mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-26 20:14:47 +00:00
refactoring the download_model
Signed-off-by: Peter Staar <taa@zurich.ibm.com>
This commit is contained in:
parent
3407955a47
commit
4c0bc61e54
@ -269,7 +269,9 @@ class InferenceFramework(str, Enum):
|
||||
OPENAI = "openai"
|
||||
TRANSFORMERS_AutoModelForVision2Seq = "transformers-AutoModelForVision2Seq"
|
||||
TRANSFORMERS_AutoModelForCausalLM = "transformers-AutoModelForCausalLM"
|
||||
TRANSFORMERS_LlavaForConditionalGeneration = "transformers-LlavaForConditionalGeneration"
|
||||
TRANSFORMERS_LlavaForConditionalGeneration = (
|
||||
"transformers-LlavaForConditionalGeneration"
|
||||
)
|
||||
|
||||
|
||||
class HuggingFaceVlmOptions(BaseVlmOptions):
|
||||
|
@ -17,81 +17,7 @@ from docling.utils.profiling import TimeRecorder
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class HuggingFaceVlmModel(BasePageModel):
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
enabled: bool,
|
||||
artifacts_path: Optional[Path],
|
||||
accelerator_options: AcceleratorOptions,
|
||||
vlm_options: HuggingFaceVlmOptions,
|
||||
):
|
||||
self.enabled = enabled
|
||||
|
||||
self.vlm_options = vlm_options
|
||||
|
||||
if self.enabled:
|
||||
import torch
|
||||
from transformers import ( # type: ignore
|
||||
AutoModelForVision2Seq,
|
||||
AutoProcessor,
|
||||
BitsAndBytesConfig,
|
||||
)
|
||||
|
||||
device = decide_device(accelerator_options.device)
|
||||
self.device = device
|
||||
|
||||
_log.debug(f"Available device for HuggingFace VLM: {device}")
|
||||
|
||||
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
||||
|
||||
# PARAMETERS:
|
||||
if artifacts_path is None:
|
||||
artifacts_path = self.download_models(self.vlm_options.repo_id)
|
||||
elif (artifacts_path / repo_cache_folder).exists():
|
||||
artifacts_path = artifacts_path / repo_cache_folder
|
||||
|
||||
self.param_question = vlm_options.prompt # "Perform Layout Analysis."
|
||||
self.param_quantization_config = BitsAndBytesConfig(
|
||||
load_in_8bit=vlm_options.load_in_8bit, # True,
|
||||
llm_int8_threshold=vlm_options.llm_int8_threshold, # 6.0
|
||||
)
|
||||
self.param_quantized = vlm_options.quantized # False
|
||||
|
||||
self.processor = AutoProcessor.from_pretrained(
|
||||
artifacts_path,
|
||||
# trust_remote_code=True,
|
||||
)
|
||||
if not self.param_quantized:
|
||||
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
|
||||
artifacts_path,
|
||||
device_map=self.device,
|
||||
torch_dtype=torch.bfloat16,
|
||||
_attn_implementation=(
|
||||
"flash_attention_2"
|
||||
if self.device.startswith("cuda")
|
||||
and accelerator_options.cuda_use_flash_attention2
|
||||
else "eager"
|
||||
),
|
||||
# trust_remote_code=True,
|
||||
) # .to(self.device)
|
||||
|
||||
else:
|
||||
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
|
||||
artifacts_path,
|
||||
device_map=self.device,
|
||||
torch_dtype="auto",
|
||||
quantization_config=self.param_quantization_config,
|
||||
_attn_implementation=(
|
||||
"flash_attention_2"
|
||||
if self.device.startswith("cuda")
|
||||
and accelerator_options.cuda_use_flash_attention2
|
||||
else "eager"
|
||||
),
|
||||
# trust_remote_code=True,
|
||||
) # .to(self.device)
|
||||
"""
|
||||
|
||||
class HuggingFaceVlmModel:
|
||||
@staticmethod
|
||||
def download_models(
|
||||
repo_id: str,
|
||||
@ -112,80 +38,3 @@ class HuggingFaceVlmModel(BasePageModel):
|
||||
)
|
||||
|
||||
return Path(download_path)
|
||||
|
||||
"""
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
for page in page_batch:
|
||||
assert page._backend is not None
|
||||
if not page._backend.is_valid():
|
||||
yield page
|
||||
else:
|
||||
with TimeRecorder(conv_res, "vlm"):
|
||||
assert page.size is not None
|
||||
|
||||
hi_res_image = page.get_image(scale=2.0) # 144dpi
|
||||
# hi_res_image = page.get_image(scale=1.0) # 72dpi
|
||||
|
||||
if hi_res_image is not None:
|
||||
im_width, im_height = hi_res_image.size
|
||||
|
||||
# populate page_tags with predicted doc tags
|
||||
page_tags = ""
|
||||
|
||||
if hi_res_image:
|
||||
if hi_res_image.mode != "RGB":
|
||||
hi_res_image = hi_res_image.convert("RGB")
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "This is a page from a document.",
|
||||
},
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": self.param_question},
|
||||
],
|
||||
}
|
||||
]
|
||||
prompt = self.processor.apply_chat_template(
|
||||
messages, add_generation_prompt=False
|
||||
)
|
||||
inputs = self.processor(
|
||||
text=prompt, images=[hi_res_image], return_tensors="pt"
|
||||
)
|
||||
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
||||
|
||||
start_time = time.time()
|
||||
# Call model to generate:
|
||||
generated_ids = self.vlm_model.generate(
|
||||
**inputs, max_new_tokens=4096, use_cache=True
|
||||
)
|
||||
|
||||
generation_time = time.time() - start_time
|
||||
generated_texts = self.processor.batch_decode(
|
||||
generated_ids[:, inputs["input_ids"].shape[1] :],
|
||||
skip_special_tokens=False,
|
||||
)[0]
|
||||
|
||||
num_tokens = len(generated_ids[0])
|
||||
page_tags = generated_texts
|
||||
|
||||
_log.debug(
|
||||
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
|
||||
)
|
||||
|
||||
# inference_time = time.time() - start_time
|
||||
# tokens_per_second = num_tokens / generation_time
|
||||
# print("")
|
||||
# print(f"Page Inference Time: {inference_time:.2f} seconds")
|
||||
# print(f"Total tokens on page: {num_tokens:.2f}")
|
||||
# print(f"Tokens/sec: {tokens_per_second:.2f}")
|
||||
# print("")
|
||||
page.predictions.vlm_response = VlmPrediction(text=page_tags)
|
||||
|
||||
yield page
|
||||
"""
|
||||
|
@ -11,6 +11,7 @@ from docling.datamodel.pipeline_options import (
|
||||
HuggingFaceVlmOptions,
|
||||
)
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.models.hf_vlm_model import HuggingFaceVlmModel
|
||||
from docling.utils.profiling import TimeRecorder
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
@ -44,7 +45,10 @@ class HuggingFaceMlxModel(BasePageModel):
|
||||
|
||||
# PARAMETERS:
|
||||
if artifacts_path is None:
|
||||
artifacts_path = self.download_models(self.vlm_options.repo_id)
|
||||
# artifacts_path = self.download_models(self.vlm_options.repo_id)
|
||||
artifacts_path = HuggingFaceVlmModel.download_models(
|
||||
self.vlm_options.repo_id
|
||||
)
|
||||
elif (artifacts_path / repo_cache_folder).exists():
|
||||
artifacts_path = artifacts_path / repo_cache_folder
|
||||
|
||||
@ -54,6 +58,7 @@ class HuggingFaceMlxModel(BasePageModel):
|
||||
self.vlm_model, self.processor = load(artifacts_path)
|
||||
self.config = load_config(artifacts_path)
|
||||
|
||||
"""
|
||||
@staticmethod
|
||||
def download_models(
|
||||
repo_id: str,
|
||||
@ -74,6 +79,7 @@ class HuggingFaceMlxModel(BasePageModel):
|
||||
)
|
||||
|
||||
return Path(download_path)
|
||||
"""
|
||||
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
|
@ -11,6 +11,7 @@ from docling.datamodel.pipeline_options import (
|
||||
HuggingFaceVlmOptions,
|
||||
)
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.models.hf_vlm_model import HuggingFaceVlmModel
|
||||
from docling.utils.accelerator_utils import decide_device
|
||||
from docling.utils.profiling import TimeRecorder
|
||||
|
||||
@ -30,7 +31,6 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
||||
self.trust_remote_code = True
|
||||
|
||||
self.vlm_options = vlm_options
|
||||
print(self.vlm_options)
|
||||
|
||||
if self.enabled:
|
||||
import torch
|
||||
@ -49,7 +49,10 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
||||
|
||||
# PARAMETERS:
|
||||
if artifacts_path is None:
|
||||
artifacts_path = self.download_models(self.vlm_options.repo_id)
|
||||
# artifacts_path = self.download_models(self.vlm_options.repo_id)
|
||||
artifacts_path = HuggingFaceVlmModel.download_models(
|
||||
self.vlm_options.repo_id
|
||||
)
|
||||
elif (artifacts_path / repo_cache_folder).exists():
|
||||
artifacts_path = artifacts_path / repo_cache_folder
|
||||
|
||||
@ -99,6 +102,7 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
||||
# Load generation config
|
||||
self.generation_config = GenerationConfig.from_pretrained(model_path)
|
||||
|
||||
"""
|
||||
@staticmethod
|
||||
def download_models(
|
||||
repo_id: str,
|
||||
@ -119,6 +123,7 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
||||
)
|
||||
|
||||
return Path(download_path)
|
||||
"""
|
||||
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
|
@ -11,6 +11,7 @@ from docling.datamodel.pipeline_options import (
|
||||
HuggingFaceVlmOptions,
|
||||
)
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.models.hf_vlm_model import HuggingFaceVlmModel
|
||||
from docling.utils.accelerator_utils import decide_device
|
||||
from docling.utils.profiling import TimeRecorder
|
||||
|
||||
@ -46,7 +47,10 @@ class HuggingFaceVlmModel_AutoModelForVision2Seq(BasePageModel):
|
||||
|
||||
# PARAMETERS:
|
||||
if artifacts_path is None:
|
||||
artifacts_path = self.download_models(self.vlm_options.repo_id)
|
||||
# artifacts_path = self.download_models(self.vlm_options.repo_id)
|
||||
artifacts_path = HuggingFaceVlmModel.download_models(
|
||||
self.vlm_options.repo_id
|
||||
)
|
||||
elif (artifacts_path / repo_cache_folder).exists():
|
||||
artifacts_path = artifacts_path / repo_cache_folder
|
||||
|
||||
@ -90,6 +94,7 @@ class HuggingFaceVlmModel_AutoModelForVision2Seq(BasePageModel):
|
||||
# trust_remote_code=True,
|
||||
) # .to(self.device)
|
||||
|
||||
"""
|
||||
@staticmethod
|
||||
def download_models(
|
||||
repo_id: str,
|
||||
@ -110,6 +115,7 @@ class HuggingFaceVlmModel_AutoModelForVision2Seq(BasePageModel):
|
||||
)
|
||||
|
||||
return Path(download_path)
|
||||
"""
|
||||
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
|
@ -4,6 +4,8 @@ from collections.abc import Iterable
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
||||
|
||||
from docling.datamodel.base_models import Page, VlmPrediction
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options import (
|
||||
@ -11,11 +13,10 @@ from docling.datamodel.pipeline_options import (
|
||||
HuggingFaceVlmOptions,
|
||||
)
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.models.hf_vlm_model import HuggingFaceVlmModel
|
||||
from docling.utils.accelerator_utils import decide_device
|
||||
from docling.utils.profiling import TimeRecorder
|
||||
|
||||
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -32,13 +33,12 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
|
||||
self.trust_remote_code = True
|
||||
|
||||
self.vlm_options = vlm_options
|
||||
print(self.vlm_options)
|
||||
|
||||
if self.enabled:
|
||||
import torch
|
||||
from transformers import ( # type: ignore
|
||||
LlavaForConditionalGeneration,
|
||||
AutoProcessor,
|
||||
LlavaForConditionalGeneration,
|
||||
)
|
||||
|
||||
self.device = decide_device(accelerator_options.device)
|
||||
@ -51,7 +51,10 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
|
||||
|
||||
# PARAMETERS:
|
||||
if artifacts_path is None:
|
||||
artifacts_path = self.download_models(self.vlm_options.repo_id)
|
||||
# artifacts_path = self.download_models(self.vlm_options.repo_id)
|
||||
artifacts_path = HuggingFaceVlmModel.download_models(
|
||||
self.vlm_options.repo_id
|
||||
)
|
||||
elif (artifacts_path / repo_cache_folder).exists():
|
||||
artifacts_path = artifacts_path / repo_cache_folder
|
||||
|
||||
@ -64,9 +67,11 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
|
||||
artifacts_path,
|
||||
trust_remote_code=self.trust_remote_code,
|
||||
)
|
||||
self.vlm_model = LlavaForConditionalGeneration.from_pretrained(artifacts_path).to(self.device)
|
||||
|
||||
self.vlm_model = LlavaForConditionalGeneration.from_pretrained(
|
||||
artifacts_path
|
||||
).to(self.device)
|
||||
|
||||
"""
|
||||
@staticmethod
|
||||
def download_models(
|
||||
repo_id: str,
|
||||
@ -87,6 +92,7 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
|
||||
)
|
||||
|
||||
return Path(download_path)
|
||||
"""
|
||||
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
@ -109,20 +115,22 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
|
||||
if hi_res_image.mode != "RGB":
|
||||
hi_res_image = hi_res_image.convert("RGB")
|
||||
|
||||
images = [
|
||||
hi_res_image
|
||||
]
|
||||
images = [hi_res_image]
|
||||
prompt = "<s>[INST]Describe the images.\n[IMG][/INST]"
|
||||
|
||||
inputs = self.processor(text=prompt, images=images, return_tensors="pt", use_fast=False).to(self.device) #.to("cuda")
|
||||
inputs = self.processor(
|
||||
text=prompt, images=images, return_tensors="pt", use_fast=False
|
||||
).to(self.device) # .to("cuda")
|
||||
generate_ids = self.vlm_model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=self.max_new_tokens,
|
||||
use_cache=True # Enables KV caching which can improve performance
|
||||
use_cache=True, # Enables KV caching which can improve performance
|
||||
)
|
||||
response = self.processor.batch_decode(generate_ids,
|
||||
response = self.processor.batch_decode(
|
||||
generate_ids,
|
||||
skip_special_tokens=True,
|
||||
clean_up_tokenization_spaces=False)[0]
|
||||
clean_up_tokenization_spaces=False,
|
||||
)[0]
|
||||
print(f"response: {response}")
|
||||
"""
|
||||
_log.debug(
|
||||
|
@ -1,33 +0,0 @@
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from docling.datamodel.base_models import Page, VlmPrediction
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options import (
|
||||
AcceleratorOptions,
|
||||
HuggingFaceVlmOptions,
|
||||
)
|
||||
from docling.models.base_model import BasePageModel
|
||||
from docling.utils.accelerator_utils import decide_device
|
||||
from docling.utils.profiling import TimeRecorder
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class HuggingFaceVlmModel_pixtral_12b_2409(BasePageModel):
|
||||
def __init__(
|
||||
self,
|
||||
enabled: bool,
|
||||
artifacts_path: Optional[Path],
|
||||
accelerator_options: AcceleratorOptions,
|
||||
vlm_options: HuggingFaceVlmOptions,
|
||||
):
|
||||
self.enabled = enabled
|
||||
|
||||
self.vlm_options = vlm_options
|
||||
|
||||
if self.enabled:
|
||||
import torch
|
@ -24,18 +24,16 @@ from docling.datamodel.settings import settings
|
||||
from docling.models.api_vlm_model import ApiVlmModel
|
||||
|
||||
# from docling.models.hf_vlm_model import HuggingFaceVlmModel
|
||||
from docling.models.hf_vlm_models.hf_vlm_mlx_model import (
|
||||
HuggingFaceMlxModel
|
||||
)
|
||||
from docling.models.hf_vlm_models.hf_vlm_model_LlavaForConditionalGeneration import (
|
||||
HuggingFaceVlmModel_LlavaForConditionalGeneration
|
||||
)
|
||||
from docling.models.hf_vlm_models.hf_vlm_mlx_model import HuggingFaceMlxModel
|
||||
from docling.models.hf_vlm_models.hf_vlm_model_AutoModelForCausalLM import (
|
||||
HuggingFaceVlmModel_AutoModelForCausalLM,
|
||||
)
|
||||
from docling.models.hf_vlm_models.hf_vlm_model_AutoModelForVision2Seq import (
|
||||
HuggingFaceVlmModel_AutoModelForVision2Seq,
|
||||
)
|
||||
from docling.models.hf_vlm_models.hf_vlm_model_LlavaForConditionalGeneration import (
|
||||
HuggingFaceVlmModel_LlavaForConditionalGeneration,
|
||||
)
|
||||
from docling.pipeline.base_pipeline import PaginatedPipeline
|
||||
from docling.utils.profiling import ProfilingScope, TimeRecorder
|
||||
|
||||
@ -126,7 +124,9 @@ class VlmPipeline(PaginatedPipeline):
|
||||
),
|
||||
]
|
||||
else:
|
||||
raise ValueError(f"Could not instantiate the right type of VLM pipeline: {vlm_options.inference_framework}")
|
||||
raise ValueError(
|
||||
f"Could not instantiate the right type of VLM pipeline: {vlm_options.inference_framework}"
|
||||
)
|
||||
|
||||
self.enrichment_pipe = [
|
||||
# Other models working on `NodeItem` elements in the DoclingDocument
|
||||
|
Loading…
Reference in New Issue
Block a user