feat: [Experimental] Introduce VLM pipeline using HF AutoModelForVision2Seq, featuring SmolDocling model (#1054)

* Skeleton for SmolDocling model and VLM Pipeline

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* wip smolDocling inference and vlm pipeline

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* WIP, first working code for inference of SmolDocling, and vlm pipeline assembly code, example included.

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Fixes to preserve page image and demo export to html

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Enabled figure support in vlm_pipeline

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Fix for table span compute in vlm_pipeline

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Properly propagating image data per page, together with predicted tags in VLM pipeline. This enables correct figure extraction and page numbers in provenances

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Cleaned up logs, added pages to vlm_pipeline, basic timing per page measurement in smol_docling models

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Replaced hardcoded otsl tokens with the ones from docling-core tokens.py enum

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Added tokens/sec measurement, improved example

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Added capability for vlm_pipeline to grab text from preconfigured backend

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Exposed "force_backend_text" as pipeline parameter

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Flipped keep_backend to True for vlm_pipeline assembly to work

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Updated vlm pipeline assembly and smol docling model code to support updated doctags

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Fixing doctags starting tag, that broke elements on first line during assembly

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Introduced SmolDoclingOptions to configure model parameters (such as query and artifacts path) via client code, see example in minimal_smol_docling. Provisioning for other potential vlm all-in-one models.

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Moved artifacts_path for SmolDocling into vlm_options instead of global pipeline option

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* New assembly code for latest model revision, updated prompt and parsing of doctags, updated logging

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Updated example of Smol Docling usage

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Added captions for the images for SmolDocling assembly code, improved provenance definition for all elements

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Update minimal smoldocling example

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fix repo id

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Cleaned up unnecessary logging

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* More elegant solution in removing the input prompt

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* removed minimal_smol_docling example from CI checks

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Removed special html code wrapping when exporting to docling document, cleaned up comments

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Addressing PR comments, added enabled property to SmolDocling, and related VLM pipeline option, few other minor things

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Moved keep_backend = True to vlm pipeline

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* removed pipeline_options.generate_table_images from vlm_pipeline (deprecated in the pipelines)

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Added example on how to get original predicted doctags in minimal_smol_docling

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* removing changes from base_pipeline

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Replaced remaining strings to appropriate enums

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Updated poetry.lock

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* re-built poetry.lock

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>

* Generalize and refactor VLM pipeline and models

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Rename example

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Move imports

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Expose control over using flash_attention_2

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fix VLM example exclusion in CI

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Add back device_map and accelerate

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Make drawing code resilient against bad bboxes

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* chore: clean up code and comments

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* chore: more cleanup

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* chore: fix leftover .to(device)

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* fix: add proper table provenance

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

---------

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>
Co-authored-by: Maksym Lysak <mly@zurich.ibm.com>
This commit is contained in:
Christoph Auer
2025-02-26 14:43:26 +01:00
committed by GitHub
parent ab683e4fb6
commit 3c9fe76b70
9 changed files with 1248 additions and 316 deletions

View File

@@ -154,6 +154,10 @@ class LayoutPrediction(BaseModel):
clusters: List[Cluster] = []
class VlmPrediction(BaseModel):
text: str = ""
class ContainerElement(
BasePageElement
): # Used for Form and Key-Value-Regions, only for typing.
@@ -197,6 +201,7 @@ class PagePredictions(BaseModel):
tablestructure: Optional[TableStructurePrediction] = None
figures_classification: Optional[FigureClassificationPrediction] = None
equations_prediction: Optional[EquationPrediction] = None
vlm_response: Optional[VlmPrediction] = None
PageElement = Union[TextElement, Table, FigureElement, ContainerElement]

View File

@@ -41,6 +41,7 @@ class AcceleratorOptions(BaseSettings):
num_threads: int = 4
device: Union[str, AcceleratorDevice] = "auto"
cuda_use_flash_attention2: bool = False
@field_validator("device")
def validate_device(cls, value):
@@ -254,6 +255,45 @@ granite_picture_description = PictureDescriptionVlmOptions(
)
class BaseVlmOptions(BaseModel):
kind: str
prompt: str
class ResponseFormat(str, Enum):
DOCTAGS = "doctags"
MARKDOWN = "markdown"
class HuggingFaceVlmOptions(BaseVlmOptions):
kind: Literal["hf_model_options"] = "hf_model_options"
repo_id: str
load_in_8bit: bool = True
llm_int8_threshold: float = 6.0
quantized: bool = False
response_format: ResponseFormat
@property
def repo_cache_folder(self) -> str:
return self.repo_id.replace("/", "--")
smoldocling_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="ds4sd/SmolDocling-256M-preview",
prompt="Convert this page to docling.",
response_format=ResponseFormat.DOCTAGS,
)
granite_vision_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="ibm-granite/granite-vision-3.1-2b-preview",
# prompt="OCR the full page to markdown.",
prompt="OCR this image.",
response_format=ResponseFormat.MARKDOWN,
)
# Define an enum for the backend options
class PdfBackend(str, Enum):
"""Enum of valid PDF backends."""
@@ -285,7 +325,24 @@ class PipelineOptions(BaseModel):
enable_remote_services: bool = False
class PdfPipelineOptions(PipelineOptions):
class PaginatedPipelineOptions(PipelineOptions):
images_scale: float = 1.0
generate_page_images: bool = False
generate_picture_images: bool = False
class VlmPipelineOptions(PaginatedPipelineOptions):
artifacts_path: Optional[Union[Path, str]] = None
generate_page_images: bool = True
force_backend_text: bool = (
False # (To be used with vlms, or other generative models)
)
# If True, text from backend will be used instead of generated text
vlm_options: Union[HuggingFaceVlmOptions] = smoldocling_vlm_conversion_options
class PdfPipelineOptions(PaginatedPipelineOptions):
"""Options for the PDF pipeline."""
artifacts_path: Optional[Union[Path, str]] = None
@@ -295,6 +352,10 @@ class PdfPipelineOptions(PipelineOptions):
do_formula_enrichment: bool = False # True: perform formula OCR, return Latex code
do_picture_classification: bool = False # True: classify pictures in documents
do_picture_description: bool = False # True: run describe pictures in documents
force_backend_text: bool = (
False # (To be used with vlms, or other generative models)
)
# If True, text from backend will be used instead of generated text
table_structure_options: TableStructureOptions = TableStructureOptions()
ocr_options: Union[

View File

@@ -0,0 +1,180 @@
import logging
import time
from pathlib import Path
from typing import Iterable, List, Optional
from docling.datamodel.base_models import Page, VlmPrediction
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
AcceleratorDevice,
AcceleratorOptions,
HuggingFaceVlmOptions,
)
from docling.datamodel.settings import settings
from docling.models.base_model import BasePageModel
from docling.utils.accelerator_utils import decide_device
from docling.utils.profiling import TimeRecorder
_log = logging.getLogger(__name__)
class HuggingFaceVlmModel(BasePageModel):
def __init__(
self,
enabled: bool,
artifacts_path: Optional[Path],
accelerator_options: AcceleratorOptions,
vlm_options: HuggingFaceVlmOptions,
):
self.enabled = enabled
self.vlm_options = vlm_options
if self.enabled:
import torch
from transformers import ( # type: ignore
AutoModelForVision2Seq,
AutoProcessor,
BitsAndBytesConfig,
)
device = decide_device(accelerator_options.device)
self.device = device
_log.debug("Available device for HuggingFace VLM: {}".format(device))
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
# PARAMETERS:
if artifacts_path is None:
artifacts_path = self.download_models(self.vlm_options.repo_id)
elif (artifacts_path / repo_cache_folder).exists():
artifacts_path = artifacts_path / repo_cache_folder
self.param_question = vlm_options.prompt # "Perform Layout Analysis."
self.param_quantization_config = BitsAndBytesConfig(
load_in_8bit=vlm_options.load_in_8bit, # True,
llm_int8_threshold=vlm_options.llm_int8_threshold, # 6.0
)
self.param_quantized = vlm_options.quantized # False
self.processor = AutoProcessor.from_pretrained(artifacts_path)
if not self.param_quantized:
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
artifacts_path,
device_map=device,
torch_dtype=torch.bfloat16,
_attn_implementation=(
"flash_attention_2"
if self.device.startswith("cuda")
and accelerator_options.cuda_use_flash_attention2
else "eager"
),
) # .to(self.device)
else:
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
artifacts_path,
device_map=device,
torch_dtype="auto",
quantization_config=self.param_quantization_config,
_attn_implementation=(
"flash_attention_2"
if self.device.startswith("cuda")
and accelerator_options.cuda_use_flash_attention2
else "eager"
),
) # .to(self.device)
@staticmethod
def download_models(
repo_id: str,
local_dir: Optional[Path] = None,
force: bool = False,
progress: bool = False,
) -> Path:
from huggingface_hub import snapshot_download
from huggingface_hub.utils import disable_progress_bars
if not progress:
disable_progress_bars()
download_path = snapshot_download(
repo_id=repo_id,
force_download=force,
local_dir=local_dir,
# revision="v0.0.1",
)
return Path(download_path)
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "vlm"):
assert page.size is not None
hi_res_image = page.get_image(scale=2.0) # 144dpi
# hi_res_image = page.get_image(scale=1.0) # 72dpi
if hi_res_image is not None:
im_width, im_height = hi_res_image.size
# populate page_tags with predicted doc tags
page_tags = ""
if hi_res_image:
if hi_res_image.mode != "RGB":
hi_res_image = hi_res_image.convert("RGB")
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "This is a page from a document.",
},
{"type": "image"},
{"type": "text", "text": self.param_question},
],
}
]
prompt = self.processor.apply_chat_template(
messages, add_generation_prompt=False
)
inputs = self.processor(
text=prompt, images=[hi_res_image], return_tensors="pt"
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
start_time = time.time()
# Call model to generate:
generated_ids = self.vlm_model.generate(
**inputs, max_new_tokens=4096, use_cache=True
)
generation_time = time.time() - start_time
generated_texts = self.processor.batch_decode(
generated_ids[:, inputs["input_ids"].shape[1] :],
skip_special_tokens=False,
)[0]
num_tokens = len(generated_ids[0])
page_tags = generated_texts
# inference_time = time.time() - start_time
# tokens_per_second = num_tokens / generation_time
# print("")
# print(f"Page Inference Time: {inference_time:.2f} seconds")
# print(f"Total tokens on page: {num_tokens:.2f}")
# print(f"Tokens/sec: {tokens_per_second:.2f}")
# print("")
page.predictions.vlm_response = VlmPrediction(text=page_tags)
yield page

View File

@@ -0,0 +1,534 @@
import itertools
import logging
import re
import warnings
from io import BytesIO
# from io import BytesIO
from pathlib import Path
from typing import Optional
from docling_core.types import DoclingDocument
from docling_core.types.doc import (
BoundingBox,
DocItem,
DocItemLabel,
DoclingDocument,
GroupLabel,
ImageRef,
ImageRefMode,
PictureItem,
ProvenanceItem,
Size,
TableCell,
TableData,
TableItem,
)
from docling_core.types.doc.tokens import DocumentToken, TableToken
from docling.backend.abstract_backend import AbstractDocumentBackend
from docling.backend.md_backend import MarkdownDocumentBackend
from docling.backend.pdf_backend import PdfDocumentBackend
from docling.datamodel.base_models import InputFormat, Page
from docling.datamodel.document import ConversionResult, InputDocument
from docling.datamodel.pipeline_options import (
PdfPipelineOptions,
ResponseFormat,
VlmPipelineOptions,
)
from docling.datamodel.settings import settings
from docling.models.hf_vlm_model import HuggingFaceVlmModel
from docling.pipeline.base_pipeline import PaginatedPipeline
from docling.utils.profiling import ProfilingScope, TimeRecorder
_log = logging.getLogger(__name__)
class VlmPipeline(PaginatedPipeline):
def __init__(self, pipeline_options: VlmPipelineOptions):
super().__init__(pipeline_options)
self.keep_backend = True
warnings.warn(
"The VlmPipeline is currently experimental and may change in upcoming versions without notice.",
category=UserWarning,
stacklevel=2,
)
self.pipeline_options: VlmPipelineOptions
artifacts_path: Optional[Path] = None
if pipeline_options.artifacts_path is not None:
artifacts_path = Path(pipeline_options.artifacts_path).expanduser()
elif settings.artifacts_path is not None:
artifacts_path = Path(settings.artifacts_path).expanduser()
if artifacts_path is not None and not artifacts_path.is_dir():
raise RuntimeError(
f"The value of {artifacts_path=} is not valid. "
"When defined, it must point to a folder containing all models required by the pipeline."
)
# force_backend_text = False - use text that is coming from VLM response
# force_backend_text = True - get text from backend using bounding boxes predicted by SmolDocling doctags
self.force_backend_text = (
pipeline_options.force_backend_text
and pipeline_options.vlm_options.response_format == ResponseFormat.DOCTAGS
)
self.keep_images = self.pipeline_options.generate_page_images
self.build_pipe = [
HuggingFaceVlmModel(
enabled=True, # must be always enabled for this pipeline to make sense.
artifacts_path=artifacts_path,
accelerator_options=pipeline_options.accelerator_options,
vlm_options=self.pipeline_options.vlm_options,
),
]
self.enrichment_pipe = [
# Other models working on `NodeItem` elements in the DoclingDocument
]
def initialize_page(self, conv_res: ConversionResult, page: Page) -> Page:
with TimeRecorder(conv_res, "page_init"):
page._backend = conv_res.input._backend.load_page(page.page_no) # type: ignore
if page._backend is not None and page._backend.is_valid():
page.size = page._backend.get_size()
return page
def _assemble_document(self, conv_res: ConversionResult) -> ConversionResult:
with TimeRecorder(conv_res, "doc_assemble", scope=ProfilingScope.DOCUMENT):
if (
self.pipeline_options.vlm_options.response_format
== ResponseFormat.DOCTAGS
):
conv_res.document = self._turn_tags_into_doc(conv_res.pages)
elif (
self.pipeline_options.vlm_options.response_format
== ResponseFormat.MARKDOWN
):
conv_res.document = self._turn_md_into_doc(conv_res)
else:
raise RuntimeError(
f"Unsupported VLM response format {self.pipeline_options.vlm_options.response_format}"
)
# Generate images of the requested element types
if self.pipeline_options.generate_picture_images:
scale = self.pipeline_options.images_scale
for element, _level in conv_res.document.iterate_items():
if not isinstance(element, DocItem) or len(element.prov) == 0:
continue
if (
isinstance(element, PictureItem)
and self.pipeline_options.generate_picture_images
):
page_ix = element.prov[0].page_no - 1
page = conv_res.pages[page_ix]
assert page.size is not None
assert page.image is not None
crop_bbox = (
element.prov[0]
.bbox.scaled(scale=scale)
.to_top_left_origin(page_height=page.size.height * scale)
)
cropped_im = page.image.crop(crop_bbox.as_tuple())
element.image = ImageRef.from_pil(
cropped_im, dpi=int(72 * scale)
)
return conv_res
def _turn_md_into_doc(self, conv_res):
predicted_text = ""
for pg_idx, page in enumerate(conv_res.pages):
if page.predictions.vlm_response:
predicted_text += page.predictions.vlm_response.text + "\n\n"
response_bytes = BytesIO(predicted_text.encode("utf8"))
out_doc = InputDocument(
path_or_stream=response_bytes,
filename=conv_res.input.file.name,
format=InputFormat.MD,
backend=MarkdownDocumentBackend,
)
backend = MarkdownDocumentBackend(
in_doc=out_doc,
path_or_stream=response_bytes,
)
return backend.convert()
def _turn_tags_into_doc(self, pages: list[Page]) -> DoclingDocument:
###############################################
# Tag definitions and color mappings
###############################################
# Maps the recognized tag to a Docling label.
# Code items will be given DocItemLabel.CODE
tag_to_doclabel = {
"title": DocItemLabel.TITLE,
"document_index": DocItemLabel.DOCUMENT_INDEX,
"otsl": DocItemLabel.TABLE,
"section_header_level_1": DocItemLabel.SECTION_HEADER,
"checkbox_selected": DocItemLabel.CHECKBOX_SELECTED,
"checkbox_unselected": DocItemLabel.CHECKBOX_UNSELECTED,
"text": DocItemLabel.TEXT,
"page_header": DocItemLabel.PAGE_HEADER,
"page_footer": DocItemLabel.PAGE_FOOTER,
"formula": DocItemLabel.FORMULA,
"caption": DocItemLabel.CAPTION,
"picture": DocItemLabel.PICTURE,
"list_item": DocItemLabel.LIST_ITEM,
"footnote": DocItemLabel.FOOTNOTE,
"code": DocItemLabel.CODE,
}
# Maps each tag to an associated bounding box color.
tag_to_color = {
"title": "blue",
"document_index": "darkblue",
"otsl": "green",
"section_header_level_1": "purple",
"checkbox_selected": "black",
"checkbox_unselected": "gray",
"text": "red",
"page_header": "orange",
"page_footer": "cyan",
"formula": "pink",
"caption": "magenta",
"picture": "yellow",
"list_item": "brown",
"footnote": "darkred",
"code": "lightblue",
}
def extract_bounding_box(text_chunk: str) -> Optional[BoundingBox]:
"""Extracts <loc_...> bounding box coords from the chunk, normalized by / 500."""
coords = re.findall(r"<loc_(\d+)>", text_chunk)
if len(coords) == 4:
l, t, r, b = map(float, coords)
return BoundingBox(l=l / 500, t=t / 500, r=r / 500, b=b / 500)
return None
def extract_inner_text(text_chunk: str) -> str:
"""Strips all <...> tags inside the chunk to get the raw text content."""
return re.sub(r"<.*?>", "", text_chunk, flags=re.DOTALL).strip()
def extract_text_from_backend(page: Page, bbox: BoundingBox | None) -> str:
# Convert bounding box normalized to 0-100 into page coordinates for cropping
text = ""
if bbox:
if page.size:
bbox.l = bbox.l * page.size.width
bbox.t = bbox.t * page.size.height
bbox.r = bbox.r * page.size.width
bbox.b = bbox.b * page.size.height
if page._backend:
text = page._backend.get_text_in_rect(bbox)
return text
def otsl_parse_texts(texts, tokens):
split_word = TableToken.OTSL_NL.value
split_row_tokens = [
list(y)
for x, y in itertools.groupby(tokens, lambda z: z == split_word)
if not x
]
table_cells = []
r_idx = 0
c_idx = 0
def count_right(tokens, c_idx, r_idx, which_tokens):
span = 0
c_idx_iter = c_idx
while tokens[r_idx][c_idx_iter] in which_tokens:
c_idx_iter += 1
span += 1
if c_idx_iter >= len(tokens[r_idx]):
return span
return span
def count_down(tokens, c_idx, r_idx, which_tokens):
span = 0
r_idx_iter = r_idx
while tokens[r_idx_iter][c_idx] in which_tokens:
r_idx_iter += 1
span += 1
if r_idx_iter >= len(tokens):
return span
return span
for i, text in enumerate(texts):
cell_text = ""
if text in [
TableToken.OTSL_FCEL.value,
TableToken.OTSL_ECEL.value,
TableToken.OTSL_CHED.value,
TableToken.OTSL_RHED.value,
TableToken.OTSL_SROW.value,
]:
row_span = 1
col_span = 1
right_offset = 1
if text != TableToken.OTSL_ECEL.value:
cell_text = texts[i + 1]
right_offset = 2
# Check next element(s) for lcel / ucel / xcel, set properly row_span, col_span
next_right_cell = ""
if i + right_offset < len(texts):
next_right_cell = texts[i + right_offset]
next_bottom_cell = ""
if r_idx + 1 < len(split_row_tokens):
if c_idx < len(split_row_tokens[r_idx + 1]):
next_bottom_cell = split_row_tokens[r_idx + 1][c_idx]
if next_right_cell in [
TableToken.OTSL_LCEL.value,
TableToken.OTSL_XCEL.value,
]:
# we have horisontal spanning cell or 2d spanning cell
col_span += count_right(
split_row_tokens,
c_idx + 1,
r_idx,
[TableToken.OTSL_LCEL.value, TableToken.OTSL_XCEL.value],
)
if next_bottom_cell in [
TableToken.OTSL_UCEL.value,
TableToken.OTSL_XCEL.value,
]:
# we have a vertical spanning cell or 2d spanning cell
row_span += count_down(
split_row_tokens,
c_idx,
r_idx + 1,
[TableToken.OTSL_UCEL.value, TableToken.OTSL_XCEL.value],
)
table_cells.append(
TableCell(
text=cell_text.strip(),
row_span=row_span,
col_span=col_span,
start_row_offset_idx=r_idx,
end_row_offset_idx=r_idx + row_span,
start_col_offset_idx=c_idx,
end_col_offset_idx=c_idx + col_span,
)
)
if text in [
TableToken.OTSL_FCEL.value,
TableToken.OTSL_ECEL.value,
TableToken.OTSL_CHED.value,
TableToken.OTSL_RHED.value,
TableToken.OTSL_SROW.value,
TableToken.OTSL_LCEL.value,
TableToken.OTSL_UCEL.value,
TableToken.OTSL_XCEL.value,
]:
c_idx += 1
if text == TableToken.OTSL_NL.value:
r_idx += 1
c_idx = 0
return table_cells, split_row_tokens
def otsl_extract_tokens_and_text(s: str):
# Pattern to match anything enclosed by < > (including the angle brackets themselves)
pattern = r"(<[^>]+>)"
# Find all tokens (e.g. "<otsl>", "<loc_140>", etc.)
tokens = re.findall(pattern, s)
# Remove any tokens that start with "<loc_"
tokens = [
token
for token in tokens
if not (
token.startswith(rf"<{DocumentToken.LOC.value}")
or token
in [
rf"<{DocumentToken.OTSL.value}>",
rf"</{DocumentToken.OTSL.value}>",
]
)
]
# Split the string by those tokens to get the in-between text
text_parts = re.split(pattern, s)
text_parts = [
token
for token in text_parts
if not (
token.startswith(rf"<{DocumentToken.LOC.value}")
or token
in [
rf"<{DocumentToken.OTSL.value}>",
rf"</{DocumentToken.OTSL.value}>",
]
)
]
# Remove any empty or purely whitespace strings from text_parts
text_parts = [part for part in text_parts if part.strip()]
return tokens, text_parts
def parse_table_content(otsl_content: str) -> TableData:
tokens, mixed_texts = otsl_extract_tokens_and_text(otsl_content)
table_cells, split_row_tokens = otsl_parse_texts(mixed_texts, tokens)
return TableData(
num_rows=len(split_row_tokens),
num_cols=(
max(len(row) for row in split_row_tokens) if split_row_tokens else 0
),
table_cells=table_cells,
)
doc = DoclingDocument(name="Document")
for pg_idx, page in enumerate(pages):
xml_content = ""
predicted_text = ""
if page.predictions.vlm_response:
predicted_text = page.predictions.vlm_response.text
image = page.image
page_no = pg_idx + 1
bounding_boxes = []
if page.size:
pg_width = page.size.width
pg_height = page.size.height
size = Size(width=pg_width, height=pg_height)
parent_page = doc.add_page(page_no=page_no, size=size)
"""
1. Finds all <tag>...</tag> blocks in the entire string (multi-line friendly) in the order they appear.
2. For each chunk, extracts bounding box (if any) and inner text.
3. Adds the item to a DoclingDocument structure with the right label.
4. Tracks bounding boxes + color in a separate list for later visualization.
"""
# Regex for all recognized tags
tag_pattern = (
rf"<(?P<tag>{DocItemLabel.TITLE}|{DocItemLabel.DOCUMENT_INDEX}|"
rf"{DocItemLabel.CHECKBOX_UNSELECTED}|{DocItemLabel.CHECKBOX_SELECTED}|"
rf"{DocItemLabel.TEXT}|{DocItemLabel.PAGE_HEADER}|"
rf"{DocItemLabel.PAGE_FOOTER}|{DocItemLabel.FORMULA}|"
rf"{DocItemLabel.CAPTION}|{DocItemLabel.PICTURE}|"
rf"{DocItemLabel.LIST_ITEM}|{DocItemLabel.FOOTNOTE}|{DocItemLabel.CODE}|"
rf"{DocItemLabel.SECTION_HEADER}_level_1|{DocumentToken.OTSL.value})>.*?</(?P=tag)>"
)
# DocumentToken.OTSL
pattern = re.compile(tag_pattern, re.DOTALL)
# Go through each match in order
for match in pattern.finditer(predicted_text):
full_chunk = match.group(0)
tag_name = match.group("tag")
bbox = extract_bounding_box(full_chunk)
doc_label = tag_to_doclabel.get(tag_name, DocItemLabel.PARAGRAPH)
color = tag_to_color.get(tag_name, "white")
# Store bounding box + color
if bbox:
bounding_boxes.append((bbox, color))
if tag_name == DocumentToken.OTSL.value:
table_data = parse_table_content(full_chunk)
bbox = extract_bounding_box(full_chunk)
if bbox:
prov = ProvenanceItem(
bbox=bbox.resize_by_scale(pg_width, pg_height),
charspan=(0, 0),
page_no=page_no,
)
doc.add_table(data=table_data, prov=prov)
else:
doc.add_table(data=table_data)
elif tag_name == DocItemLabel.PICTURE:
text_caption_content = extract_inner_text(full_chunk)
if image:
if bbox:
im_width, im_height = image.size
crop_box = (
int(bbox.l * im_width),
int(bbox.t * im_height),
int(bbox.r * im_width),
int(bbox.b * im_height),
)
cropped_image = image.crop(crop_box)
pic = doc.add_picture(
parent=None,
image=ImageRef.from_pil(image=cropped_image, dpi=72),
prov=(
ProvenanceItem(
bbox=bbox.resize_by_scale(pg_width, pg_height),
charspan=(0, 0),
page_no=page_no,
)
),
)
# If there is a caption to an image, add it as well
if len(text_caption_content) > 0:
caption_item = doc.add_text(
label=DocItemLabel.CAPTION,
text=text_caption_content,
parent=None,
)
pic.captions.append(caption_item.get_ref())
else:
if bbox:
# In case we don't have access to an binary of an image
doc.add_picture(
parent=None,
prov=ProvenanceItem(
bbox=bbox, charspan=(0, 0), page_no=page_no
),
)
# If there is a caption to an image, add it as well
if len(text_caption_content) > 0:
caption_item = doc.add_text(
label=DocItemLabel.CAPTION,
text=text_caption_content,
parent=None,
)
pic.captions.append(caption_item.get_ref())
else:
# For everything else, treat as text
if self.force_backend_text:
text_content = extract_text_from_backend(page, bbox)
else:
text_content = extract_inner_text(full_chunk)
doc.add_text(
label=doc_label,
text=text_content,
prov=(
ProvenanceItem(
bbox=bbox.resize_by_scale(pg_width, pg_height),
charspan=(0, len(text_content)),
page_no=page_no,
)
if bbox
else None
),
)
return doc
@classmethod
def get_default_options(cls) -> VlmPipelineOptions:
return VlmPipelineOptions()
@classmethod
def is_backend_supported(cls, backend: AbstractDocumentBackend):
return isinstance(backend, PdfDocumentBackend)

View File

@@ -43,6 +43,11 @@ def draw_clusters(
y0 *= scale_x
y1 *= scale_y
if y1 <= y0:
y1, y0 = y0, y1
if x1 <= x0:
x1, x0 = x0, x1
cluster_fill_color = (*list(DocItemLabel.get_color(c.label)), 70)
cluster_outline_color = (
*list(DocItemLabel.get_color(c.label)),