feat: Add DoclingParseV4 backend, using high-level docling-parse API (#905)
Some checks failed
Run Docs CD / build-deploy-docs (push) Failing after 1m25s
Run Docs CI / build-docs (push) Failing after 52s

* Add DoclingParseV3 backend implementation

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Use docling-core with docling-parse types

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fixes and test updates

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fix streams

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fix streams

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Reset tests

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* update test cases

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* update test units

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Add back DoclingParse v1 backend, pipeline options

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Update locks

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* fix: update docling-core to 2.22.0

Update dependency library docling-core to latest release 2.22.0
Fix regression tests and ground truth files

Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>

* Ground-truth files updated

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Update tests, use TextCell.from_ocr property

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Text fixes, new test data

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Rename docling backend to v4

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Test all backends, fixes

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Reset all tests to use docling-parse v1 for now

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fixes for DPv4 backend init, better test coverage

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* test_input_doc use default backend

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

---------

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>
Co-authored-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>
This commit is contained in:
Christoph Auer
2025-03-18 10:38:19 +01:00
committed by GitHub
parent 772487f9c9
commit 3960b199d6
126 changed files with 1138 additions and 709 deletions

View File

@@ -6,12 +6,12 @@ from typing import Iterable, List, Optional, Union
import pypdfium2 as pdfium
from docling_core.types.doc import BoundingBox, CoordOrigin, Size
from docling_core.types.doc.page import BoundingRectangle, SegmentedPdfPage, TextCell
from docling_parse.pdf_parsers import pdf_parser_v1
from PIL import Image, ImageDraw
from pypdfium2 import PdfPage
from docling.backend.pdf_backend import PdfDocumentBackend, PdfPageBackend
from docling.datamodel.base_models import Cell
from docling.datamodel.document import InputDocument
_log = logging.getLogger(__name__)
@@ -68,8 +68,11 @@ class DoclingParsePageBackend(PdfPageBackend):
return text_piece
def get_text_cells(self) -> Iterable[Cell]:
cells: List[Cell] = []
def get_segmented_page(self) -> Optional[SegmentedPdfPage]:
return None
def get_text_cells(self) -> Iterable[TextCell]:
cells: List[TextCell] = []
cell_counter = 0
if not self.valid:
@@ -91,19 +94,24 @@ class DoclingParsePageBackend(PdfPageBackend):
text_piece = self._dpage["cells"][i]["content"]["rnormalized"]
cells.append(
Cell(
id=cell_counter,
TextCell(
index=cell_counter,
text=text_piece,
bbox=BoundingBox(
# l=x0, b=y0, r=x1, t=y1,
l=x0 * page_size.width / parser_width,
b=y0 * page_size.height / parser_height,
r=x1 * page_size.width / parser_width,
t=y1 * page_size.height / parser_height,
coord_origin=CoordOrigin.BOTTOMLEFT,
orig=text_piece,
from_ocr=False,
rect=BoundingRectangle.from_bounding_box(
BoundingBox(
# l=x0, b=y0, r=x1, t=y1,
l=x0 * page_size.width / parser_width,
b=y0 * page_size.height / parser_height,
r=x1 * page_size.width / parser_width,
t=y1 * page_size.height / parser_height,
coord_origin=CoordOrigin.BOTTOMLEFT,
)
).to_top_left_origin(page_size.height),
)
)
cell_counter += 1
def draw_clusters_and_cells():
@@ -112,7 +120,7 @@ class DoclingParsePageBackend(PdfPageBackend):
) # make new image to avoid drawing on the saved ones
draw = ImageDraw.Draw(image)
for c in cells:
x0, y0, x1, y1 = c.bbox.as_tuple()
x0, y0, x1, y1 = c.rect.to_bounding_box().as_tuple()
cell_color = (
random.randint(30, 140),
random.randint(30, 140),

View File

@@ -6,12 +6,13 @@ from typing import TYPE_CHECKING, Iterable, List, Optional, Union
import pypdfium2 as pdfium
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling_core.types.doc.page import BoundingRectangle, SegmentedPdfPage, TextCell
from docling_parse.pdf_parsers import pdf_parser_v2
from PIL import Image, ImageDraw
from pypdfium2 import PdfPage
from docling.backend.pdf_backend import PdfDocumentBackend, PdfPageBackend
from docling.datamodel.base_models import Cell, Size
from docling.datamodel.base_models import Size
from docling.utils.locks import pypdfium2_lock
if TYPE_CHECKING:
@@ -78,8 +79,11 @@ class DoclingParseV2PageBackend(PdfPageBackend):
return text_piece
def get_text_cells(self) -> Iterable[Cell]:
cells: List[Cell] = []
def get_segmented_page(self) -> Optional[SegmentedPdfPage]:
return None
def get_text_cells(self) -> Iterable[TextCell]:
cells: List[TextCell] = []
cell_counter = 0
if not self.valid:
@@ -106,16 +110,20 @@ class DoclingParseV2PageBackend(PdfPageBackend):
text_piece = cell_data[cells_header.index("text")]
cells.append(
Cell(
id=cell_counter,
TextCell(
index=cell_counter,
text=text_piece,
bbox=BoundingBox(
# l=x0, b=y0, r=x1, t=y1,
l=x0 * page_size.width / parser_width,
b=y0 * page_size.height / parser_height,
r=x1 * page_size.width / parser_width,
t=y1 * page_size.height / parser_height,
coord_origin=CoordOrigin.BOTTOMLEFT,
orig=text_piece,
from_ocr=False,
rect=BoundingRectangle.from_bounding_box(
BoundingBox(
# l=x0, b=y0, r=x1, t=y1,
l=x0 * page_size.width / parser_width,
b=y0 * page_size.height / parser_height,
r=x1 * page_size.width / parser_width,
t=y1 * page_size.height / parser_height,
coord_origin=CoordOrigin.BOTTOMLEFT,
)
).to_top_left_origin(page_size.height),
)
)

View File

@@ -0,0 +1,185 @@
import logging
import random
from io import BytesIO
from pathlib import Path
from typing import TYPE_CHECKING, Iterable, List, Optional, Union
import pypdfium2 as pdfium
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling_core.types.doc.page import SegmentedPdfPage, TextCell
from docling_parse.pdf_parser import DoclingPdfParser, PdfDocument
from PIL import Image, ImageDraw
from pypdfium2 import PdfPage
from docling.backend.pdf_backend import PdfDocumentBackend, PdfPageBackend
from docling.datamodel.base_models import Size
from docling.utils.locks import pypdfium2_lock
if TYPE_CHECKING:
from docling.datamodel.document import InputDocument
_log = logging.getLogger(__name__)
class DoclingParseV4PageBackend(PdfPageBackend):
def __init__(self, parsed_page: SegmentedPdfPage, page_obj: PdfPage):
self._ppage = page_obj
self._dpage = parsed_page
self.valid = parsed_page is not None
def is_valid(self) -> bool:
return self.valid
def get_text_in_rect(self, bbox: BoundingBox) -> str:
# Find intersecting cells on the page
text_piece = ""
page_size = self.get_size()
scale = (
1 # FIX - Replace with param in get_text_in_rect across backends (optional)
)
for i, cell in enumerate(self._dpage.textline_cells):
cell_bbox = (
cell.rect.to_bounding_box()
.to_top_left_origin(page_height=page_size.height)
.scaled(scale)
)
overlap_frac = cell_bbox.intersection_area_with(bbox) / cell_bbox.area()
if overlap_frac > 0.5:
if len(text_piece) > 0:
text_piece += " "
text_piece += cell.text
return text_piece
def get_segmented_page(self) -> Optional[SegmentedPdfPage]:
return self._dpage
def get_text_cells(self) -> Iterable[TextCell]:
page_size = self.get_size()
[tc.to_top_left_origin(page_size.height) for tc in self._dpage.textline_cells]
# for cell in self._dpage.textline_cells:
# rect = cell.rect
#
# assert (
# rect.to_bounding_box().l <= rect.to_bounding_box().r
# ), f"left is > right on bounding box {rect.to_bounding_box()} of rect {rect}"
# assert (
# rect.to_bounding_box().t <= rect.to_bounding_box().b
# ), f"top is > bottom on bounding box {rect.to_bounding_box()} of rect {rect}"
return self._dpage.textline_cells
def get_bitmap_rects(self, scale: float = 1) -> Iterable[BoundingBox]:
AREA_THRESHOLD = 0 # 32 * 32
images = self._dpage.bitmap_resources
for img in images:
cropbox = img.rect.to_bounding_box().to_top_left_origin(
self.get_size().height
)
if cropbox.area() > AREA_THRESHOLD:
cropbox = cropbox.scaled(scale=scale)
yield cropbox
def get_page_image(
self, scale: float = 1, cropbox: Optional[BoundingBox] = None
) -> Image.Image:
page_size = self.get_size()
if not cropbox:
cropbox = BoundingBox(
l=0,
r=page_size.width,
t=0,
b=page_size.height,
coord_origin=CoordOrigin.TOPLEFT,
)
padbox = BoundingBox(
l=0, r=0, t=0, b=0, coord_origin=CoordOrigin.BOTTOMLEFT
)
else:
padbox = cropbox.to_bottom_left_origin(page_size.height).model_copy()
padbox.r = page_size.width - padbox.r
padbox.t = page_size.height - padbox.t
image = (
self._ppage.render(
scale=scale * 1.5,
rotation=0, # no additional rotation
crop=padbox.as_tuple(),
)
.to_pil()
.resize(size=(round(cropbox.width * scale), round(cropbox.height * scale)))
) # We resize the image from 1.5x the given scale to make it sharper.
return image
def get_size(self) -> Size:
return Size(
width=self._dpage.dimension.width,
height=self._dpage.dimension.height,
)
def unload(self):
self._ppage = None
self._dpage = None
class DoclingParseV4DocumentBackend(PdfDocumentBackend):
def __init__(self, in_doc: "InputDocument", path_or_stream: Union[BytesIO, Path]):
super().__init__(in_doc, path_or_stream)
with pypdfium2_lock:
self._pdoc = pdfium.PdfDocument(self.path_or_stream)
self.parser = DoclingPdfParser(loglevel="fatal")
self.dp_doc: PdfDocument = self.parser.load(path_or_stream=self.path_or_stream)
success = self.dp_doc is not None
if not success:
raise RuntimeError(
f"docling-parse v4 could not load document {self.document_hash}."
)
def page_count(self) -> int:
# return len(self._pdoc) # To be replaced with docling-parse API
len_1 = len(self._pdoc)
len_2 = self.dp_doc.number_of_pages()
if len_1 != len_2:
_log.error(f"Inconsistent number of pages: {len_1}!={len_2}")
return len_2
def load_page(
self, page_no: int, create_words: bool = True, create_textlines: bool = True
) -> DoclingParseV4PageBackend:
with pypdfium2_lock:
return DoclingParseV4PageBackend(
self.dp_doc.get_page(
page_no + 1,
create_words=create_words,
create_textlines=create_textlines,
),
self._pdoc[page_no],
)
def is_valid(self) -> bool:
return self.page_count() > 0
def unload(self):
super().unload()
self.dp_doc.unload()
with pypdfium2_lock:
self._pdoc.close()
self._pdoc = None

View File

@@ -4,10 +4,11 @@ from pathlib import Path
from typing import Iterable, Optional, Set, Union
from docling_core.types.doc import BoundingBox, Size
from docling_core.types.doc.page import SegmentedPdfPage, TextCell
from PIL import Image
from docling.backend.abstract_backend import PaginatedDocumentBackend
from docling.datamodel.base_models import Cell, InputFormat
from docling.datamodel.base_models import InputFormat
from docling.datamodel.document import InputDocument
@@ -17,7 +18,11 @@ class PdfPageBackend(ABC):
pass
@abstractmethod
def get_text_cells(self) -> Iterable[Cell]:
def get_segmented_page(self) -> Optional[SegmentedPdfPage]:
pass
@abstractmethod
def get_text_cells(self) -> Iterable[TextCell]:
pass
@abstractmethod

View File

@@ -7,12 +7,12 @@ from typing import TYPE_CHECKING, Iterable, List, Optional, Union
import pypdfium2 as pdfium
import pypdfium2.raw as pdfium_c
from docling_core.types.doc import BoundingBox, CoordOrigin, Size
from docling_core.types.doc.page import BoundingRectangle, SegmentedPdfPage, TextCell
from PIL import Image, ImageDraw
from pypdfium2 import PdfTextPage
from pypdfium2._helpers.misc import PdfiumError
from docling.backend.pdf_backend import PdfDocumentBackend, PdfPageBackend
from docling.datamodel.base_models import Cell
from docling.utils.locks import pypdfium2_lock
if TYPE_CHECKING:
@@ -68,7 +68,10 @@ class PyPdfiumPageBackend(PdfPageBackend):
return text_piece
def get_text_cells(self) -> Iterable[Cell]:
def get_segmented_page(self) -> Optional[SegmentedPdfPage]:
return None
def get_text_cells(self) -> Iterable[TextCell]:
with pypdfium2_lock:
if not self.text_page:
self.text_page = self._ppage.get_textpage()
@@ -84,11 +87,19 @@ class PyPdfiumPageBackend(PdfPageBackend):
text_piece = self.text_page.get_text_bounded(*rect)
x0, y0, x1, y1 = rect
cells.append(
Cell(
id=cell_counter,
TextCell(
index=cell_counter,
text=text_piece,
bbox=BoundingBox(
l=x0, b=y0, r=x1, t=y1, coord_origin=CoordOrigin.BOTTOMLEFT
orig=text_piece,
from_ocr=False,
rect=BoundingRectangle.from_bounding_box(
BoundingBox(
l=x0,
b=y0,
r=x1,
t=y1,
coord_origin=CoordOrigin.BOTTOMLEFT,
)
).to_top_left_origin(page_size.height),
)
)
@@ -97,51 +108,56 @@ class PyPdfiumPageBackend(PdfPageBackend):
# PyPdfium2 produces very fragmented cells, with sub-word level boundaries, in many PDFs.
# The cell merging code below is to clean this up.
def merge_horizontal_cells(
cells: List[Cell],
cells: List[TextCell],
horizontal_threshold_factor: float = 1.0,
vertical_threshold_factor: float = 0.5,
) -> List[Cell]:
) -> List[TextCell]:
if not cells:
return []
def group_rows(cells: List[Cell]) -> List[List[Cell]]:
def group_rows(cells: List[TextCell]) -> List[List[TextCell]]:
rows = []
current_row = [cells[0]]
row_top = cells[0].bbox.t
row_bottom = cells[0].bbox.b
row_height = cells[0].bbox.height
row_top = cells[0].rect.to_bounding_box().t
row_bottom = cells[0].rect.to_bounding_box().b
row_height = cells[0].rect.to_bounding_box().height
for cell in cells[1:]:
vertical_threshold = row_height * vertical_threshold_factor
if (
abs(cell.bbox.t - row_top) <= vertical_threshold
and abs(cell.bbox.b - row_bottom) <= vertical_threshold
abs(cell.rect.to_bounding_box().t - row_top)
<= vertical_threshold
and abs(cell.rect.to_bounding_box().b - row_bottom)
<= vertical_threshold
):
current_row.append(cell)
row_top = min(row_top, cell.bbox.t)
row_bottom = max(row_bottom, cell.bbox.b)
row_top = min(row_top, cell.rect.to_bounding_box().t)
row_bottom = max(row_bottom, cell.rect.to_bounding_box().b)
row_height = row_bottom - row_top
else:
rows.append(current_row)
current_row = [cell]
row_top = cell.bbox.t
row_bottom = cell.bbox.b
row_height = cell.bbox.height
row_top = cell.rect.to_bounding_box().t
row_bottom = cell.rect.to_bounding_box().b
row_height = cell.rect.to_bounding_box().height
if current_row:
rows.append(current_row)
return rows
def merge_row(row: List[Cell]) -> List[Cell]:
def merge_row(row: List[TextCell]) -> List[TextCell]:
merged = []
current_group = [row[0]]
for cell in row[1:]:
prev_cell = current_group[-1]
avg_height = (prev_cell.bbox.height + cell.bbox.height) / 2
avg_height = (
prev_cell.rect.height + cell.rect.to_bounding_box().height
) / 2
if (
cell.bbox.l - prev_cell.bbox.r
cell.rect.to_bounding_box().l
- prev_cell.rect.to_bounding_box().r
<= avg_height * horizontal_threshold_factor
):
current_group.append(cell)
@@ -154,24 +170,30 @@ class PyPdfiumPageBackend(PdfPageBackend):
return merged
def merge_group(group: List[Cell]) -> Cell:
def merge_group(group: List[TextCell]) -> TextCell:
if len(group) == 1:
return group[0]
merged_text = "".join(cell.text for cell in group)
merged_bbox = BoundingBox(
l=min(cell.bbox.l for cell in group),
t=min(cell.bbox.t for cell in group),
r=max(cell.bbox.r for cell in group),
b=max(cell.bbox.b for cell in group),
l=min(cell.rect.to_bounding_box().l for cell in group),
t=min(cell.rect.to_bounding_box().t for cell in group),
r=max(cell.rect.to_bounding_box().r for cell in group),
b=max(cell.rect.to_bounding_box().b for cell in group),
)
return TextCell(
index=group[0].index,
text=merged_text,
orig=merged_text,
rect=BoundingRectangle.from_bounding_box(merged_bbox),
from_ocr=False,
)
return Cell(id=group[0].id, text=merged_text, bbox=merged_bbox)
rows = group_rows(cells)
merged_cells = [cell for row in rows for cell in merge_row(row)]
for i, cell in enumerate(merged_cells, 1):
cell.id = i
cell.index = i
return merged_cells
@@ -181,7 +203,7 @@ class PyPdfiumPageBackend(PdfPageBackend):
) # make new image to avoid drawing on the saved ones
draw = ImageDraw.Draw(image)
for c in cells:
x0, y0, x1, y1 = c.bbox.as_tuple()
x0, y0, x1, y1 = c.rect.to_bounding_box().as_tuple()
cell_color = (
random.randint(30, 140),
random.randint(30, 140),

View File

@@ -16,6 +16,7 @@ from pydantic import TypeAdapter
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.backend.docling_parse_v2_backend import DoclingParseV2DocumentBackend
from docling.backend.docling_parse_v4_backend import DoclingParseV4DocumentBackend
from docling.backend.pdf_backend import PdfDocumentBackend
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.base_models import (
@@ -412,12 +413,15 @@ def convert(
if artifacts_path is not None:
pipeline_options.artifacts_path = artifacts_path
backend: Type[PdfDocumentBackend]
if pdf_backend == PdfBackend.DLPARSE_V1:
backend: Type[PdfDocumentBackend] = DoclingParseDocumentBackend
backend = DoclingParseDocumentBackend
elif pdf_backend == PdfBackend.DLPARSE_V2:
backend = DoclingParseV2DocumentBackend
elif pdf_backend == PdfBackend.DLPARSE_V4:
backend = DoclingParseV4DocumentBackend # type: ignore
elif pdf_backend == PdfBackend.PYPDFIUM2:
backend = PyPdfiumDocumentBackend
backend = PyPdfiumDocumentBackend # type: ignore
else:
raise RuntimeError(f"Unexpected PDF backend type {pdf_backend}")

View File

@@ -9,6 +9,7 @@ from docling_core.types.doc import (
Size,
TableCell,
)
from docling_core.types.doc.page import SegmentedPdfPage, TextCell
from docling_core.types.io import ( # DO ΝΟΤ REMOVE; explicitly exposed from this location
DocumentStream,
)
@@ -123,14 +124,10 @@ class ErrorItem(BaseModel):
error_message: str
class Cell(BaseModel):
id: int
text: str
bbox: BoundingBox
class OcrCell(Cell):
confidence: float
# class Cell(BaseModel):
# id: int
# text: str
# bbox: BoundingBox
class Cluster(BaseModel):
@@ -138,7 +135,7 @@ class Cluster(BaseModel):
label: DocItemLabel
bbox: BoundingBox
confidence: float = 1.0
cells: List[Cell] = []
cells: List[TextCell] = []
children: List["Cluster"] = [] # Add child cluster support
@@ -226,7 +223,8 @@ class Page(BaseModel):
page_no: int
# page_hash: Optional[str] = None
size: Optional[Size] = None
cells: List[Cell] = []
cells: List[TextCell] = []
parsed_page: Optional[SegmentedPdfPage] = None
predictions: PagePredictions = PagePredictions()
assembled: Optional[AssembledUnit] = None

View File

@@ -301,6 +301,7 @@ class PdfBackend(str, Enum):
PYPDFIUM2 = "pypdfium2"
DLPARSE_V1 = "dlparse_v1"
DLPARSE_V2 = "dlparse_v2"
DLPARSE_V4 = "dlparse_v4"
# Define an enum for the ocr engines
@@ -381,3 +382,5 @@ class PdfPipelineOptions(PaginatedPipelineOptions):
"before conversion and then use the `TableItem.get_image` function."
),
)
generate_parsed_pages: bool = False

View File

@@ -11,7 +11,7 @@ from pydantic import BaseModel, ConfigDict, model_validator, validate_call
from docling.backend.abstract_backend import AbstractDocumentBackend
from docling.backend.asciidoc_backend import AsciiDocBackend
from docling.backend.csv_backend import CsvDocumentBackend
from docling.backend.docling_parse_v2_backend import DoclingParseV2DocumentBackend
from docling.backend.docling_parse_v4_backend import DoclingParseV4DocumentBackend
from docling.backend.html_backend import HTMLDocumentBackend
from docling.backend.json.docling_json_backend import DoclingJSONBackend
from docling.backend.md_backend import MarkdownDocumentBackend
@@ -109,12 +109,12 @@ class XMLJatsFormatOption(FormatOption):
class ImageFormatOption(FormatOption):
pipeline_cls: Type = StandardPdfPipeline
backend: Type[AbstractDocumentBackend] = DoclingParseV2DocumentBackend
backend: Type[AbstractDocumentBackend] = DoclingParseV4DocumentBackend
class PdfFormatOption(FormatOption):
pipeline_cls: Type = StandardPdfPipeline
backend: Type[AbstractDocumentBackend] = DoclingParseV2DocumentBackend
backend: Type[AbstractDocumentBackend] = DoclingParseV4DocumentBackend
def _get_default_option(format: InputFormat) -> FormatOption:
@@ -147,10 +147,10 @@ def _get_default_option(format: InputFormat) -> FormatOption:
pipeline_cls=SimplePipeline, backend=JatsDocumentBackend
),
InputFormat.IMAGE: FormatOption(
pipeline_cls=StandardPdfPipeline, backend=DoclingParseV2DocumentBackend
pipeline_cls=StandardPdfPipeline, backend=DoclingParseV4DocumentBackend
),
InputFormat.PDF: FormatOption(
pipeline_cls=StandardPdfPipeline, backend=DoclingParseV2DocumentBackend
pipeline_cls=StandardPdfPipeline, backend=DoclingParseV4DocumentBackend
),
InputFormat.JSON_DOCLING: FormatOption(
pipeline_cls=SimplePipeline, backend=DoclingJSONBackend

View File

@@ -6,11 +6,12 @@ from typing import Iterable, List
import numpy as np
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling_core.types.doc.page import BoundingRectangle, PdfTextCell, TextCell
from PIL import Image, ImageDraw
from rtree import index
from scipy.ndimage import binary_dilation, find_objects, label
from docling.datamodel.base_models import Cell, OcrCell, Page
from docling.datamodel.base_models import Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import OcrOptions
from docling.datamodel.settings import settings
@@ -104,11 +105,13 @@ class BaseOcrModel(BasePageModel):
p.dimension = 2
idx = index.Index(properties=p)
for i, cell in enumerate(programmatic_cells):
idx.insert(i, cell.bbox.as_tuple())
idx.insert(i, cell.rect.to_bounding_box().as_tuple())
def is_overlapping_with_existing_cells(ocr_cell):
# Query the R-tree to get overlapping rectangles
possible_matches_index = list(idx.intersection(ocr_cell.bbox.as_tuple()))
possible_matches_index = list(
idx.intersection(ocr_cell.rect.to_bounding_box().as_tuple())
)
return (
len(possible_matches_index) > 0
@@ -125,10 +128,7 @@ class BaseOcrModel(BasePageModel):
"""
if self.options.force_full_page_ocr:
# If a full page OCR is forced, use only the OCR cells
cells = [
Cell(id=c_ocr.id, text=c_ocr.text, bbox=c_ocr.bbox)
for c_ocr in ocr_cells
]
cells = ocr_cells
return cells
## Remove OCR cells which overlap with programmatic cells.
@@ -156,7 +156,7 @@ class BaseOcrModel(BasePageModel):
# Draw OCR and programmatic cells
for tc in page.cells:
x0, y0, x1, y1 = tc.bbox.as_tuple()
x0, y0, x1, y1 = tc.rect.to_bounding_box().as_tuple()
y0 *= scale_x
y1 *= scale_y
x0 *= scale_x
@@ -165,9 +165,8 @@ class BaseOcrModel(BasePageModel):
if y1 <= y0:
y1, y0 = y0, y1
color = "gray"
if isinstance(tc, OcrCell):
color = "magenta"
color = "magenta" if tc.from_ocr else "gray"
draw.rectangle([(x0, y0), (x1, y1)], outline=color)
if show:

View File

@@ -6,8 +6,9 @@ from typing import Iterable, List, Optional
import numpy
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling_core.types.doc.page import BoundingRectangle, TextCell
from docling.datamodel.base_models import Cell, OcrCell, Page
from docling.datamodel.base_models import Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
AcceleratorDevice,
@@ -148,18 +149,22 @@ class EasyOcrModel(BaseOcrModel):
del im
cells = [
OcrCell(
id=ix,
TextCell(
index=ix,
text=line[1],
orig=line[1],
from_ocr=True,
confidence=line[2],
bbox=BoundingBox.from_tuple(
coord=(
(line[0][0][0] / self.scale) + ocr_rect.l,
(line[0][0][1] / self.scale) + ocr_rect.t,
(line[0][2][0] / self.scale) + ocr_rect.l,
(line[0][2][1] / self.scale) + ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
rect=BoundingRectangle.from_bounding_box(
BoundingBox.from_tuple(
coord=(
(line[0][0][0] / self.scale) + ocr_rect.l,
(line[0][0][1] / self.scale) + ocr_rect.t,
(line[0][2][0] / self.scale) + ocr_rect.l,
(line[0][2][1] / self.scale) + ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
)
),
)
for ix, line in enumerate(result)

View File

@@ -3,8 +3,9 @@ import tempfile
from typing import Iterable, Optional, Tuple
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling_core.types.doc.page import BoundingRectangle, TextCell
from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.base_models import Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import OcrMacOptions
from docling.datamodel.settings import settings
@@ -94,13 +95,17 @@ class OcrMacModel(BaseOcrModel):
bottom = y2 / self.scale
cells.append(
OcrCell(
id=ix,
TextCell(
index=ix,
text=text,
orig=text,
from_ocr=True,
confidence=confidence,
bbox=BoundingBox.from_tuple(
coord=(left, top, right, bottom),
origin=CoordOrigin.TOPLEFT,
rect=BoundingRectangle.from_bounding_box(
BoundingBox.from_tuple(
coord=(left, top, right, bottom),
origin=CoordOrigin.TOPLEFT,
)
),
)
)

View File

@@ -13,6 +13,7 @@ from docling.utils.profiling import TimeRecorder
class PagePreprocessingOptions(BaseModel):
images_scale: Optional[float]
create_parsed_page: bool
class PagePreprocessingModel(BasePageModel):
@@ -55,6 +56,9 @@ class PagePreprocessingModel(BasePageModel):
page.cells = list(page._backend.get_text_cells())
if self.options.create_parsed_page:
page.parsed_page = page._backend.get_segmented_page()
# DEBUG code:
def draw_text_boxes(image, cells, show: bool = False):
draw = ImageDraw.Draw(image)

View File

@@ -3,8 +3,9 @@ from typing import Iterable
import numpy
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling_core.types.doc.page import BoundingRectangle, TextCell
from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.base_models import Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
AcceleratorDevice,
@@ -100,18 +101,26 @@ class RapidOcrModel(BaseOcrModel):
if result is not None:
cells = [
OcrCell(
id=ix,
TextCell(
index=ix,
text=line[1],
orig=line[1],
confidence=line[2],
bbox=BoundingBox.from_tuple(
coord=(
(line[0][0][0] / self.scale) + ocr_rect.l,
(line[0][0][1] / self.scale) + ocr_rect.t,
(line[0][2][0] / self.scale) + ocr_rect.l,
(line[0][2][1] / self.scale) + ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
from_ocr=True,
rect=BoundingRectangle.from_bounding_box(
BoundingBox.from_tuple(
coord=(
(line[0][0][0] / self.scale)
+ ocr_rect.l,
(line[0][0][1] / self.scale)
+ ocr_rect.t,
(line[0][2][0] / self.scale)
+ ocr_rect.l,
(line[0][2][1] / self.scale)
+ ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
)
),
)
for ix, line in enumerate(result)

View File

@@ -5,6 +5,7 @@ from typing import Iterable, Optional, Union
import numpy
from docling_core.types.doc import BoundingBox, DocItemLabel, TableCell
from docling_core.types.doc.page import BoundingRectangle
from docling_ibm_models.tableformer.data_management.tf_predictor import TFPredictor
from PIL import ImageDraw
@@ -129,7 +130,7 @@ class TableStructureModel(BasePageModel):
draw.rectangle([(x0, y0), (x1, y1)], outline="red")
for cell in table_element.cluster.cells:
x0, y0, x1, y1 = cell.bbox.as_tuple()
x0, y0, x1, y1 = cell.rect.to_bounding_box().as_tuple()
x0 *= scale_x
x1 *= scale_x
y0 *= scale_x
@@ -223,11 +224,19 @@ class TableStructureModel(BasePageModel):
# Only allow non empty stings (spaces) into the cells of a table
if len(c.text.strip()) > 0:
new_cell = copy.deepcopy(c)
new_cell.bbox = new_cell.bbox.scaled(
scale=self.scale
new_cell.rect = BoundingRectangle.from_bounding_box(
new_cell.rect.to_bounding_box().scaled(
scale=self.scale
)
)
tokens.append(new_cell.model_dump())
tokens.append(
{
"id": new_cell.index,
"text": new_cell.text,
"bbox": new_cell.rect.to_bounding_box().model_dump(),
}
)
page_input["tokens"] = tokens
tf_output = self.tf_predictor.multi_table_predict(

View File

@@ -8,8 +8,9 @@ from typing import Iterable, List, Optional, Tuple
import pandas as pd
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling_core.types.doc.page import BoundingRectangle, TextCell
from docling.datamodel.base_models import Cell, OcrCell, Page
from docling.datamodel.base_models import Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import TesseractCliOcrOptions
from docling.datamodel.settings import settings
@@ -228,18 +229,22 @@ class TesseractOcrCliModel(BaseOcrModel):
t = b + h
r = l + w
cell = OcrCell(
id=ix,
cell = TextCell(
index=ix,
text=text,
orig=text,
from_ocr=True,
confidence=conf / 100.0,
bbox=BoundingBox.from_tuple(
coord=(
(l / self.scale) + ocr_rect.l,
(b / self.scale) + ocr_rect.t,
(r / self.scale) + ocr_rect.l,
(t / self.scale) + ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
rect=BoundingRectangle.from_bounding_box(
BoundingBox.from_tuple(
coord=(
(l / self.scale) + ocr_rect.l,
(b / self.scale) + ocr_rect.t,
(r / self.scale) + ocr_rect.l,
(t / self.scale) + ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
)
),
)
all_ocr_cells.append(cell)

View File

@@ -2,8 +2,9 @@ import logging
from typing import Iterable
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling_core.types.doc.page import BoundingRectangle, TextCell
from docling.datamodel.base_models import Cell, OcrCell, Page
from docling.datamodel.base_models import Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import TesseractOcrOptions
from docling.datamodel.settings import settings
@@ -173,13 +174,17 @@ class TesseractOcrModel(BaseOcrModel):
top = (box["y"] + box["h"]) / self.scale
cells.append(
OcrCell(
id=ix,
TextCell(
index=ix,
text=text,
orig=text,
from_ocr=True,
confidence=confidence,
bbox=BoundingBox.from_tuple(
coord=(left, top, right, bottom),
origin=CoordOrigin.TOPLEFT,
rect=BoundingRectangle.from_bounding_box(
BoundingBox.from_tuple(
coord=(left, top, right, bottom),
origin=CoordOrigin.TOPLEFT,
),
),
)
)

View File

@@ -87,7 +87,8 @@ class StandardPdfPipeline(PaginatedPipeline):
# Pre-processing
PagePreprocessingModel(
options=PagePreprocessingOptions(
images_scale=pipeline_options.images_scale
images_scale=pipeline_options.images_scale,
create_parsed_page=pipeline_options.generate_parsed_pages,
)
),
# OCR

View File

@@ -2,9 +2,9 @@ import logging
from typing import Any, Dict, Iterable, List, Tuple, Union
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling_core.types.doc.page import TextCell
from docling_core.types.legacy_doc.base import BaseCell, BaseText, Ref, Table
from docling.datamodel.base_models import OcrCell
from docling.datamodel.document import ConversionResult, Page
_log = logging.getLogger(__name__)
@@ -86,11 +86,13 @@ def generate_multimodal_pages(
if page.size is None:
return cells
for cell in page.cells:
new_bbox = cell.bbox.to_top_left_origin(
page_height=page.size.height
).normalized(page_size=page.size)
is_ocr = isinstance(cell, OcrCell)
ocr_confidence = cell.confidence if isinstance(cell, OcrCell) else 1.0
new_bbox = (
cell.rect.to_bounding_box()
.to_top_left_origin(page_height=page.size.height)
.normalized(page_size=page.size)
)
is_ocr = cell.from_ocr
ocr_confidence = cell.confidence
cells.append(
{
"text": cell.text,

View File

@@ -5,9 +5,10 @@ from collections import defaultdict
from typing import Dict, List, Set, Tuple
from docling_core.types.doc import DocItemLabel, Size
from docling_core.types.doc.page import TextCell
from rtree import index
from docling.datamodel.base_models import BoundingBox, Cell, Cluster, OcrCell
from docling.datamodel.base_models import BoundingBox, Cluster
_log = logging.getLogger(__name__)
@@ -198,7 +199,7 @@ class LayoutPostprocessor:
DocItemLabel.TITLE: DocItemLabel.SECTION_HEADER,
}
def __init__(self, cells: List[Cell], clusters: List[Cluster], page_size: Size):
def __init__(self, cells: List[TextCell], clusters: List[Cluster], page_size: Size):
"""Initialize processor with cells and clusters."""
"""Initialize processor with cells and spatial indices."""
self.cells = cells
@@ -218,7 +219,7 @@ class LayoutPostprocessor:
[c for c in self.special_clusters if c.label in self.WRAPPER_TYPES]
)
def postprocess(self) -> Tuple[List[Cluster], List[Cell]]:
def postprocess(self) -> Tuple[List[Cluster], List[TextCell]]:
"""Main processing pipeline."""
self.regular_clusters = self._process_regular_clusters()
self.special_clusters = self._process_special_clusters()
@@ -271,15 +272,13 @@ class LayoutPostprocessor:
next_id = max((c.id for c in self.all_clusters), default=0) + 1
orphan_clusters = []
for i, cell in enumerate(unassigned):
conf = 1.0
if isinstance(cell, OcrCell):
conf = cell.confidence
conf = cell.confidence
orphan_clusters.append(
Cluster(
id=next_id + i,
label=DocItemLabel.TEXT,
bbox=cell.bbox,
bbox=cell.to_bounding_box(),
confidence=conf,
cells=[cell],
)
@@ -557,13 +556,13 @@ class LayoutPostprocessor:
return current_best if current_best else clusters[0]
def _deduplicate_cells(self, cells: List[Cell]) -> List[Cell]:
def _deduplicate_cells(self, cells: List[TextCell]) -> List[TextCell]:
"""Ensure each cell appears only once, maintaining order of first appearance."""
seen_ids = set()
unique_cells = []
for cell in cells:
if cell.id not in seen_ids:
seen_ids.add(cell.id)
if cell.index not in seen_ids:
seen_ids.add(cell.index)
unique_cells.append(cell)
return unique_cells
@@ -582,11 +581,13 @@ class LayoutPostprocessor:
best_cluster = None
for cluster in clusters:
if cell.bbox.area() <= 0:
if cell.rect.to_bounding_box().area() <= 0:
continue
overlap = cell.bbox.intersection_area_with(cluster.bbox)
overlap_ratio = overlap / cell.bbox.area()
overlap = cell.rect.to_bounding_box().intersection_area_with(
cluster.bbox
)
overlap_ratio = overlap / cell.rect.to_bounding_box().area()
if overlap_ratio > best_overlap:
best_overlap = overlap_ratio
@@ -601,11 +602,13 @@ class LayoutPostprocessor:
return clusters
def _find_unassigned_cells(self, clusters: List[Cluster]) -> List[Cell]:
def _find_unassigned_cells(self, clusters: List[Cluster]) -> List[TextCell]:
"""Find cells not assigned to any cluster."""
assigned = {cell.id for cluster in clusters for cell in cluster.cells}
assigned = {cell.index for cluster in clusters for cell in cluster.cells}
return [
cell for cell in self.cells if cell.id not in assigned and cell.text.strip()
cell
for cell in self.cells
if cell.index not in assigned and cell.text.strip()
]
def _adjust_cluster_bboxes(self, clusters: List[Cluster]) -> List[Cluster]:
@@ -615,10 +618,10 @@ class LayoutPostprocessor:
continue
cells_bbox = BoundingBox(
l=min(cell.bbox.l for cell in cluster.cells),
t=min(cell.bbox.t for cell in cluster.cells),
r=max(cell.bbox.r for cell in cluster.cells),
b=max(cell.bbox.b for cell in cluster.cells),
l=min(cell.rect.to_bounding_box().l for cell in cluster.cells),
t=min(cell.rect.to_bounding_box().t for cell in cluster.cells),
r=max(cell.rect.to_bounding_box().r for cell in cluster.cells),
b=max(cell.rect.to_bounding_box().b for cell in cluster.cells),
)
if cluster.label == DocItemLabel.TABLE:
@@ -634,9 +637,9 @@ class LayoutPostprocessor:
return clusters
def _sort_cells(self, cells: List[Cell]) -> List[Cell]:
def _sort_cells(self, cells: List[TextCell]) -> List[TextCell]:
"""Sort cells in native reading order."""
return sorted(cells, key=lambda c: (c.id))
return sorted(cells, key=lambda c: (c.index))
def _sort_clusters(
self, clusters: List[Cluster], mode: str = "id"
@@ -647,7 +650,7 @@ class LayoutPostprocessor:
clusters,
key=lambda cluster: (
(
min(cell.id for cell in cluster.cells)
min(cell.index for cell in cluster.cells)
if cluster.cells
else sys.maxsize
),

View File

@@ -25,7 +25,7 @@ def draw_clusters(
# Draw cells first (underneath)
cell_color = (0, 0, 0, 40) # Transparent black for cells
for tc in c.cells:
cx0, cy0, cx1, cy1 = tc.bbox.as_tuple()
cx0, cy0, cx1, cy1 = tc.rect.to_bounding_box().as_tuple()
cx0 *= scale_x
cx1 *= scale_x
cy0 *= scale_x