||||
response = self.processor.batch_decode(generate_ids,
|
||||
skip_special_tokens=True,
|
||||
clean_up_tokenization_spaces=False)[0]
|
||||
print(f"response: {response}")
|
||||
"""
|
||||
_log.debug(
|
||||
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
|
||||
)
|
||||
"""
|
||||
# inference_time = time.time() - start_time
|
||||
# tokens_per_second = num_tokens / generation_time
|
||||
# print("")
|
||||
# print(f"Page Inference Time: {inference_time:.2f} seconds")
|
||||
# print(f"Total tokens on page: {num_tokens:.2f}")
|
||||
# print(f"Tokens/sec: {tokens_per_second:.2f}")
|
||||
# print("")
|
||||
page.predictions.vlm_response = VlmPrediction(text=response)
|
||||
|
||||
yield page
|
||||
Reference in New Issue
Block a user