mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-26 20:14:47 +00:00
finalised the first working ASR pipeline with Whisper
Signed-off-by: Peter Staar <taa@zurich.ibm.com>
This commit is contained in:
parent
ed10d09936
commit
43239ff712
@ -31,11 +31,11 @@ from docling.backend.pdf_backend import PdfDocumentBackend
|
||||
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
|
||||
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
|
||||
from docling.datamodel.asr_model_specs import (
|
||||
WHISPER_TINY,
|
||||
WHISPER_SMALL,
|
||||
WHISPER_MEDIUM,
|
||||
WHISPER_BASE,
|
||||
WHISPER_LARGE,
|
||||
WHISPER_MEDIUM,
|
||||
WHISPER_SMALL,
|
||||
WHISPER_TINY,
|
||||
WHISPER_TURBO,
|
||||
AsrModelType,
|
||||
)
|
||||
|
@ -10,14 +10,13 @@ from docling.datamodel.pipeline_options_asr_model import (
|
||||
# AsrResponseFormat,
|
||||
# ApiAsrOptions,
|
||||
InferenceAsrFramework,
|
||||
InlineAsrOptions,
|
||||
InlineAsrNativeWhisperOptions,
|
||||
TransformersModelType,
|
||||
)
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
# SmolDocling
|
||||
WHISPER_TINY = InlineAsrOptions(
|
||||
WHISPER_TINY = InlineAsrNativeWhisperOptions(
|
||||
repo_id="tiny",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
@ -28,8 +27,7 @@ WHISPER_TINY = InlineAsrOptions(
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
|
||||
WHISPER_SMALL = InlineAsrOptions(
|
||||
WHISPER_SMALL = InlineAsrNativeWhisperOptions(
|
||||
repo_id="small",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
@ -40,7 +38,7 @@ WHISPER_SMALL = InlineAsrOptions(
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
WHISPER_MEDIUM = InlineAsrOptions(
|
||||
WHISPER_MEDIUM = InlineAsrNativeWhisperOptions(
|
||||
repo_id="medium",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
@ -51,7 +49,7 @@ WHISPER_MEDIUM = InlineAsrOptions(
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
WHISPER_BASE = InlineAsrOptions(
|
||||
WHISPER_BASE = InlineAsrNativeWhisperOptions(
|
||||
repo_id="base",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
@ -62,7 +60,7 @@ WHISPER_BASE = InlineAsrOptions(
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
WHISPER_LARGE = InlineAsrOptions(
|
||||
WHISPER_LARGE = InlineAsrNativeWhisperOptions(
|
||||
repo_id="large",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
@ -73,7 +71,7 @@ WHISPER_LARGE = InlineAsrOptions(
|
||||
max_time_chunk=30.0,
|
||||
)
|
||||
|
||||
WHISPER_TURBO = InlineAsrOptions(
|
||||
WHISPER_TURBO = InlineAsrNativeWhisperOptions(
|
||||
repo_id="turbo",
|
||||
inference_framework=InferenceAsrFramework.WHISPER,
|
||||
verbose=True,
|
||||
|
@ -27,11 +27,8 @@ class InlineAsrOptions(BaseAsrOptions):
|
||||
|
||||
repo_id: str
|
||||
|
||||
inference_framework: InferenceAsrFramework
|
||||
|
||||
verbose: bool = False
|
||||
timestamps: bool = True
|
||||
word_timestamps: bool = True
|
||||
|
||||
temperature: float = 0.0
|
||||
max_new_tokens: int = 256
|
||||
@ -44,25 +41,17 @@ class InlineAsrOptions(BaseAsrOptions):
|
||||
AcceleratorDevice.MPS,
|
||||
]
|
||||
|
||||
"""
|
||||
repo_id: str
|
||||
trust_remote_code: bool = False
|
||||
load_in_8bit: bool = True
|
||||
llm_int8_threshold: float = 6.0
|
||||
quantized: bool = False
|
||||
|
||||
inference_framework: InferenceFramework
|
||||
transformers_model_type: TransformersModelType = TransformersModelType.AUTOMODEL
|
||||
response_format: AsrResponseFormat
|
||||
|
||||
temperature: float = 0.0
|
||||
stop_strings: List[str] = []
|
||||
extra_generation_config: Dict[str, Any] = {}
|
||||
|
||||
use_kv_cache: bool = True
|
||||
max_new_tokens: int = 4096
|
||||
"""
|
||||
|
||||
@property
|
||||
def repo_cache_folder(self) -> str:
|
||||
return self.repo_id.replace("/", "--")
|
||||
|
||||
|
||||
class InlineAsrNativeWhisperOptions(InlineAsrOptions):
|
||||
inference_framework: InferenceAsrFramework = InferenceAsrFramework.WHISPER
|
||||
|
||||
language: str = "en"
|
||||
supported_devices: List[AcceleratorDevice] = [
|
||||
AcceleratorDevice.CPU,
|
||||
AcceleratorDevice.CUDA,
|
||||
]
|
||||
word_timestamps: bool = True
|
||||
|
@ -28,6 +28,7 @@ from docling.datamodel.pipeline_options import (
|
||||
AsrPipelineOptions,
|
||||
)
|
||||
from docling.datamodel.pipeline_options_asr_model import (
|
||||
InlineAsrNativeWhisperOptions,
|
||||
# AsrResponseFormat,
|
||||
InlineAsrOptions,
|
||||
)
|
||||
@ -36,6 +37,7 @@ from docling.datamodel.pipeline_options_vlm_model import (
|
||||
)
|
||||
from docling.datamodel.settings import settings
|
||||
from docling.pipeline.base_pipeline import BasePipeline
|
||||
from docling.utils.accelerator_utils import decide_device
|
||||
from docling.utils.profiling import ProfilingScope, TimeRecorder
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
@ -96,8 +98,7 @@ class _NativeWhisperModel:
|
||||
enabled: bool,
|
||||
artifacts_path: Optional[Path],
|
||||
accelerator_options: AcceleratorOptions,
|
||||
asr_options: InlineAsrOptions,
|
||||
# model_name: str = "medium",
|
||||
asr_options: InlineAsrNativeWhisperOptions,
|
||||
):
|
||||
"""
|
||||
Transcriber using native Whisper.
|
||||
@ -118,10 +119,25 @@ class _NativeWhisperModel:
|
||||
self.max_tokens = asr_options.max_new_tokens
|
||||
self.temperature = asr_options.temperature
|
||||
|
||||
self.device = decide_device(
|
||||
accelerator_options.device,
|
||||
supported_devices=asr_options.supported_devices,
|
||||
)
|
||||
_log.info(f"Available device for Whisper: {self.device}")
|
||||
|
||||
self.model_name = asr_options.repo_id
|
||||
_log.info(f"loading _NativeWhisperModel({self.model_name})")
|
||||
self.model = whisper.load_model(self.model_name)
|
||||
if artifacts_path is not None:
|
||||
_log.info(f"loading {self.model_name} from {artifacts_path}")
|
||||
self.model = whisper.load_model(
|
||||
name=self.model_name,
|
||||
device=self.device,
|
||||
download_root=str(artifacts_path),
|
||||
)
|
||||
else:
|
||||
self.model = whisper.load_model(
|
||||
name=self.model_name, device=self.device
|
||||
)
|
||||
|
||||
self.verbose = asr_options.verbose
|
||||
self.timestamps = asr_options.timestamps
|
||||
@ -189,15 +205,18 @@ class AsrPipeline(BasePipeline):
|
||||
"When defined, it must point to a folder containing all models required by the pipeline."
|
||||
)
|
||||
|
||||
if isinstance(self.pipeline_options.asr_options, InlineAsrOptions):
|
||||
if isinstance(self.pipeline_options.asr_options, InlineAsrNativeWhisperOptions):
|
||||
asr_options: InlineAsrNativeWhisperOptions = (
|
||||
self.pipeline_options.asr_options
|
||||
)
|
||||
self._model = _NativeWhisperModel(
|
||||
enabled=True, # must be always enabled for this pipeline to make sense.
|
||||
artifacts_path=artifacts_path,
|
||||
accelerator_options=pipeline_options.accelerator_options,
|
||||
asr_options=pipeline_options.asr_options
|
||||
asr_options=asr_options,
|
||||
)
|
||||
else:
|
||||
_log.error("")
|
||||
_log.error(f"No model support for {self.pipeline_options.asr_options}")
|
||||
|
||||
def _determine_status(self, conv_res: ConversionResult) -> ConversionStatus:
|
||||
status = ConversionStatus.SUCCESS
|
||||
|
Loading…
Reference in New Issue
Block a user