mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-27 04:24:45 +00:00
WIP, first working code for inference of SmolDocling, and vlm pipeline assembly code, example included.
Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>
This commit is contained in:
parent
03c8d45790
commit
3c4c647615
@ -1,23 +1,9 @@
|
||||
import argparse
|
||||
import itertools
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import time
|
||||
from io import BytesIO
|
||||
|
||||
# import copy
|
||||
# import random
|
||||
# import time
|
||||
from pathlib import Path
|
||||
from typing import Iterable, List, Optional
|
||||
|
||||
import torch
|
||||
from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
|
||||
|
||||
# from docling_core.types.doc import CoordOrigin, DocItemLabel
|
||||
from docling_ibm_models.layoutmodel.layout_predictor import LayoutPredictor
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
from transformers import ( # type: ignore
|
||||
AutoProcessor,
|
||||
BitsAndBytesConfig,
|
||||
@ -129,6 +115,8 @@ class SmolDoclingModel(BasePageModel):
|
||||
)[0]
|
||||
generated_texts = generated_texts.replace("Assistant: ", "")
|
||||
page_tags = generated_texts
|
||||
print("Page predictions:")
|
||||
print(page_tags)
|
||||
|
||||
page.predictions.doctags = DocTagsPrediction(tag_string=page_tags)
|
||||
|
||||
|
@ -56,6 +56,7 @@ class StandardPdfPipeline(PaginatedPipeline):
|
||||
|
||||
def __init__(self, pipeline_options: PdfPipelineOptions):
|
||||
super().__init__(pipeline_options)
|
||||
print("------> Init Standard PDF Pipeline!")
|
||||
self.pipeline_options: PdfPipelineOptions
|
||||
|
||||
artifacts_path: Optional[Path] = None
|
||||
|
@ -1,3 +1,4 @@
|
||||
import itertools
|
||||
import logging
|
||||
import re
|
||||
from io import BytesIO
|
||||
@ -19,7 +20,7 @@ from docling_core.types.doc import (
|
||||
TableData,
|
||||
TableItem,
|
||||
)
|
||||
from PIL import Image, ImageDraw
|
||||
from PIL.Image import Image
|
||||
|
||||
from docling.backend.abstract_backend import AbstractDocumentBackend
|
||||
from docling.backend.pdf_backend import PdfDocumentBackend
|
||||
@ -38,6 +39,7 @@ class VlmPipeline(PaginatedPipeline):
|
||||
|
||||
def __init__(self, pipeline_options: PdfPipelineOptions):
|
||||
super().__init__(pipeline_options)
|
||||
print("------> Init VLM Pipeline!")
|
||||
self.pipeline_options: PdfPipelineOptions
|
||||
|
||||
if pipeline_options.artifacts_path is None:
|
||||
@ -98,13 +100,15 @@ class VlmPipeline(PaginatedPipeline):
|
||||
if page.predictions.doctags is not None:
|
||||
document_tags += page.predictions.doctags.tag_string
|
||||
|
||||
image_bytes = BytesIO()
|
||||
if page.image:
|
||||
page.image.save(image_bytes, format="PNG")
|
||||
# TODO implement this function
|
||||
conv_res.document = self._turn_tags_into_doc(
|
||||
document_tags, image_bytes.getvalue()
|
||||
)
|
||||
conv_res.document = self._turn_tags_into_doc(document_tags, None)
|
||||
"""
|
||||
image_bytes = BytesIO()
|
||||
if page.image:
|
||||
page.image.save(image_bytes, format="PNG")
|
||||
# TODO implement this function
|
||||
conv_res.document = self._turn_tags_into_doc(
|
||||
document_tags, image_bytes.getvalue()
|
||||
)
|
||||
|
||||
# Generate page images in the output
|
||||
if self.pipeline_options.generate_page_images:
|
||||
@ -114,7 +118,7 @@ class VlmPipeline(PaginatedPipeline):
|
||||
conv_res.document.pages[page_no].image = ImageRef.from_pil(
|
||||
page.image, dpi=int(72 * self.pipeline_options.images_scale)
|
||||
)
|
||||
|
||||
"""
|
||||
# Generate images of the requested element types
|
||||
if (
|
||||
self.pipeline_options.generate_picture_images
|
||||
@ -151,7 +155,7 @@ class VlmPipeline(PaginatedPipeline):
|
||||
|
||||
# def _turn_tags_into_doc(self, xml_content: str, image_bytes: bytes) -> (DoclingDocument, list):
|
||||
def _turn_tags_into_doc(
|
||||
self, xml_content: str, image_bytes: bytes
|
||||
self, xml_content: str, input_image: Optional[Image] = None
|
||||
) -> DoclingDocument:
|
||||
def extract_text(tag_content: str) -> str:
|
||||
return re.sub(r"<.*?>", "", tag_content).strip()
|
||||
@ -332,7 +336,7 @@ class VlmPipeline(PaginatedPipeline):
|
||||
doc = DoclingDocument(name="Example Document")
|
||||
current_group = None
|
||||
lines = xml_content.split("\n")
|
||||
pil_image = Image.open(BytesIO(image_bytes))
|
||||
# pil_image = input_image #Image.open(BytesIO(image_bytes))
|
||||
bounding_boxes = []
|
||||
|
||||
for line in lines:
|
||||
@ -454,6 +458,7 @@ class VlmPipeline(PaginatedPipeline):
|
||||
if bbox:
|
||||
bounding_boxes.append((bbox, "yellow"))
|
||||
# Convert bounding box normalized to 0-100 into pixel coordinates for cropping
|
||||
"""
|
||||
width, height = pil_image.size
|
||||
crop_box = (
|
||||
int(bbox.l * width),
|
||||
@ -461,13 +466,14 @@ class VlmPipeline(PaginatedPipeline):
|
||||
int(bbox.r * width),
|
||||
int(bbox.b * height),
|
||||
)
|
||||
|
||||
cropped_image = pil_image.crop(crop_box)
|
||||
doc.add_picture(
|
||||
parent=current_group,
|
||||
image=ImageRef.from_pil(image=cropped_image, dpi=300),
|
||||
# prov=[ProvenanceItem(bbox=bbox, charspan=(0, 0), page_no=1)],
|
||||
prov=ProvenanceItem(bbox=bbox, charspan=(0, 0), page_no=1),
|
||||
)
|
||||
"""
|
||||
elif line.startswith("<list>"):
|
||||
content = extract_text(line)
|
||||
prov_item_inst = None
|
||||
|
@ -1,10 +1,12 @@
|
||||
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
|
||||
from docling.datamodel.base_models import InputFormat
|
||||
from docling.datamodel.pipeline_options import PdfPipelineOptions
|
||||
from docling.document_converter import DocumentConverter, PdfFormatOption
|
||||
from docling.pipeline.vlm_pipeline import VlmPipeline
|
||||
|
||||
# source = "https://arxiv.org/pdf/2408.09869" # document per local path or URL
|
||||
source = "tests/data/2305.03393v1-pg9-img.png"
|
||||
# source = "tests/data/2305.03393v1-pg9-img.png"
|
||||
source = "tests/data/2305.03393v1-pg9.pdf"
|
||||
|
||||
pipeline_options = PdfPipelineOptions()
|
||||
pipeline_options.artifacts_path = "model_artifacts"
|
||||
@ -12,13 +14,40 @@ pipeline_options.artifacts_path = "model_artifacts"
|
||||
converter = DocumentConverter(
|
||||
format_options={
|
||||
InputFormat.PDF: PdfFormatOption(
|
||||
pipeline_cls=VlmPipeline, pipeline_options=pipeline_options
|
||||
)
|
||||
pipeline_cls=VlmPipeline,
|
||||
pipeline_options=pipeline_options,
|
||||
backend=DoclingParseDocumentBackend,
|
||||
),
|
||||
InputFormat.IMAGE: PdfFormatOption(
|
||||
pipeline_cls=VlmPipeline,
|
||||
pipeline_options=pipeline_options,
|
||||
backend=DoclingParseDocumentBackend,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
print("============")
|
||||
print("starting...")
|
||||
print("============")
|
||||
print("")
|
||||
|
||||
result = converter.convert(source)
|
||||
|
||||
print("------------")
|
||||
print("result:")
|
||||
print("------------")
|
||||
print("")
|
||||
print(result)
|
||||
|
||||
print("------------")
|
||||
print("MD:")
|
||||
print("------------")
|
||||
print("")
|
||||
print(result.document.export_to_markdown())
|
||||
|
||||
print("")
|
||||
print("============")
|
||||
print("done!")
|
||||
print("============")
|
||||
|
||||
# output: ## Docling Technical Report [...]"
|
||||
|
Loading…
Reference in New Issue
Block a user