Updated README

Signed-off-by: Maksym Lysak <mly@zurich.ibm.com>
This commit is contained in:
Maksym Lysak 2025-03-19 14:31:33 +01:00
parent 16664f2cd6
commit 40b3f597f3

View File

@ -35,7 +35,7 @@ Docling simplifies document processing, parsing diverse formats — including ad
* 🔒 Local execution capabilities for sensitive data and air-gapped environments
* 🤖 Plug-and-play [integrations][integrations] incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
* 🔍 Extensive OCR support for scanned PDFs and images
* 🥚 Support of Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview))
* 🥚 Support of Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview)) 🆕
* 💻 Simple and convenient CLI
### Coming soon
@ -57,7 +57,7 @@ More [detailed installation instructions](https://docling-project.github.io/docl
## Getting started
To convert individual documents, use `convert()`, for example:
To convert individual documents with python, use `convert()`, for example:
```python
from docling.document_converter import DocumentConverter
@ -71,6 +71,21 @@ print(result.document.export_to_markdown()) # output: "## Docling Technical Rep
More [advanced usage options](https://docling-project.github.io/docling/usage/) are available in
the docs.
## CLI
Docling has built-in CLI to run conversions.
A simple example would look like this:
```bash
docling https://arxiv.org/pdf/2206.01062
```
You can also use 🥚[SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview) via Docling CLI:
```bash
docling --pipeline vlm --vlm-model smoldocling tests/data/pdf/2305.03393v1-pg9.pdf
```
This will use MLX acceleration on supported Apple Silicon hardware.
Read more [here](https://docling-project.github.io/docling/usage/)
## Documentation
Check out Docling's [documentation](https://docling-project.github.io/docling/), for details on