Merge from main

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
This commit is contained in:
Christoph Auer 2025-06-30 14:39:17 +02:00
commit 4cfb2cd0a9
107 changed files with 4575 additions and 2333 deletions

View File

@ -22,8 +22,8 @@ jobs:
python-version: ['3.9', '3.10', '3.11', '3.12', '3.13']
steps:
- uses: actions/checkout@v4
- name: Install tesseract
run: sudo apt-get update && sudo apt-get install -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-fra tesseract-ocr-deu tesseract-ocr-spa tesseract-ocr-script-latn libleptonica-dev libtesseract-dev pkg-config
- name: Install tesseract and ffmpeg
run: sudo apt-get update && sudo apt-get install -y ffmpeg tesseract-ocr tesseract-ocr-eng tesseract-ocr-fra tesseract-ocr-deu tesseract-ocr-spa tesseract-ocr-script-latn libleptonica-dev libtesseract-dev pkg-config
- name: Set TESSDATA_PREFIX
run: |
echo "TESSDATA_PREFIX=$(dpkg -L tesseract-ocr-eng | grep tessdata$)" >> "$GITHUB_ENV"
@ -60,7 +60,7 @@ jobs:
run: |
for file in docs/examples/*.py; do
# Skip batch_convert.py
if [[ "$(basename "$file")" =~ ^(batch_convert|compare_vlm_models|minimal|minimal_vlm_pipeline|export_multimodal|custom_convert|develop_picture_enrichment|rapidocr_with_custom_models|offline_convert|pictures_description|pictures_description_api|vlm_pipeline_api_model).py ]]; then
if [[ "$(basename "$file")" =~ ^(batch_convert|compare_vlm_models|minimal|minimal_vlm_pipeline|minimal_asr_pipeline|export_multimodal|custom_convert|develop_picture_enrichment|rapidocr_with_custom_models|offline_convert|pictures_description|pictures_description_api|vlm_pipeline_api_model).py ]]; then
echo "Skipping $file"
continue
fi

View File

@ -1,3 +1,42 @@
## [v2.39.0](https://github.com/docling-project/docling/releases/tag/v2.39.0) - 2025-06-27
### Feature
* Leverage new list modeling, capture default markers ([#1856](https://github.com/docling-project/docling/issues/1856)) ([`0533da1`](https://github.com/docling-project/docling/commit/0533da1923598e4a2d6392283f6de0f9c7002b01))
### Fix
* **markdown:** Make parsing of rich table cells valid ([#1821](https://github.com/docling-project/docling/issues/1821)) ([`e79e4f0`](https://github.com/docling-project/docling/commit/e79e4f0ab6c5b8276316e423b14c9821165049f2))
## [v2.38.1](https://github.com/docling-project/docling/releases/tag/v2.38.1) - 2025-06-25
### Fix
* Updated granite vision model version for picture description ([#1852](https://github.com/docling-project/docling/issues/1852)) ([`d337825`](https://github.com/docling-project/docling/commit/d337825b8ef9ab3ec00c1496c340041e406bd271))
* **markdown:** Fix single-formatted headings & list items ([#1820](https://github.com/docling-project/docling/issues/1820)) ([`7c5614a`](https://github.com/docling-project/docling/commit/7c5614a37a316950c9a1d123e4fd94e0e831aca0))
* Fix response type of ollama ([#1850](https://github.com/docling-project/docling/issues/1850)) ([`41e8cae`](https://github.com/docling-project/docling/commit/41e8cae26b625b95ffab021fb4dc337249e8caad))
* Handle missing runs to avoid out of range exception ([#1844](https://github.com/docling-project/docling/issues/1844)) ([`4002de1`](https://github.com/docling-project/docling/commit/4002de1f9220a6568ed87ba726254cde3ab1168a))
## [v2.38.0](https://github.com/docling-project/docling/releases/tag/v2.38.0) - 2025-06-23
### Feature
* Support audio input ([#1763](https://github.com/docling-project/docling/issues/1763)) ([`1557e7c`](https://github.com/docling-project/docling/commit/1557e7ce3e036fb51eb118296f5cbff3b6dfbfa7))
* **markdown:** Add formatting & improve inline support ([#1804](https://github.com/docling-project/docling/issues/1804)) ([`861abcd`](https://github.com/docling-project/docling/commit/861abcdcb0d406342b9566f81203b87cf32b7ad0))
* Maximum image size for Vlm models ([#1802](https://github.com/docling-project/docling/issues/1802)) ([`215b540`](https://github.com/docling-project/docling/commit/215b540f6c078a72464310ef22975ebb6cde4f0a))
### Fix
* **docx:** Ensure list items have a list parent ([#1827](https://github.com/docling-project/docling/issues/1827)) ([`d26dac6`](https://github.com/docling-project/docling/commit/d26dac61a86b0af5b16686f78956ba047bcbddba))
* **msword_backend:** Identify text in the same line after an image #1425 ([#1610](https://github.com/docling-project/docling/issues/1610)) ([`1350a8d`](https://github.com/docling-project/docling/commit/1350a8d3e5ea3c4b4d506757758880c8f78efd8c))
* Ensure uninitialized pages are removed before assembling document ([#1812](https://github.com/docling-project/docling/issues/1812)) ([`dd7f64f`](https://github.com/docling-project/docling/commit/dd7f64ff28226cd9964fc4d8ba807b2c8a6358ef))
* Formula conversion with page_range param set ([#1791](https://github.com/docling-project/docling/issues/1791)) ([`dbab30e`](https://github.com/docling-project/docling/commit/dbab30e92cc1d130ce7f9335ab9c46aa7a30930d))
### Documentation
* Update readme and add ASR example ([#1836](https://github.com/docling-project/docling/issues/1836)) ([`f3ae302`](https://github.com/docling-project/docling/commit/f3ae3029b8a6d6f0109383fbc82ebf9da3942afd))
* Support running examples from root or subfolder ([#1816](https://github.com/docling-project/docling/issues/1816)) ([`64ac043`](https://github.com/docling-project/docling/commit/64ac043786efdece0c61827051a5b41dddf6c5d7))
## [v2.37.0](https://github.com/docling-project/docling/releases/tag/v2.37.0) - 2025-06-16
### Feature

View File

@ -28,14 +28,15 @@ Docling simplifies document processing, parsing diverse formats — including ad
## Features
* 🗂️ Parsing of [multiple document formats][supported_formats] incl. PDF, DOCX, XLSX, HTML, images, and more
* 🗂️ Parsing of [multiple document formats][supported_formats] incl. PDF, DOCX, PPTX, XLSX, HTML, WAV, MP3, images (PNG, TIFF, JPEG, ...), and more
* 📑 Advanced PDF understanding incl. page layout, reading order, table structure, code, formulas, image classification, and more
* 🧬 Unified, expressive [DoclingDocument][docling_document] representation format
* ↪️ Various [export formats][supported_formats] and options, including Markdown, HTML, and lossless JSON
* ↪️ Various [export formats][supported_formats] and options, including Markdown, HTML, [DocTags](https://arxiv.org/abs/2503.11576) and lossless JSON
* 🔒 Local execution capabilities for sensitive data and air-gapped environments
* 🤖 Plug-and-play [integrations][integrations] incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
* 🔍 Extensive OCR support for scanned PDFs and images
* 🥚 Support of several Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview))
* 👓 Support of several Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview))
* 🎙️ Support for Audio with Automatic Speech Recognition (ASR) models
* 💻 Simple and convenient CLI
### Coming soon

View File

@ -17,6 +17,7 @@ from docling_core.types.doc import (
TableData,
)
from docling_core.types.doc.document import ContentLayer
from pydantic import BaseModel
from typing_extensions import override
from docling.backend.abstract_backend import DeclarativeDocumentBackend
@ -48,6 +49,11 @@ TAGS_FOR_NODE_ITEMS: Final = [
]
class _Context(BaseModel):
list_ordered_flag_by_ref: dict[str, bool] = {}
list_start_by_ref: dict[str, int] = {}
class HTMLDocumentBackend(DeclarativeDocumentBackend):
@override
def __init__(self, in_doc: "InputDocument", path_or_stream: Union[BytesIO, Path]):
@ -59,6 +65,7 @@ class HTMLDocumentBackend(DeclarativeDocumentBackend):
self.max_levels = 10
self.level = 0
self.parents: dict[int, Optional[Union[DocItem, GroupItem]]] = {}
self.ctx = _Context()
for i in range(self.max_levels):
self.parents[i] = None
@ -121,6 +128,7 @@ class HTMLDocumentBackend(DeclarativeDocumentBackend):
self.content_layer = (
ContentLayer.BODY if headers is None else ContentLayer.FURNITURE
)
self.ctx = _Context() # reset context
self.walk(content, doc)
else:
raise RuntimeError(
@ -294,28 +302,25 @@ class HTMLDocumentBackend(DeclarativeDocumentBackend):
def handle_list(self, element: Tag, doc: DoclingDocument) -> None:
"""Handles list tags (ul, ol) and their list items."""
if element.name == "ul":
# create a list group
self.parents[self.level + 1] = doc.add_group(
parent=self.parents[self.level],
name="list",
label=GroupLabel.LIST,
content_layer=self.content_layer,
)
elif element.name == "ol":
start: Optional[int] = None
if is_ordered := element.name == "ol":
start_attr = element.get("start")
start: int = (
int(start_attr)
if isinstance(start_attr, str) and start_attr.isnumeric()
else 1
)
# create a list group
self.parents[self.level + 1] = doc.add_group(
parent=self.parents[self.level],
name="ordered list" + (f" start {start}" if start != 1 else ""),
label=GroupLabel.ORDERED_LIST,
content_layer=self.content_layer,
)
if isinstance(start_attr, str) and start_attr.isnumeric():
start = int(start_attr)
name = "ordered list" + (f" start {start}" if start is not None else "")
else:
name = "list"
# create a list group
list_group = doc.add_list_group(
name=name,
parent=self.parents[self.level],
content_layer=self.content_layer,
)
self.parents[self.level + 1] = list_group
self.ctx.list_ordered_flag_by_ref[list_group.self_ref] = is_ordered
if is_ordered and start is not None:
self.ctx.list_start_by_ref[list_group.self_ref] = start
self.level += 1
self.walk(element, doc)
@ -331,16 +336,11 @@ class HTMLDocumentBackend(DeclarativeDocumentBackend):
if parent is None:
_log.debug(f"list-item has no parent in DoclingDocument: {element}")
return
parent_label: str = parent.label
index_in_list = len(parent.children) + 1
if (
parent_label == GroupLabel.ORDERED_LIST
and isinstance(parent, GroupItem)
and parent.name
):
start_in_list: str = parent.name.split(" ")[-1]
start: int = int(start_in_list) if start_in_list.isnumeric() else 1
index_in_list += start - 1
enumerated = self.ctx.list_ordered_flag_by_ref.get(parent.self_ref, False)
if enumerated and (start := self.ctx.list_start_by_ref.get(parent.self_ref)):
marker = f"{start + len(parent.children)}."
else:
marker = ""
if nested_list:
# Text in list item can be hidden within hierarchy, hence
@ -350,12 +350,6 @@ class HTMLDocumentBackend(DeclarativeDocumentBackend):
text = text.replace("\n", "").replace("\r", "")
text = " ".join(text.split()).strip()
marker = ""
enumerated = False
if parent_label == GroupLabel.ORDERED_LIST:
marker = str(index_in_list)
enumerated = True
if len(text) > 0:
# create a list-item
self.parents[self.level + 1] = doc.add_list_item(
@ -375,11 +369,6 @@ class HTMLDocumentBackend(DeclarativeDocumentBackend):
elif element.text.strip():
text = element.text.strip()
marker = ""
enumerated = False
if parent_label == GroupLabel.ORDERED_LIST:
marker = f"{index_in_list!s}."
enumerated = True
doc.add_list_item(
text=text,
enumerated=enumerated,

View File

@ -2,9 +2,10 @@ import logging
import re
import warnings
from copy import deepcopy
from enum import Enum
from io import BytesIO
from pathlib import Path
from typing import List, Optional, Set, Union
from typing import List, Literal, Optional, Set, Union
import marko
import marko.element
@ -13,15 +14,15 @@ from docling_core.types.doc import (
DocItemLabel,
DoclingDocument,
DocumentOrigin,
GroupLabel,
NodeItem,
TableCell,
TableData,
TextItem,
)
from docling_core.types.doc.document import Formatting, OrderedList, UnorderedList
from docling_core.types.doc.document import Formatting
from marko import Markdown
from pydantic import AnyUrl, TypeAdapter
from pydantic import AnyUrl, BaseModel, Field, TypeAdapter
from typing_extensions import Annotated
from docling.backend.abstract_backend import DeclarativeDocumentBackend
from docling.backend.html_backend import HTMLDocumentBackend
@ -35,6 +36,32 @@ _START_MARKER = f"#_#_{_MARKER_BODY}_START_#_#"
_STOP_MARKER = f"#_#_{_MARKER_BODY}_STOP_#_#"
class _PendingCreationType(str, Enum):
"""CoordOrigin."""
HEADING = "heading"
LIST_ITEM = "list_item"
class _HeadingCreationPayload(BaseModel):
kind: Literal["heading"] = "heading"
level: int
class _ListItemCreationPayload(BaseModel):
kind: Literal["list_item"] = "list_item"
enumerated: bool
_CreationPayload = Annotated[
Union[
_HeadingCreationPayload,
_ListItemCreationPayload,
],
Field(discriminator="kind"),
]
class MarkdownDocumentBackend(DeclarativeDocumentBackend):
def _shorten_underscore_sequences(self, markdown_text: str, max_length: int = 10):
# This regex will match any sequence of underscores
@ -155,6 +182,50 @@ class MarkdownDocumentBackend(DeclarativeDocumentBackend):
doc.add_table(data=table_data)
return
def _create_list_item(
self,
doc: DoclingDocument,
parent_item: Optional[NodeItem],
text: str,
enumerated: bool,
formatting: Optional[Formatting] = None,
hyperlink: Optional[Union[AnyUrl, Path]] = None,
):
item = doc.add_list_item(
text=text,
enumerated=enumerated,
parent=parent_item,
formatting=formatting,
hyperlink=hyperlink,
)
return item
def _create_heading_item(
self,
doc: DoclingDocument,
parent_item: Optional[NodeItem],
text: str,
level: int,
formatting: Optional[Formatting] = None,
hyperlink: Optional[Union[AnyUrl, Path]] = None,
):
if level == 1:
item = doc.add_title(
text=text,
parent=parent_item,
formatting=formatting,
hyperlink=hyperlink,
)
else:
item = doc.add_heading(
text=text,
level=level - 1,
parent=parent_item,
formatting=formatting,
hyperlink=hyperlink,
)
return item
def _iterate_elements( # noqa: C901
self,
*,
@ -162,6 +233,10 @@ class MarkdownDocumentBackend(DeclarativeDocumentBackend):
depth: int,
doc: DoclingDocument,
visited: Set[marko.element.Element],
creation_stack: list[
_CreationPayload
], # stack for lazy item creation triggered deep in marko's AST (on RawText)
list_ordered_flag_by_ref: dict[str, bool],
parent_item: Optional[NodeItem] = None,
formatting: Optional[Formatting] = None,
hyperlink: Optional[Union[AnyUrl, Path]] = None,
@ -177,28 +252,17 @@ class MarkdownDocumentBackend(DeclarativeDocumentBackend):
f" - Heading level {element.level}, content: {element.children[0].children}" # type: ignore
)
if len(element.children) == 1:
child = element.children[0]
snippet_text = str(child.children) # type: ignore
visited.add(child)
else:
snippet_text = "" # inline group will be created
if element.level == 1:
parent_item = doc.add_title(
text=snippet_text,
parent=parent_item,
if len(element.children) > 1: # inline group will be created further down
parent_item = self._create_heading_item(
doc=doc,
parent_item=parent_item,
text="",
level=element.level,
formatting=formatting,
hyperlink=hyperlink,
)
else:
parent_item = doc.add_heading(
text=snippet_text,
level=element.level - 1,
parent=parent_item,
formatting=formatting,
hyperlink=hyperlink,
)
creation_stack.append(_HeadingCreationPayload(level=element.level))
elif isinstance(element, marko.block.List):
has_non_empty_list_items = False
@ -210,10 +274,8 @@ class MarkdownDocumentBackend(DeclarativeDocumentBackend):
self._close_table(doc)
_log.debug(f" - List {'ordered' if element.ordered else 'unordered'}")
if has_non_empty_list_items:
label = GroupLabel.ORDERED_LIST if element.ordered else GroupLabel.LIST
parent_item = doc.add_group(
label=label, name="list", parent=parent_item
)
parent_item = doc.add_list_group(name="list", parent=parent_item)
list_ordered_flag_by_ref[parent_item.self_ref] = element.ordered
elif (
isinstance(element, marko.block.ListItem)
@ -224,22 +286,22 @@ class MarkdownDocumentBackend(DeclarativeDocumentBackend):
self._close_table(doc)
_log.debug(" - List item")
if len(child.children) == 1:
snippet_text = str(child.children[0].children) # type: ignore
visited.add(child)
else:
snippet_text = "" # inline group will be created
is_numbered = isinstance(parent_item, OrderedList)
if not isinstance(parent_item, (OrderedList, UnorderedList)):
_log.warning("ListItem would have not had a list parent, adding one.")
parent_item = doc.add_unordered_list(parent=parent_item)
parent_item = doc.add_list_item(
enumerated=is_numbered,
parent=parent_item,
text=snippet_text,
formatting=formatting,
hyperlink=hyperlink,
enumerated = (
list_ordered_flag_by_ref.get(parent_item.self_ref, False)
if parent_item
else False
)
if len(child.children) > 1: # inline group will be created further down
parent_item = self._create_list_item(
doc=doc,
parent_item=parent_item,
text="",
enumerated=enumerated,
formatting=formatting,
hyperlink=hyperlink,
)
else:
creation_stack.append(_ListItemCreationPayload(enumerated=enumerated))
elif isinstance(element, marko.inline.Image):
self._close_table(doc)
@ -276,7 +338,7 @@ class MarkdownDocumentBackend(DeclarativeDocumentBackend):
_log.debug(f" - Paragraph (raw text): {element.children}")
snippet_text = element.children.strip()
# Detect start of the table:
if "|" in snippet_text:
if "|" in snippet_text or self.in_table:
# most likely part of the markdown table
self.in_table = True
if len(self.md_table_buffer) > 0:
@ -285,13 +347,46 @@ class MarkdownDocumentBackend(DeclarativeDocumentBackend):
self.md_table_buffer.append(snippet_text)
elif snippet_text:
self._close_table(doc)
doc.add_text(
label=DocItemLabel.TEXT,
parent=parent_item,
text=snippet_text,
formatting=formatting,
hyperlink=hyperlink,
)
if creation_stack:
while len(creation_stack) > 0:
to_create = creation_stack.pop()
if isinstance(to_create, _ListItemCreationPayload):
enumerated = (
list_ordered_flag_by_ref.get(
parent_item.self_ref, False
)
if parent_item
else False
)
parent_item = self._create_list_item(
doc=doc,
parent_item=parent_item,
text=snippet_text,
enumerated=enumerated,
formatting=formatting,
hyperlink=hyperlink,
)
elif isinstance(to_create, _HeadingCreationPayload):
# not keeping as parent_item as logic for correctly tracking
# that not implemented yet (section components not captured
# as heading children in marko)
self._create_heading_item(
doc=doc,
parent_item=parent_item,
text=snippet_text,
level=to_create.level,
formatting=formatting,
hyperlink=hyperlink,
)
else:
doc.add_text(
label=DocItemLabel.TEXT,
parent=parent_item,
text=snippet_text,
formatting=formatting,
hyperlink=hyperlink,
)
elif isinstance(element, marko.inline.CodeSpan):
self._close_table(doc)
@ -353,7 +448,6 @@ class MarkdownDocumentBackend(DeclarativeDocumentBackend):
parent_item = doc.add_inline_group(parent=parent_item)
processed_block_types = (
# marko.block.Heading,
marko.block.CodeBlock,
marko.block.FencedCode,
marko.inline.RawText,
@ -369,6 +463,8 @@ class MarkdownDocumentBackend(DeclarativeDocumentBackend):
depth=depth + 1,
doc=doc,
visited=visited,
creation_stack=creation_stack,
list_ordered_flag_by_ref=list_ordered_flag_by_ref,
parent_item=parent_item,
formatting=formatting,
hyperlink=hyperlink,
@ -412,6 +508,8 @@ class MarkdownDocumentBackend(DeclarativeDocumentBackend):
doc=doc,
parent_item=None,
visited=set(),
creation_stack=[],
list_ordered_flag_by_ref={},
)
self._close_table(doc=doc) # handle any last hanging table

View File

@ -121,7 +121,9 @@ class MsPowerpointDocumentBackend(DeclarativeDocumentBackend, PaginatedDocumentB
return prov
def handle_text_elements(self, shape, parent_slide, slide_ind, doc, slide_size):
def handle_text_elements(
self, shape, parent_slide, slide_ind, doc: DoclingDocument, slide_size
):
is_list_group_created = False
enum_list_item_value = 0
new_list = None
@ -165,10 +167,7 @@ class MsPowerpointDocumentBackend(DeclarativeDocumentBackend, PaginatedDocumentB
enumerated = bullet_type == "Numbered"
if not is_list_group_created:
new_list = doc.add_group(
label=GroupLabel.ORDERED_LIST
if enumerated
else GroupLabel.LIST,
new_list = doc.add_list_group(
name="list",
parent=parent_slide,
)

View File

@ -10,11 +10,12 @@ from docling_core.types.doc import (
DocumentOrigin,
GroupLabel,
ImageRef,
ListGroup,
NodeItem,
TableCell,
TableData,
)
from docling_core.types.doc.document import Formatting, OrderedList, UnorderedList
from docling_core.types.doc.document import Formatting
from docx import Document
from docx.document import Document as DocxDocument
from docx.oxml.table import CT_Tc
@ -397,7 +398,11 @@ class MsWordDocumentBackend(DeclarativeDocumentBackend):
if isinstance(c, Hyperlink):
text = c.text
hyperlink = Path(c.address)
format = self._get_format_from_run(c.runs[0])
format = (
self._get_format_from_run(c.runs[0])
if c.runs and len(c.runs) > 0
else None
)
elif isinstance(c, Run):
text = c.text
hyperlink = None
@ -684,7 +689,7 @@ class MsWordDocumentBackend(DeclarativeDocumentBackend):
paragraph_elements: list,
) -> Optional[NodeItem]:
return (
doc.add_group(label=GroupLabel.INLINE, parent=prev_parent)
doc.add_inline_group(parent=prev_parent)
if len(paragraph_elements) > 1
else prev_parent
)
@ -777,9 +782,7 @@ class MsWordDocumentBackend(DeclarativeDocumentBackend):
else:
# Inline equation
level = self._get_level()
inline_equation = doc.add_group(
label=GroupLabel.INLINE, parent=self.parents[level - 1]
)
inline_equation = doc.add_inline_group(parent=self.parents[level - 1])
text_tmp = text
for eq in equations:
if len(text_tmp) == 0:
@ -927,18 +930,22 @@ class MsWordDocumentBackend(DeclarativeDocumentBackend):
level: int,
) -> None:
# This should not happen by construction
if not isinstance(self.parents[level], (OrderedList, UnorderedList)):
if not isinstance(self.parents[level], ListGroup):
return
if not elements:
return
if len(elements) == 1:
text, format, hyperlink = elements[0]
doc.add_list_item(
marker=marker,
enumerated=enumerated,
parent=self.parents[level],
text=text,
formatting=format,
hyperlink=hyperlink,
)
if text:
doc.add_list_item(
marker=marker,
enumerated=enumerated,
parent=self.parents[level],
text=text,
formatting=format,
hyperlink=hyperlink,
)
else:
new_item = doc.add_list_item(
marker=marker,
@ -946,15 +953,16 @@ class MsWordDocumentBackend(DeclarativeDocumentBackend):
parent=self.parents[level],
text="",
)
new_parent = doc.add_group(label=GroupLabel.INLINE, parent=new_item)
new_parent = doc.add_inline_group(parent=new_item)
for text, format, hyperlink in elements:
doc.add_text(
label=DocItemLabel.TEXT,
parent=new_parent,
text=text,
formatting=format,
hyperlink=hyperlink,
)
if text:
doc.add_text(
label=DocItemLabel.TEXT,
parent=new_parent,
text=text,
formatting=format,
hyperlink=hyperlink,
)
def _add_list_item(
self,
@ -975,8 +983,8 @@ class MsWordDocumentBackend(DeclarativeDocumentBackend):
if self._prev_numid() is None: # Open new list
self.level_at_new_list = level
self.parents[level] = doc.add_group(
label=GroupLabel.LIST, name="list", parent=self.parents[level - 1]
self.parents[level] = doc.add_list_group(
name="list", parent=self.parents[level - 1]
)
# Set marker and enumerated arguments if this is an enumeration element.
@ -997,19 +1005,10 @@ class MsWordDocumentBackend(DeclarativeDocumentBackend):
self.level_at_new_list + prev_indent + 1,
self.level_at_new_list + ilevel + 1,
):
# Determine if this is an unordered list or an ordered list.
# Set GroupLabel.ORDERED_LIST when it fits.
self.listIter = 0
if is_numbered:
self.parents[i] = doc.add_group(
label=GroupLabel.ORDERED_LIST,
name="list",
parent=self.parents[i - 1],
)
else:
self.parents[i] = doc.add_group(
label=GroupLabel.LIST, name="list", parent=self.parents[i - 1]
)
self.parents[i] = doc.add_list_group(
name="list", parent=self.parents[i - 1]
)
# TODO: Set marker and enumerated arguments if this is an enumeration element.
self.listIter += 1

View File

@ -0,0 +1,51 @@
import logging
from io import BytesIO
from pathlib import Path
from typing import Set, Union
from docling.backend.abstract_backend import AbstractDocumentBackend
from docling.datamodel.base_models import InputFormat
from docling.datamodel.document import InputDocument
_log = logging.getLogger(__name__)
class NoOpBackend(AbstractDocumentBackend):
"""
A no-op backend that only validates input existence.
Used e.g. for audio files where actual processing is handled by the ASR pipeline.
"""
def __init__(self, in_doc: "InputDocument", path_or_stream: Union[BytesIO, Path]):
super().__init__(in_doc, path_or_stream)
_log.debug(f"NoOpBackend initialized for: {path_or_stream}")
# Validate input
try:
if isinstance(self.path_or_stream, BytesIO):
# Check if stream has content
self.valid = len(self.path_or_stream.getvalue()) > 0
_log.debug(
f"BytesIO stream length: {len(self.path_or_stream.getvalue())}"
)
elif isinstance(self.path_or_stream, Path):
# Check if file exists
self.valid = self.path_or_stream.exists()
_log.debug(f"File exists: {self.valid}")
else:
self.valid = False
except Exception as e:
_log.error(f"NoOpBackend validation failed: {e}")
self.valid = False
def is_valid(self) -> bool:
return self.valid
@classmethod
def supports_pagination(cls) -> bool:
return False
@classmethod
def supported_formats(cls) -> Set[InputFormat]:
return set(InputFormat)

View File

@ -29,6 +29,15 @@ from docling.backend.docling_parse_v4_backend import DoclingParseV4DocumentBacke
from docling.backend.pdf_backend import PdfDocumentBackend
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
from docling.datamodel.asr_model_specs import (
WHISPER_BASE,
WHISPER_LARGE,
WHISPER_MEDIUM,
WHISPER_SMALL,
WHISPER_TINY,
WHISPER_TURBO,
AsrModelType,
)
from docling.datamodel.base_models import (
ConversionStatus,
FormatToExtensions,
@ -37,12 +46,14 @@ from docling.datamodel.base_models import (
)
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
AsrPipelineOptions,
EasyOcrOptions,
OcrOptions,
PaginatedPipelineOptions,
PdfBackend,
PdfPipeline,
PdfPipelineOptions,
PipelineOptions,
ProcessingPipeline,
TableFormerMode,
VlmPipelineOptions,
)
@ -54,8 +65,14 @@ from docling.datamodel.vlm_model_specs import (
SMOLDOCLING_TRANSFORMERS,
VlmModelType,
)
from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption
from docling.document_converter import (
AudioFormatOption,
DocumentConverter,
FormatOption,
PdfFormatOption,
)
from docling.models.factories import get_ocr_factory
from docling.pipeline.asr_pipeline import AsrPipeline
from docling.pipeline.vlm_pipeline import VlmPipeline
warnings.filterwarnings(action="ignore", category=UserWarning, module="pydantic|torch")
@ -296,13 +313,17 @@ def convert( # noqa: C901
),
] = ImageRefMode.EMBEDDED,
pipeline: Annotated[
PdfPipeline,
ProcessingPipeline,
typer.Option(..., help="Choose the pipeline to process PDF or image files."),
] = PdfPipeline.STANDARD,
] = ProcessingPipeline.STANDARD,
vlm_model: Annotated[
VlmModelType,
typer.Option(..., help="Choose the VLM model to use with PDF or image files."),
] = VlmModelType.SMOLDOCLING,
asr_model: Annotated[
AsrModelType,
typer.Option(..., help="Choose the ASR model to use with audio/video files."),
] = AsrModelType.WHISPER_TINY,
ocr: Annotated[
bool,
typer.Option(
@ -450,12 +471,14 @@ def convert( # noqa: C901
),
] = None,
):
log_format = "%(asctime)s\t%(levelname)s\t%(name)s: %(message)s"
if verbose == 0:
logging.basicConfig(level=logging.WARNING)
logging.basicConfig(level=logging.WARNING, format=log_format)
elif verbose == 1:
logging.basicConfig(level=logging.INFO)
logging.basicConfig(level=logging.INFO, format=log_format)
else:
logging.basicConfig(level=logging.DEBUG)
logging.basicConfig(level=logging.DEBUG, format=log_format)
settings.debug.visualize_cells = debug_visualize_cells
settings.debug.visualize_layout = debug_visualize_layout
@ -530,9 +553,12 @@ def convert( # noqa: C901
ocr_options.lang = ocr_lang_list
accelerator_options = AcceleratorOptions(num_threads=num_threads, device=device)
pipeline_options: PaginatedPipelineOptions
# pipeline_options: PaginatedPipelineOptions
pipeline_options: PipelineOptions
if pipeline == PdfPipeline.STANDARD:
format_options: Dict[InputFormat, FormatOption] = {}
if pipeline == ProcessingPipeline.STANDARD:
pipeline_options = PdfPipelineOptions(
allow_external_plugins=allow_external_plugins,
enable_remote_services=enable_remote_services,
@ -574,7 +600,13 @@ def convert( # noqa: C901
pipeline_options=pipeline_options,
backend=backend, # pdf_backend
)
elif pipeline == PdfPipeline.VLM:
format_options = {
InputFormat.PDF: pdf_format_option,
InputFormat.IMAGE: pdf_format_option,
}
elif pipeline == ProcessingPipeline.VLM:
pipeline_options = VlmPipelineOptions(
enable_remote_services=enable_remote_services,
)
@ -600,13 +632,48 @@ def convert( # noqa: C901
pipeline_cls=VlmPipeline, pipeline_options=pipeline_options
)
format_options = {
InputFormat.PDF: pdf_format_option,
InputFormat.IMAGE: pdf_format_option,
}
elif pipeline == ProcessingPipeline.ASR:
pipeline_options = AsrPipelineOptions(
# enable_remote_services=enable_remote_services,
# artifacts_path = artifacts_path
)
if asr_model == AsrModelType.WHISPER_TINY:
pipeline_options.asr_options = WHISPER_TINY
elif asr_model == AsrModelType.WHISPER_SMALL:
pipeline_options.asr_options = WHISPER_SMALL
elif asr_model == AsrModelType.WHISPER_MEDIUM:
pipeline_options.asr_options = WHISPER_MEDIUM
elif asr_model == AsrModelType.WHISPER_BASE:
pipeline_options.asr_options = WHISPER_BASE
elif asr_model == AsrModelType.WHISPER_LARGE:
pipeline_options.asr_options = WHISPER_LARGE
elif asr_model == AsrModelType.WHISPER_TURBO:
pipeline_options.asr_options = WHISPER_TURBO
else:
_log.error(f"{asr_model} is not known")
raise ValueError(f"{asr_model} is not known")
_log.info(f"pipeline_options: {pipeline_options}")
audio_format_option = AudioFormatOption(
pipeline_cls=AsrPipeline,
pipeline_options=pipeline_options,
)
format_options = {
InputFormat.AUDIO: audio_format_option,
}
if artifacts_path is not None:
pipeline_options.artifacts_path = artifacts_path
# audio_pipeline_options.artifacts_path = artifacts_path
format_options: Dict[InputFormat, FormatOption] = {
InputFormat.PDF: pdf_format_option,
InputFormat.IMAGE: pdf_format_option,
}
doc_converter = DocumentConverter(
allowed_formats=from_formats,
format_options=format_options,
@ -614,6 +681,7 @@ def convert( # noqa: C901
start_time = time.time()
_log.info(f"paths: {input_doc_paths}")
conv_results = doc_converter.convert_all(
input_doc_paths, headers=parsed_headers, raises_on_error=abort_on_error
)

View File

@ -0,0 +1,92 @@
import logging
from enum import Enum
from pydantic import (
AnyUrl,
)
from docling.datamodel.accelerator_options import AcceleratorDevice
from docling.datamodel.pipeline_options_asr_model import (
# AsrResponseFormat,
# ApiAsrOptions,
InferenceAsrFramework,
InlineAsrNativeWhisperOptions,
TransformersModelType,
)
_log = logging.getLogger(__name__)
WHISPER_TINY = InlineAsrNativeWhisperOptions(
repo_id="tiny",
inference_framework=InferenceAsrFramework.WHISPER,
verbose=True,
timestamps=True,
word_timestamps=True,
temperatue=0.0,
max_new_tokens=256,
max_time_chunk=30.0,
)
WHISPER_SMALL = InlineAsrNativeWhisperOptions(
repo_id="small",
inference_framework=InferenceAsrFramework.WHISPER,
verbose=True,
timestamps=True,
word_timestamps=True,
temperatue=0.0,
max_new_tokens=256,
max_time_chunk=30.0,
)
WHISPER_MEDIUM = InlineAsrNativeWhisperOptions(
repo_id="medium",
inference_framework=InferenceAsrFramework.WHISPER,
verbose=True,
timestamps=True,
word_timestamps=True,
temperatue=0.0,
max_new_tokens=256,
max_time_chunk=30.0,
)
WHISPER_BASE = InlineAsrNativeWhisperOptions(
repo_id="base",
inference_framework=InferenceAsrFramework.WHISPER,
verbose=True,
timestamps=True,
word_timestamps=True,
temperatue=0.0,
max_new_tokens=256,
max_time_chunk=30.0,
)
WHISPER_LARGE = InlineAsrNativeWhisperOptions(
repo_id="large",
inference_framework=InferenceAsrFramework.WHISPER,
verbose=True,
timestamps=True,
word_timestamps=True,
temperatue=0.0,
max_new_tokens=256,
max_time_chunk=30.0,
)
WHISPER_TURBO = InlineAsrNativeWhisperOptions(
repo_id="turbo",
inference_framework=InferenceAsrFramework.WHISPER,
verbose=True,
timestamps=True,
word_timestamps=True,
temperatue=0.0,
max_new_tokens=256,
max_time_chunk=30.0,
)
class AsrModelType(str, Enum):
WHISPER_TINY = "whisper_tiny"
WHISPER_SMALL = "whisper_small"
WHISPER_MEDIUM = "whisper_medium"
WHISPER_BASE = "whisper_base"
WHISPER_LARGE = "whisper_large"
WHISPER_TURBO = "whisper_turbo"

View File

@ -49,6 +49,7 @@ class InputFormat(str, Enum):
XML_USPTO = "xml_uspto"
XML_JATS = "xml_jats"
JSON_DOCLING = "json_docling"
AUDIO = "audio"
class OutputFormat(str, Enum):
@ -73,6 +74,7 @@ FormatToExtensions: Dict[InputFormat, List[str]] = {
InputFormat.XLSX: ["xlsx", "xlsm"],
InputFormat.XML_USPTO: ["xml", "txt"],
InputFormat.JSON_DOCLING: ["json"],
InputFormat.AUDIO: ["wav", "mp3"],
}
FormatToMimeType: Dict[InputFormat, List[str]] = {
@ -104,6 +106,7 @@ FormatToMimeType: Dict[InputFormat, List[str]] = {
],
InputFormat.XML_USPTO: ["application/xml", "text/plain"],
InputFormat.JSON_DOCLING: ["application/json"],
InputFormat.AUDIO: ["audio/x-wav", "audio/mpeg", "audio/wav", "audio/mp3"],
}
MimeTypeToFormat: dict[str, list[InputFormat]] = {
@ -298,7 +301,7 @@ class OpenAiChatMessage(BaseModel):
class OpenAiResponseChoice(BaseModel):
index: int
message: OpenAiChatMessage
finish_reason: str
finish_reason: Optional[str]
class OpenAiResponseUsage(BaseModel):

View File

@ -249,7 +249,7 @@ class _DocumentConversionInput(BaseModel):
backend: Type[AbstractDocumentBackend]
if format not in format_options.keys():
_log.error(
f"Input document {obj.name} does not match any allowed format."
f"Input document {obj.name} with format {format} does not match any allowed format: ({format_options.keys()})"
)
backend = _DummyBackend
else:
@ -318,6 +318,8 @@ class _DocumentConversionInput(BaseModel):
mime = mime or _DocumentConversionInput._detect_csv(content)
mime = mime or "text/plain"
formats = MimeTypeToFormat.get(mime, [])
_log.info(f"detected formats: {formats}")
if formats:
if len(formats) == 1 and mime not in ("text/plain"):
return formats[0]

View File

@ -11,8 +11,13 @@ from pydantic import (
)
from typing_extensions import deprecated
from docling.datamodel import asr_model_specs
# Import the following for backwards compatibility
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
from docling.datamodel.pipeline_options_asr_model import (
InlineAsrOptions,
)
from docling.datamodel.pipeline_options_vlm_model import (
ApiVlmOptions,
InferenceFramework,
@ -202,7 +207,7 @@ smolvlm_picture_description = PictureDescriptionVlmOptions(
# GraniteVision
granite_picture_description = PictureDescriptionVlmOptions(
repo_id="ibm-granite/granite-vision-3.1-2b-preview",
repo_id="ibm-granite/granite-vision-3.2-2b-preview",
prompt="What is shown in this image?",
)
@ -260,6 +265,11 @@ class VlmPipelineOptions(PaginatedPipelineOptions):
)
class AsrPipelineOptions(PipelineOptions):
asr_options: Union[InlineAsrOptions] = asr_model_specs.WHISPER_TINY
artifacts_path: Optional[Union[Path, str]] = None
class PdfPipelineOptions(PaginatedPipelineOptions):
"""Options for the PDF pipeline."""
@ -297,6 +307,7 @@ class PdfPipelineOptions(PaginatedPipelineOptions):
)
class PdfPipeline(str, Enum):
class ProcessingPipeline(str, Enum):
STANDARD = "standard"
VLM = "vlm"
ASR = "asr"

View File

@ -0,0 +1,57 @@
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Union
from pydantic import AnyUrl, BaseModel
from typing_extensions import deprecated
from docling.datamodel.accelerator_options import AcceleratorDevice
from docling.datamodel.pipeline_options_vlm_model import (
# InferenceFramework,
TransformersModelType,
)
class BaseAsrOptions(BaseModel):
kind: str
# prompt: str
class InferenceAsrFramework(str, Enum):
# MLX = "mlx" # disabled for now
# TRANSFORMERS = "transformers" # disabled for now
WHISPER = "whisper"
class InlineAsrOptions(BaseAsrOptions):
kind: Literal["inline_model_options"] = "inline_model_options"
repo_id: str
verbose: bool = False
timestamps: bool = True
temperature: float = 0.0
max_new_tokens: int = 256
max_time_chunk: float = 30.0
torch_dtype: Optional[str] = None
supported_devices: List[AcceleratorDevice] = [
AcceleratorDevice.CPU,
AcceleratorDevice.CUDA,
AcceleratorDevice.MPS,
]
@property
def repo_cache_folder(self) -> str:
return self.repo_id.replace("/", "--")
class InlineAsrNativeWhisperOptions(InlineAsrOptions):
inference_framework: InferenceAsrFramework = InferenceAsrFramework.WHISPER
language: str = "en"
supported_devices: List[AcceleratorDevice] = [
AcceleratorDevice.CPU,
AcceleratorDevice.CUDA,
]
word_timestamps: bool = True

View File

@ -19,6 +19,7 @@ from docling.backend.md_backend import MarkdownDocumentBackend
from docling.backend.msexcel_backend import MsExcelDocumentBackend
from docling.backend.mspowerpoint_backend import MsPowerpointDocumentBackend
from docling.backend.msword_backend import MsWordDocumentBackend
from docling.backend.noop_backend import NoOpBackend
from docling.backend.xml.jats_backend import JatsDocumentBackend
from docling.backend.xml.uspto_backend import PatentUsptoDocumentBackend
from docling.datamodel.base_models import (
@ -41,6 +42,7 @@ from docling.datamodel.settings import (
settings,
)
from docling.exceptions import ConversionError
from docling.pipeline.asr_pipeline import AsrPipeline
from docling.pipeline.base_pipeline import BasePipeline
from docling.pipeline.simple_pipeline import SimplePipeline
from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline
@ -118,6 +120,11 @@ class PdfFormatOption(FormatOption):
backend: Type[AbstractDocumentBackend] = DoclingParseV4DocumentBackend
class AudioFormatOption(FormatOption):
pipeline_cls: Type = AsrPipeline
backend: Type[AbstractDocumentBackend] = NoOpBackend
def _get_default_option(format: InputFormat) -> FormatOption:
format_to_default_options = {
InputFormat.CSV: FormatOption(
@ -156,6 +163,7 @@ def _get_default_option(format: InputFormat) -> FormatOption:
InputFormat.JSON_DOCLING: FormatOption(
pipeline_cls=SimplePipeline, backend=DoclingJSONBackend
),
InputFormat.AUDIO: FormatOption(pipeline_cls=AsrPipeline, backend=NoOpBackend),
}
if (options := format_to_default_options.get(format)) is not None:
return options

View File

@ -0,0 +1,253 @@
import logging
import os
import re
from io import BytesIO
from pathlib import Path
from typing import List, Optional, Union, cast
from docling_core.types.doc import DoclingDocument, DocumentOrigin
# import whisper # type: ignore
# import librosa
# import numpy as np
# import soundfile as sf # type: ignore
from docling_core.types.doc.labels import DocItemLabel
from pydantic import BaseModel, Field, validator
from docling.backend.abstract_backend import AbstractDocumentBackend
from docling.backend.noop_backend import NoOpBackend
# from pydub import AudioSegment # type: ignore
# from transformers import WhisperForConditionalGeneration, WhisperProcessor, pipeline
from docling.datamodel.accelerator_options import (
AcceleratorOptions,
)
from docling.datamodel.base_models import (
ConversionStatus,
FormatToMimeType,
)
from docling.datamodel.document import ConversionResult, InputDocument
from docling.datamodel.pipeline_options import (
AsrPipelineOptions,
)
from docling.datamodel.pipeline_options_asr_model import (
InlineAsrNativeWhisperOptions,
# AsrResponseFormat,
InlineAsrOptions,
)
from docling.datamodel.pipeline_options_vlm_model import (
InferenceFramework,
)
from docling.datamodel.settings import settings
from docling.pipeline.base_pipeline import BasePipeline
from docling.utils.accelerator_utils import decide_device
from docling.utils.profiling import ProfilingScope, TimeRecorder
_log = logging.getLogger(__name__)
class _ConversationWord(BaseModel):
text: str
start_time: Optional[float] = Field(
None, description="Start time in seconds from video start"
)
end_time: Optional[float] = Field(
None, ge=0, description="End time in seconds from video start"
)
class _ConversationItem(BaseModel):
text: str
start_time: Optional[float] = Field(
None, description="Start time in seconds from video start"
)
end_time: Optional[float] = Field(
None, ge=0, description="End time in seconds from video start"
)
speaker_id: Optional[int] = Field(None, description="Numeric speaker identifier")
speaker: Optional[str] = Field(
None, description="Speaker name, defaults to speaker-{speaker_id}"
)
words: Optional[list[_ConversationWord]] = Field(
None, description="Individual words with time-stamps"
)
def __lt__(self, other):
if not isinstance(other, _ConversationItem):
return NotImplemented
return self.start_time < other.start_time
def __eq__(self, other):
if not isinstance(other, _ConversationItem):
return NotImplemented
return self.start_time == other.start_time
def to_string(self) -> str:
"""Format the conversation entry as a string"""
result = ""
if (self.start_time is not None) and (self.end_time is not None):
result += f"[time: {self.start_time}-{self.end_time}] "
if self.speaker is not None:
result += f"[speaker:{self.speaker}] "
result += self.text
return result
class _NativeWhisperModel:
def __init__(
self,
enabled: bool,
artifacts_path: Optional[Path],
accelerator_options: AcceleratorOptions,
asr_options: InlineAsrNativeWhisperOptions,
):
"""
Transcriber using native Whisper.
"""
self.enabled = enabled
_log.info(f"artifacts-path: {artifacts_path}")
_log.info(f"accelerator_options: {accelerator_options}")
if self.enabled:
try:
import whisper # type: ignore
except ImportError:
raise ImportError(
"whisper is not installed. Please install it via `pip install openai-whisper` or do `uv sync --extra asr`."
)
self.asr_options = asr_options
self.max_tokens = asr_options.max_new_tokens
self.temperature = asr_options.temperature
self.device = decide_device(
accelerator_options.device,
supported_devices=asr_options.supported_devices,
)
_log.info(f"Available device for Whisper: {self.device}")
self.model_name = asr_options.repo_id
_log.info(f"loading _NativeWhisperModel({self.model_name})")
if artifacts_path is not None:
_log.info(f"loading {self.model_name} from {artifacts_path}")
self.model = whisper.load_model(
name=self.model_name,
device=self.device,
download_root=str(artifacts_path),
)
else:
self.model = whisper.load_model(
name=self.model_name, device=self.device
)
self.verbose = asr_options.verbose
self.timestamps = asr_options.timestamps
self.word_timestamps = asr_options.word_timestamps
def run(self, conv_res: ConversionResult) -> ConversionResult:
audio_path: Path = Path(conv_res.input.file).resolve()
try:
conversation = self.transcribe(audio_path)
# Ensure we have a proper DoclingDocument
origin = DocumentOrigin(
filename=conv_res.input.file.name or "audio.wav",
mimetype="audio/x-wav",
binary_hash=conv_res.input.document_hash,
)
conv_res.document = DoclingDocument(
name=conv_res.input.file.stem or "audio.wav", origin=origin
)
for citem in conversation:
conv_res.document.add_text(
label=DocItemLabel.TEXT, text=citem.to_string()
)
conv_res.status = ConversionStatus.SUCCESS
return conv_res
except Exception as exc:
_log.error(f"Audio tranciption has an error: {exc}")
conv_res.status = ConversionStatus.FAILURE
return conv_res
def transcribe(self, fpath: Path) -> list[_ConversationItem]:
result = self.model.transcribe(
str(fpath), verbose=self.verbose, word_timestamps=self.word_timestamps
)
convo: list[_ConversationItem] = []
for _ in result["segments"]:
item = _ConversationItem(
start_time=_["start"], end_time=_["end"], text=_["text"], words=[]
)
if "words" in _ and self.word_timestamps:
item.words = []
for __ in _["words"]:
item.words.append(
_ConversationWord(
start_time=__["start"],
end_time=__["end"],
text=__["word"],
)
)
convo.append(item)
return convo
class AsrPipeline(BasePipeline):
def __init__(self, pipeline_options: AsrPipelineOptions):
super().__init__(pipeline_options)
self.keep_backend = True
self.pipeline_options: AsrPipelineOptions = pipeline_options
artifacts_path: Optional[Path] = None
if pipeline_options.artifacts_path is not None:
artifacts_path = Path(pipeline_options.artifacts_path).expanduser()
elif settings.artifacts_path is not None:
artifacts_path = Path(settings.artifacts_path).expanduser()
if artifacts_path is not None and not artifacts_path.is_dir():
raise RuntimeError(
f"The value of {artifacts_path=} is not valid. "
"When defined, it must point to a folder containing all models required by the pipeline."
)
if isinstance(self.pipeline_options.asr_options, InlineAsrNativeWhisperOptions):
asr_options: InlineAsrNativeWhisperOptions = (
self.pipeline_options.asr_options
)
self._model = _NativeWhisperModel(
enabled=True, # must be always enabled for this pipeline to make sense.
artifacts_path=artifacts_path,
accelerator_options=pipeline_options.accelerator_options,
asr_options=asr_options,
)
else:
_log.error(f"No model support for {self.pipeline_options.asr_options}")
def _determine_status(self, conv_res: ConversionResult) -> ConversionStatus:
status = ConversionStatus.SUCCESS
return status
@classmethod
def get_default_options(cls) -> AsrPipelineOptions:
return AsrPipelineOptions()
def _build_document(self, conv_res: ConversionResult) -> ConversionResult:
_log.info(f"start _build_document in AsrPipeline: {conv_res.input.file}")
with TimeRecorder(conv_res, "doc_build", scope=ProfilingScope.DOCUMENT):
self._model.run(conv_res=conv_res)
return conv_res
@classmethod
def is_backend_supported(cls, backend: AbstractDocumentBackend):
return isinstance(backend, NoOpBackend)

56
docs/examples/minimal_asr_pipeline.py vendored Normal file
View File

@ -0,0 +1,56 @@
from pathlib import Path
from docling_core.types.doc import DoclingDocument
from docling.datamodel import asr_model_specs
from docling.datamodel.base_models import ConversionStatus, InputFormat
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import AsrPipelineOptions
from docling.document_converter import AudioFormatOption, DocumentConverter
from docling.pipeline.asr_pipeline import AsrPipeline
def get_asr_converter():
"""Create a DocumentConverter configured for ASR with whisper_turbo model."""
pipeline_options = AsrPipelineOptions()
pipeline_options.asr_options = asr_model_specs.WHISPER_TURBO
converter = DocumentConverter(
format_options={
InputFormat.AUDIO: AudioFormatOption(
pipeline_cls=AsrPipeline,
pipeline_options=pipeline_options,
)
}
)
return converter
def asr_pipeline_conversion(audio_path: Path) -> DoclingDocument:
"""ASR pipeline conversion using whisper_turbo"""
# Check if the test audio file exists
assert audio_path.exists(), f"Test audio file not found: {audio_path}"
converter = get_asr_converter()
# Convert the audio file
result: ConversionResult = converter.convert(audio_path)
# Verify conversion was successful
assert result.status == ConversionStatus.SUCCESS, (
f"Conversion failed with status: {result.status}"
)
return result.document
if __name__ == "__main__":
audio_path = Path("tests/data/audio/sample_10s.mp3")
doc = asr_pipeline_conversion(audio_path=audio_path)
print(doc.export_to_markdown())
# Expected output:
#
# [time: 0.0-4.0] Shakespeare on Scenery by Oscar Wilde
#
# [time: 5.28-9.96] This is a LibriVox recording. All LibriVox recordings are in the public domain.

7
docs/index.md vendored
View File

@ -20,14 +20,15 @@ Docling simplifies document processing, parsing diverse formats — including ad
## Features
* 🗂️ Parsing of [multiple document formats][supported_formats] incl. PDF, DOCX, XLSX, HTML, images, and more
* 🗂️ Parsing of [multiple document formats][supported_formats] incl. PDF, DOCX, PPTX, XLSX, HTML, WAV, MP3, images (PNG, TIFF, JPEG, ...), and more
* 📑 Advanced PDF understanding incl. page layout, reading order, table structure, code, formulas, image classification, and more
* 🧬 Unified, expressive [DoclingDocument][docling_document] representation format
* ↪️ Various [export formats][supported_formats] and options, including Markdown, HTML, and lossless JSON
* ↪️ Various [export formats][supported_formats] and options, including Markdown, HTML, [DocTags](https://arxiv.org/abs/2503.11576) and lossless JSON
* 🔒 Local execution capabilities for sensitive data and air-gapped environments
* 🤖 Plug-and-play [integrations][integrations] incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
* 🔍 Extensive OCR support for scanned PDFs and images
* 🥚 Support of several Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview)) 🔥
* 👓 Support of several Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview))
* 🎙️ Support for Audio with Automatic Speech Recognition (ASR) models
* 💻 Simple and convenient CLI
### Coming soon

View File

@ -80,6 +80,7 @@ nav:
- "VLM pipeline with SmolDocling": examples/minimal_vlm_pipeline.py
- "VLM pipeline with remote model": examples/vlm_pipeline_api_model.py
- "VLM comparison": examples/compare_vlm_models.py
- "ASR pipeline with Whisper": examples/minimal_asr_pipeline.py
- "Figure export": examples/export_figures.py
- "Table export": examples/export_tables.py
- "Multimodal export": examples/export_multimodal.py

View File

@ -1,6 +1,6 @@
[project]
name = "docling"
version = "2.37.0" # DO NOT EDIT, updated automatically
version = "2.39.0" # DO NOT EDIT, updated automatically
description = "SDK and CLI for parsing PDF, DOCX, HTML, and more, to a unified document representation for powering downstream workflows such as gen AI applications."
license = "MIT"
keywords = [
@ -44,7 +44,8 @@ authors = [
requires-python = '>=3.9,<4.0'
dependencies = [
'pydantic (>=2.0.0,<3.0.0)',
'docling-core[chunking] (>=2.29.0,<3.0.0)',
'docling-core[chunking] (>=2.39.0,<3.0.0)',
'docling-ibm-models (>=3.4.4,<4.0.0)',
'docling-parse (>=4.0.0,<5.0.0)',
'docling-ibm-models (>=3.6.0,<4)',
'filetype (>=1.2.0,<2.0.0)',
@ -99,6 +100,9 @@ rapidocr = [
# 'onnxruntime (>=1.7.0,<2.0.0) ; python_version >= "3.10"',
# 'onnxruntime (>=1.7.0,<1.20.0) ; python_version < "3.10"',
]
asr = [
"openai-whisper>=20240930",
]
[dependency-groups]
dev = [
@ -145,6 +149,9 @@ constraints = [
package = true
default-groups = "all"
[tool.uv.sources]
openai-whisper = { git = "https://github.com/openai/whisper.git", rev = "dd985ac4b90cafeef8712f2998d62c59c3e62d22" }
[tool.setuptools.packages.find]
include = ["docling*"]

BIN
tests/data/audio/sample_10s.mp3 vendored Normal file

Binary file not shown.

View File

@ -160,8 +160,8 @@
<row_6><col_0><row_header>TableFormer</col_0><col_1><body>95.4</col_1><col_2><body>90.1</col_2><col_3><body>93.6</col_3></row_6>
</table>
<caption><location><page_7><loc_50><loc_13><loc_89><loc_17></location>Table 4: Results of structure with content retrieved using cell detection on PubTabNet. In all cases the input is PDF documents with cropped tables.</caption>
<paragraph><location><page_8><loc_9><loc_89><loc_10><loc_90></location>- a.</paragraph>
<paragraph><location><page_8><loc_11><loc_89><loc_82><loc_90></location>- Red - PDF cells, Green - predicted bounding boxes, Blue - post-processed predictions matched to PDF cells</paragraph>
<paragraph><location><page_8><loc_9><loc_89><loc_10><loc_90></location>a.</paragraph>
<paragraph><location><page_8><loc_11><loc_89><loc_82><loc_90></location>Red - PDF cells, Green - predicted bounding boxes, Blue - post-processed predictions matched to PDF cells</paragraph>
<subtitle-level-1><location><page_8><loc_9><loc_87><loc_46><loc_88></location>Japanese language (previously unseen by TableFormer):</subtitle-level-1>
<subtitle-level-1><location><page_8><loc_50><loc_87><loc_70><loc_88></location>Example table from FinTabNet:</subtitle-level-1>
<figure>
@ -216,7 +216,7 @@
<paragraph><location><page_8><loc_50><loc_18><loc_89><loc_35></location>In this paper, we presented TableFormer an end-to-end transformer based approach to predict table structures and bounding boxes of cells from an image. This approach enables us to recreate the table structure, and extract the cell content from PDF or OCR by using bounding boxes. Additionally, it provides the versatility required in real-world scenarios when dealing with various types of PDF documents, and languages. Furthermore, our method outperforms all state-of-the-arts with a wide margin. Finally, we introduce "SynthTabNet" a challenging synthetically generated dataset that reinforces missing characteristics from other datasets.</paragraph>
<subtitle-level-1><location><page_8><loc_50><loc_14><loc_60><loc_15></location>References</subtitle-level-1>
<paragraph><location><page_8><loc_51><loc_10><loc_89><loc_12></location>[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-</paragraph>
<paragraph><location><page_9><loc_11><loc_85><loc_47><loc_90></location>- end object detection with transformers. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 , pages 213-229, Cham, 2020. Springer International Publishing. 5</paragraph>
<paragraph><location><page_9><loc_11><loc_85><loc_47><loc_90></location>end object detection with transformers. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 , pages 213-229, Cham, 2020. Springer International Publishing. 5</paragraph>
<paragraph><location><page_9><loc_9><loc_81><loc_47><loc_85></location>[2] Zewen Chi, Heyan Huang, Heng-Da Xu, Houjin Yu, Wanxuan Yin, and Xian-Ling Mao. Complicated table structure recognition. arXiv preprint arXiv:1908.04729 , 2019. 3</paragraph>
<paragraph><location><page_9><loc_9><loc_77><loc_47><loc_81></location>[3] Bertrand Couasnon and Aurelie Lemaitre. Recognition of Tables and Forms , pages 647-677. Springer London, London, 2014. 2</paragraph>
<paragraph><location><page_9><loc_9><loc_71><loc_47><loc_76></location>[4] Herv´e D´ejean, Jean-Luc Meunier, Liangcai Gao, Yilun Huang, Yu Fang, Florian Kleber, and Eva-Maria Lang. ICDAR 2019 Competition on Table Detection and Recognition (cTDaR), Apr. 2019. http://sac.founderit.com/. 2</paragraph>
@ -254,7 +254,7 @@
<paragraph><location><page_10><loc_8><loc_20><loc_47><loc_25></location>[35] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. Image captioning with semantic attention. In Proceedings of the IEEE conference on computer vision and pattern recognition , pages 4651-4659, 2016. 4</paragraph>
<paragraph><location><page_10><loc_8><loc_13><loc_47><loc_19></location>[36] Xinyi Zheng, Doug Burdick, Lucian Popa, Peter Zhong, and Nancy Xin Ru Wang. Global table extractor (gte): A framework for joint table identification and cell structure recognition using visual context. Winter Conference for Applications in Computer Vision (WACV) , 2021. 2, 3</paragraph>
<paragraph><location><page_10><loc_8><loc_10><loc_47><loc_12></location>[37] Xu Zhong, Elaheh ShafieiBavani, and Antonio Jimeno Yepes. Image-based table recognition: Data, model,</paragraph>
<paragraph><location><page_10><loc_54><loc_85><loc_89><loc_90></location>- and evaluation. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision ECCV 2020 , pages 564-580, Cham, 2020. Springer International Publishing. 2, 3, 7</paragraph>
<paragraph><location><page_10><loc_54><loc_85><loc_89><loc_90></location>and evaluation. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision ECCV 2020 , pages 564-580, Cham, 2020. Springer International Publishing. 2, 3, 7</paragraph>
<paragraph><location><page_10><loc_50><loc_80><loc_89><loc_85></location>[38] Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Publaynet: Largest dataset ever for document layout analysis. In 2019 International Conference on Document Analysis and Recognition (ICDAR) , pages 1015-1022, 2019. 1</paragraph>
<subtitle-level-1><location><page_11><loc_22><loc_83><loc_76><loc_86></location>TableFormer: Table Structure Understanding with Transformers Supplementary Material</subtitle-level-1>
<subtitle-level-1><location><page_11><loc_8><loc_78><loc_29><loc_80></location>1. Details on the datasets</subtitle-level-1>
@ -285,7 +285,7 @@
<paragraph><location><page_12><loc_8><loc_42><loc_47><loc_47></location>1. Get the minimal grid dimensions - number of rows and columns for the predicted table structure. This represents the most granular grid for the underlying table structure.</paragraph>
<paragraph><location><page_12><loc_8><loc_36><loc_47><loc_42></location>2. Generate pair-wise matches between the bounding boxes of the PDF cells and the predicted cells. The Intersection Over Union (IOU) metric is used to evaluate the quality of the matches.</paragraph>
<paragraph><location><page_12><loc_8><loc_33><loc_47><loc_36></location>3. Use a carefully selected IOU threshold to designate the matches as "good" ones and "bad" ones.</paragraph>
<paragraph><location><page_12><loc_8><loc_29><loc_47><loc_33></location>- 3.a. If all IOU scores in a column are below the threshold, discard all predictions (structure and bounding boxes) for that column.</paragraph>
<paragraph><location><page_12><loc_8><loc_29><loc_47><loc_33></location>3.a. If all IOU scores in a column are below the threshold, discard all predictions (structure and bounding boxes) for that column.</paragraph>
<paragraph><location><page_12><loc_8><loc_24><loc_47><loc_28></location>4. Find the best-fitting content alignment for the predicted cells with good IOU per each column. The alignment of the column can be identified by the following formula:</paragraph>
<paragraph><location><page_12><loc_8><loc_13><loc_47><loc_16></location>where c is one of { left, centroid, right } and x$_{c}$ is the xcoordinate for the corresponding point.</paragraph>
<paragraph><location><page_12><loc_8><loc_10><loc_47><loc_13></location>5. Use the alignment computed in step 4, to compute the median x -coordinate for all table columns and the me-</paragraph>
@ -294,10 +294,10 @@
<paragraph><location><page_12><loc_50><loc_42><loc_89><loc_51></location>8. In some rare occasions, we have noticed that TableFormer can confuse a single column as two. When the postprocessing steps are applied, this results with two predicted columns pointing to the same PDF column. In such case we must de-duplicate the columns according to highest total column intersection score.</paragraph>
<paragraph><location><page_12><loc_50><loc_28><loc_89><loc_41></location>9. Pick up the remaining orphan cells. There could be cases, when after applying all the previous post-processing steps, some PDF cells could still remain without any match to predicted cells. However, it is still possible to deduce the correct matching for an orphan PDF cell by mapping its bounding box on the geometry of the grid. This mapping decides if the content of the orphan cell will be appended to an already matched table cell, or a new table cell should be created to match with the orphan.</paragraph>
<paragraph><location><page_12><loc_50><loc_24><loc_89><loc_28></location>9a. Compute the top and bottom boundary of the horizontal band for each grid row (min/max y coordinates per row).</paragraph>
<paragraph><location><page_12><loc_50><loc_21><loc_89><loc_23></location>- 9b. Intersect the orphan's bounding box with the row bands, and map the cell to the closest grid row.</paragraph>
<paragraph><location><page_12><loc_50><loc_16><loc_89><loc_20></location>- 9c. Compute the left and right boundary of the vertical band for each grid column (min/max x coordinates per column).</paragraph>
<paragraph><location><page_12><loc_50><loc_13><loc_89><loc_16></location>- 9d. Intersect the orphan's bounding box with the column bands, and map the cell to the closest grid column.</paragraph>
<paragraph><location><page_12><loc_50><loc_10><loc_89><loc_13></location>- 9e. If the table cell under the identified row and column is not empty, extend its content with the content of the or-</paragraph>
<paragraph><location><page_12><loc_50><loc_21><loc_89><loc_23></location>9b. Intersect the orphan's bounding box with the row bands, and map the cell to the closest grid row.</paragraph>
<paragraph><location><page_12><loc_50><loc_16><loc_89><loc_20></location>9c. Compute the left and right boundary of the vertical band for each grid column (min/max x coordinates per column).</paragraph>
<paragraph><location><page_12><loc_50><loc_13><loc_89><loc_16></location>9d. Intersect the orphan's bounding box with the column bands, and map the cell to the closest grid column.</paragraph>
<paragraph><location><page_12><loc_50><loc_10><loc_89><loc_13></location>9e. If the table cell under the identified row and column is not empty, extend its content with the content of the or-</paragraph>
<paragraph><location><page_13><loc_8><loc_89><loc_15><loc_91></location>phan cell.</paragraph>
<paragraph><location><page_13><loc_8><loc_86><loc_47><loc_89></location>9f. Otherwise create a new structural cell and match it wit the orphan cell.</paragraph>
<paragraph><location><page_13><loc_8><loc_83><loc_47><loc_86></location>Aditional images with examples of TableFormer predictions and post-processing can be found below.</paragraph>

View File

@ -2221,7 +2221,7 @@
"__ref_s3_data": null
}
],
"text": "- a.",
"text": "a.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -2244,7 +2244,7 @@
"__ref_s3_data": null
}
],
"text": "- Red - PDF cells, Green - predicted bounding boxes, Blue - post-processed predictions matched to PDF cells",
"text": "Red - PDF cells, Green - predicted bounding boxes, Blue - post-processed predictions matched to PDF cells",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -2578,7 +2578,7 @@
"__ref_s3_data": null
}
],
"text": "- end object detection with transformers. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 , pages 213-229, Cham, 2020. Springer International Publishing. 5",
"text": "end object detection with transformers. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 , pages 213-229, Cham, 2020. Springer International Publishing. 5",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -3452,7 +3452,7 @@
"__ref_s3_data": null
}
],
"text": "- and evaluation. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision ECCV 2020 , pages 564-580, Cham, 2020. Springer International Publishing. 2, 3, 7",
"text": "and evaluation. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision ECCV 2020 , pages 564-580, Cham, 2020. Springer International Publishing. 2, 3, 7",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -4092,7 +4092,7 @@
"__ref_s3_data": null
}
],
"text": "- 3.a. If all IOU scores in a column are below the threshold, discard all predictions (structure and bounding boxes) for that column.",
"text": "3.a. If all IOU scores in a column are below the threshold, discard all predictions (structure and bounding boxes) for that column.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -4322,7 +4322,7 @@
"__ref_s3_data": null
}
],
"text": "- 9b. Intersect the orphan's bounding box with the row bands, and map the cell to the closest grid row.",
"text": "9b. Intersect the orphan's bounding box with the row bands, and map the cell to the closest grid row.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -4345,7 +4345,7 @@
"__ref_s3_data": null
}
],
"text": "- 9c. Compute the left and right boundary of the vertical band for each grid column (min/max x coordinates per column).",
"text": "9c. Compute the left and right boundary of the vertical band for each grid column (min/max x coordinates per column).",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -4368,7 +4368,7 @@
"__ref_s3_data": null
}
],
"text": "- 9d. Intersect the orphan's bounding box with the column bands, and map the cell to the closest grid column.",
"text": "9d. Intersect the orphan's bounding box with the column bands, and map the cell to the closest grid column.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -4391,7 +4391,7 @@
"__ref_s3_data": null
}
],
"text": "- 9e. If the table cell under the identified row and column is not empty, extend its content with the content of the or-",
"text": "9e. If the table cell under the identified row and column is not empty, extend its content with the content of the or-",
"type": "paragraph",
"payload": null,
"name": "List-item",

View File

@ -216,9 +216,9 @@ Table 4: Results of structure with content retrieved using cell detection on Pub
| EDD | 91.2 | 85.4 | 88.3 |
| TableFormer | 95.4 | 90.1 | 93.6 |
- a.
a.
- Red - PDF cells, Green - predicted bounding boxes, Blue - post-processed predictions matched to PDF cells
Red - PDF cells, Green - predicted bounding boxes, Blue - post-processed predictions matched to PDF cells
## Japanese language (previously unseen by TableFormer):
@ -272,7 +272,7 @@ In this paper, we presented TableFormer an end-to-end transformer based approach
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
- end object detection with transformers. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 , pages 213-229, Cham, 2020. Springer International Publishing. 5
end object detection with transformers. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 , pages 213-229, Cham, 2020. Springer International Publishing. 5
[2] Zewen Chi, Heyan Huang, Heng-Da Xu, Houjin Yu, Wanxuan Yin, and Xian-Ling Mao. Complicated table structure recognition. arXiv preprint arXiv:1908.04729 , 2019. 3
@ -348,7 +348,7 @@ Computer Vision and Pattern Recognition , pages 658-666, 2019. 6
[37] Xu Zhong, Elaheh ShafieiBavani, and Antonio Jimeno Yepes. Image-based table recognition: Data, model,
- and evaluation. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision ECCV 2020 , pages 564-580, Cham, 2020. Springer International Publishing. 2, 3, 7
and evaluation. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision ECCV 2020 , pages 564-580, Cham, 2020. Springer International Publishing. 2, 3, 7
[38] Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Publaynet: Largest dataset ever for document layout analysis. In 2019 International Conference on Document Analysis and Recognition (ICDAR) , pages 1015-1022, 2019. 1
@ -403,7 +403,7 @@ Here is a step-by-step description of the prediction postprocessing:
3. Use a carefully selected IOU threshold to designate the matches as "good" ones and "bad" ones.
- 3.a. If all IOU scores in a column are below the threshold, discard all predictions (structure and bounding boxes) for that column.
3.a. If all IOU scores in a column are below the threshold, discard all predictions (structure and bounding boxes) for that column.
4. Find the best-fitting content alignment for the predicted cells with good IOU per each column. The alignment of the column can be identified by the following formula:
@ -421,13 +421,13 @@ where c is one of { left, centroid, right } and x$_{c}$ is the xcoordinate for t
9a. Compute the top and bottom boundary of the horizontal band for each grid row (min/max y coordinates per row).
- 9b. Intersect the orphan's bounding box with the row bands, and map the cell to the closest grid row.
9b. Intersect the orphan's bounding box with the row bands, and map the cell to the closest grid row.
- 9c. Compute the left and right boundary of the vertical band for each grid column (min/max x coordinates per column).
9c. Compute the left and right boundary of the vertical band for each grid column (min/max x coordinates per column).
- 9d. Intersect the orphan's bounding box with the column bands, and map the cell to the closest grid column.
9d. Intersect the orphan's bounding box with the column bands, and map the cell to the closest grid column.
- 9e. If the table cell under the identified row and column is not empty, extend its content with the content of the or-
9e. If the table cell under the identified row and column is not empty, extend its content with the content of the or-
phan cell.

View File

@ -42,11 +42,11 @@
<subtitle-level-1><location><page_6><loc_22><loc_40><loc_43><loc_41></location>4.1 Language Definition</subtitle-level-1>
<paragraph><location><page_6><loc_22><loc_34><loc_79><loc_38></location>In Figure 3, we illustrate how the OTSL is defined. In essence, the OTSL defines only 5 tokens that directly describe a tabular structure based on an atomic 2D grid.</paragraph>
<paragraph><location><page_6><loc_24><loc_33><loc_67><loc_34></location>The OTSL vocabulary is comprised of the following tokens:</paragraph>
<paragraph><location><page_6><loc_23><loc_30><loc_75><loc_31></location>- -"C" cell a new table cell that either has or does not have cell content</paragraph>
<paragraph><location><page_6><loc_23><loc_27><loc_79><loc_29></location>- -"L" cell left-looking cell , merging with the left neighbor cell to create a span</paragraph>
<paragraph><location><page_6><loc_23><loc_24><loc_79><loc_26></location>- -"U" cell up-looking cell , merging with the upper neighbor cell to create a span</paragraph>
<paragraph><location><page_6><loc_23><loc_22><loc_74><loc_23></location>- -"X" cell cross cell , to merge with both left and upper neighbor cells</paragraph>
<paragraph><location><page_6><loc_23><loc_20><loc_54><loc_21></location>- -"NL" new-line , switch to the next row.</paragraph>
<paragraph><location><page_6><loc_23><loc_30><loc_75><loc_31></location>-"C" cell a new table cell that either has or does not have cell content</paragraph>
<paragraph><location><page_6><loc_23><loc_27><loc_79><loc_29></location>-"L" cell left-looking cell , merging with the left neighbor cell to create a span</paragraph>
<paragraph><location><page_6><loc_23><loc_24><loc_79><loc_26></location>-"U" cell up-looking cell , merging with the upper neighbor cell to create a span</paragraph>
<paragraph><location><page_6><loc_23><loc_22><loc_74><loc_23></location>-"X" cell cross cell , to merge with both left and upper neighbor cells</paragraph>
<paragraph><location><page_6><loc_23><loc_20><loc_54><loc_21></location>-"NL" new-line , switch to the next row.</paragraph>
<paragraph><location><page_6><loc_22><loc_16><loc_79><loc_19></location>A notable attribute of OTSL is that it has the capability of achieving lossless conversion to HTML.</paragraph>
<figure>
<location><page_7><loc_27><loc_65><loc_73><loc_79></location>
@ -58,7 +58,7 @@
<paragraph><location><page_7><loc_23><loc_54><loc_79><loc_56></location>1. Left-looking cell rule : The left neighbour of an "L" cell must be either another "L" cell or a "C" cell.</paragraph>
<paragraph><location><page_7><loc_23><loc_51><loc_79><loc_53></location>2. Up-looking cell rule : The upper neighbour of a "U" cell must be either another "U" cell or a "C" cell.</paragraph>
<subtitle-level-1><location><page_7><loc_23><loc_49><loc_37><loc_50></location>3. Cross cell rule :</subtitle-level-1>
<paragraph><location><page_7><loc_25><loc_44><loc_79><loc_49></location>- The left neighbour of an "X" cell must be either another "X" cell or a "U" cell, and the upper neighbour of an "X" cell must be either another "X" cell or an "L" cell.</paragraph>
<paragraph><location><page_7><loc_25><loc_44><loc_79><loc_49></location>The left neighbour of an "X" cell must be either another "X" cell or a "U" cell, and the upper neighbour of an "X" cell must be either another "X" cell or an "L" cell.</paragraph>
<paragraph><location><page_7><loc_23><loc_43><loc_78><loc_44></location>4. First row rule : Only "L" cells and "C" cells are allowed in the first row.</paragraph>
<paragraph><location><page_7><loc_23><loc_40><loc_79><loc_43></location>5. First column rule : Only "U" cells and "C" cells are allowed in the first column.</paragraph>
<paragraph><location><page_7><loc_23><loc_37><loc_79><loc_40></location>6. Rectangular rule : The table representation is always rectangular - all rows must have an equal number of tokens, terminated with "NL" token.</paragraph>

View File

@ -937,7 +937,7 @@
"__ref_s3_data": null
}
],
"text": "- -\"C\" cell a new table cell that either has or does not have cell content",
"text": "-\"C\" cell a new table cell that either has or does not have cell content",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -960,7 +960,7 @@
"__ref_s3_data": null
}
],
"text": "- -\"L\" cell left-looking cell , merging with the left neighbor cell to create a span",
"text": "-\"L\" cell left-looking cell , merging with the left neighbor cell to create a span",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -983,7 +983,7 @@
"__ref_s3_data": null
}
],
"text": "- -\"U\" cell up-looking cell , merging with the upper neighbor cell to create a span",
"text": "-\"U\" cell up-looking cell , merging with the upper neighbor cell to create a span",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -1006,7 +1006,7 @@
"__ref_s3_data": null
}
],
"text": "- -\"X\" cell cross cell , to merge with both left and upper neighbor cells",
"text": "-\"X\" cell cross cell , to merge with both left and upper neighbor cells",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -1029,7 +1029,7 @@
"__ref_s3_data": null
}
],
"text": "- -\"NL\" new-line , switch to the next row.",
"text": "-\"NL\" new-line , switch to the next row.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -1218,7 +1218,7 @@
"__ref_s3_data": null
}
],
"text": "- The left neighbour of an \"X\" cell must be either another \"X\" cell or a \"U\" cell, and the upper neighbour of an \"X\" cell must be either another \"X\" cell or an \"L\" cell.",
"text": "The left neighbour of an \"X\" cell must be either another \"X\" cell or a \"U\" cell, and the upper neighbour of an \"X\" cell must be either another \"X\" cell or an \"L\" cell.",
"type": "paragraph",
"payload": null,
"name": "List-item",

View File

@ -70,15 +70,15 @@ In Figure 3, we illustrate how the OTSL is defined. In essence, the OTSL defines
The OTSL vocabulary is comprised of the following tokens:
- -"C" cell a new table cell that either has or does not have cell content
-"C" cell a new table cell that either has or does not have cell content
- -"L" cell left-looking cell , merging with the left neighbor cell to create a span
-"L" cell left-looking cell , merging with the left neighbor cell to create a span
- -"U" cell up-looking cell , merging with the upper neighbor cell to create a span
-"U" cell up-looking cell , merging with the upper neighbor cell to create a span
- -"X" cell cross cell , to merge with both left and upper neighbor cells
-"X" cell cross cell , to merge with both left and upper neighbor cells
- -"NL" new-line , switch to the next row.
-"NL" new-line , switch to the next row.
A notable attribute of OTSL is that it has the capability of achieving lossless conversion to HTML.
@ -95,7 +95,7 @@ The OTSL representation follows these syntax rules:
## 3. Cross cell rule :
- The left neighbour of an "X" cell must be either another "X" cell or a "U" cell, and the upper neighbour of an "X" cell must be either another "X" cell or an "L" cell.
The left neighbour of an "X" cell must be either another "X" cell or a "U" cell, and the upper neighbour of an "X" cell must be either another "X" cell or an "L" cell.
4. First row rule : Only "L" cells and "C" cells are allowed in the first row.

View File

@ -17,10 +17,10 @@
<location><page_3><loc_23><loc_64><loc_29><loc_66></location>
</figure>
<subtitle-level-1><location><page_3><loc_24><loc_57><loc_31><loc_59></location>Highlights</subtitle-level-1>
<paragraph><location><page_3><loc_24><loc_55><loc_40><loc_56></location>- GLYPH<g115>GLYPH<g3> GLYPH<g40>GLYPH<g81>GLYPH<g75>GLYPH<g68>GLYPH<g81>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g87>GLYPH<g75>GLYPH<g72>GLYPH<g3> GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g73>GLYPH<g82>GLYPH<g85>GLYPH<g80>GLYPH<g68>GLYPH<g81>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g92>GLYPH<g82>GLYPH<g88>GLYPH<g85> GLYPH<g3> GLYPH<g71>GLYPH<g68>GLYPH<g87>GLYPH<g68>GLYPH<g69>GLYPH<g68>GLYPH<g86>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g86></paragraph>
<paragraph><location><page_3><loc_24><loc_51><loc_42><loc_54></location>- GLYPH<g115>GLYPH<g3> GLYPH<g40>GLYPH<g68>GLYPH<g85> GLYPH<g81>GLYPH<g3> GLYPH<g74>GLYPH<g85>GLYPH<g72>GLYPH<g68>GLYPH<g87>GLYPH<g72>GLYPH<g85>GLYPH<g3> GLYPH<g85>GLYPH<g72>GLYPH<g87>GLYPH<g88>GLYPH<g85> GLYPH<g81>GLYPH<g3> GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g44>GLYPH<g55>GLYPH<g3> GLYPH<g83>GLYPH<g85>GLYPH<g82>GLYPH<g77>GLYPH<g72>GLYPH<g70>GLYPH<g87>GLYPH<g86> GLYPH<g3> GLYPH<g87>GLYPH<g75>GLYPH<g85>GLYPH<g82>GLYPH<g88>GLYPH<g74>GLYPH<g75>GLYPH<g3> GLYPH<g80>GLYPH<g82>GLYPH<g71>GLYPH<g72>GLYPH<g85> GLYPH<g81>GLYPH<g76>GLYPH<g93>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g71>GLYPH<g68>GLYPH<g87>GLYPH<g68>GLYPH<g69>GLYPH<g68>GLYPH<g86>GLYPH<g72>GLYPH<g3> GLYPH<g68>GLYPH<g81>GLYPH<g71> GLYPH<g3> GLYPH<g68>GLYPH<g83>GLYPH<g83>GLYPH<g79>GLYPH<g76>GLYPH<g70>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g86></paragraph>
<paragraph><location><page_3><loc_24><loc_48><loc_41><loc_50></location>- GLYPH<g115>GLYPH<g3> GLYPH<g53>GLYPH<g72>GLYPH<g79>GLYPH<g92>GLYPH<g3> GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g44>GLYPH<g37>GLYPH<g48>GLYPH<g3> GLYPH<g72>GLYPH<g91>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g87>GLYPH<g3> GLYPH<g70>GLYPH<g82>GLYPH<g81>GLYPH<g86>GLYPH<g88>GLYPH<g79>GLYPH<g87>GLYPH<g76>GLYPH<g81>GLYPH<g74>GLYPH<g15>GLYPH<g3> GLYPH<g86>GLYPH<g78>GLYPH<g76>GLYPH<g79>GLYPH<g79>GLYPH<g86> GLYPH<g3> GLYPH<g86>GLYPH<g75>GLYPH<g68>GLYPH<g85>GLYPH<g76>GLYPH<g81>GLYPH<g74>GLYPH<g3> GLYPH<g68>GLYPH<g81>GLYPH<g71>GLYPH<g3> GLYPH<g85>GLYPH<g72>GLYPH<g81>GLYPH<g82>GLYPH<g90>GLYPH<g81>GLYPH<g3> GLYPH<g86>GLYPH<g72>GLYPH<g85>GLYPH<g89>GLYPH<g76>GLYPH<g70>GLYPH<g72>GLYPH<g86></paragraph>
<paragraph><location><page_3><loc_24><loc_45><loc_38><loc_47></location>- GLYPH<g115>GLYPH<g3> GLYPH<g55> GLYPH<g68>GLYPH<g78>GLYPH<g72>GLYPH<g3> GLYPH<g68>GLYPH<g71>GLYPH<g89>GLYPH<g68>GLYPH<g81>GLYPH<g87>GLYPH<g68>GLYPH<g74>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g68>GLYPH<g70>GLYPH<g70>GLYPH<g72>GLYPH<g86>GLYPH<g86>GLYPH<g3> GLYPH<g87>GLYPH<g82>GLYPH<g3> GLYPH<g68> GLYPH<g3> GLYPH<g90>GLYPH<g82>GLYPH<g85>GLYPH<g79>GLYPH<g71>GLYPH<g90>GLYPH<g76>GLYPH<g71>GLYPH<g72>GLYPH<g3> GLYPH<g86>GLYPH<g82>GLYPH<g88>GLYPH<g85>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g72>GLYPH<g91>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g87>GLYPH<g76>GLYPH<g86>GLYPH<g72></paragraph>
<paragraph><location><page_3><loc_24><loc_55><loc_40><loc_56></location>GLYPH<g115>GLYPH<g3> GLYPH<g40>GLYPH<g81>GLYPH<g75>GLYPH<g68>GLYPH<g81>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g87>GLYPH<g75>GLYPH<g72>GLYPH<g3> GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g73>GLYPH<g82>GLYPH<g85>GLYPH<g80>GLYPH<g68>GLYPH<g81>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g92>GLYPH<g82>GLYPH<g88>GLYPH<g85> GLYPH<g3> GLYPH<g71>GLYPH<g68>GLYPH<g87>GLYPH<g68>GLYPH<g69>GLYPH<g68>GLYPH<g86>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g86></paragraph>
<paragraph><location><page_3><loc_24><loc_51><loc_42><loc_54></location>GLYPH<g115>GLYPH<g3> GLYPH<g40>GLYPH<g68>GLYPH<g85> GLYPH<g81>GLYPH<g3> GLYPH<g74>GLYPH<g85>GLYPH<g72>GLYPH<g68>GLYPH<g87>GLYPH<g72>GLYPH<g85>GLYPH<g3> GLYPH<g85>GLYPH<g72>GLYPH<g87>GLYPH<g88>GLYPH<g85> GLYPH<g81>GLYPH<g3> GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g44>GLYPH<g55>GLYPH<g3> GLYPH<g83>GLYPH<g85>GLYPH<g82>GLYPH<g77>GLYPH<g72>GLYPH<g70>GLYPH<g87>GLYPH<g86> GLYPH<g3> GLYPH<g87>GLYPH<g75>GLYPH<g85>GLYPH<g82>GLYPH<g88>GLYPH<g74>GLYPH<g75>GLYPH<g3> GLYPH<g80>GLYPH<g82>GLYPH<g71>GLYPH<g72>GLYPH<g85> GLYPH<g81>GLYPH<g76>GLYPH<g93>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g71>GLYPH<g68>GLYPH<g87>GLYPH<g68>GLYPH<g69>GLYPH<g68>GLYPH<g86>GLYPH<g72>GLYPH<g3> GLYPH<g68>GLYPH<g81>GLYPH<g71> GLYPH<g3> GLYPH<g68>GLYPH<g83>GLYPH<g83>GLYPH<g79>GLYPH<g76>GLYPH<g70>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g86></paragraph>
<paragraph><location><page_3><loc_24><loc_48><loc_41><loc_50></location>GLYPH<g115>GLYPH<g3> GLYPH<g53>GLYPH<g72>GLYPH<g79>GLYPH<g92>GLYPH<g3> GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g44>GLYPH<g37>GLYPH<g48>GLYPH<g3> GLYPH<g72>GLYPH<g91>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g87>GLYPH<g3> GLYPH<g70>GLYPH<g82>GLYPH<g81>GLYPH<g86>GLYPH<g88>GLYPH<g79>GLYPH<g87>GLYPH<g76>GLYPH<g81>GLYPH<g74>GLYPH<g15>GLYPH<g3> GLYPH<g86>GLYPH<g78>GLYPH<g76>GLYPH<g79>GLYPH<g79>GLYPH<g86> GLYPH<g3> GLYPH<g86>GLYPH<g75>GLYPH<g68>GLYPH<g85>GLYPH<g76>GLYPH<g81>GLYPH<g74>GLYPH<g3> GLYPH<g68>GLYPH<g81>GLYPH<g71>GLYPH<g3> GLYPH<g85>GLYPH<g72>GLYPH<g81>GLYPH<g82>GLYPH<g90>GLYPH<g81>GLYPH<g3> GLYPH<g86>GLYPH<g72>GLYPH<g85>GLYPH<g89>GLYPH<g76>GLYPH<g70>GLYPH<g72>GLYPH<g86></paragraph>
<paragraph><location><page_3><loc_24><loc_45><loc_38><loc_47></location>GLYPH<g115>GLYPH<g3> GLYPH<g55> GLYPH<g68>GLYPH<g78>GLYPH<g72>GLYPH<g3> GLYPH<g68>GLYPH<g71>GLYPH<g89>GLYPH<g68>GLYPH<g81>GLYPH<g87>GLYPH<g68>GLYPH<g74>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g68>GLYPH<g70>GLYPH<g70>GLYPH<g72>GLYPH<g86>GLYPH<g86>GLYPH<g3> GLYPH<g87>GLYPH<g82>GLYPH<g3> GLYPH<g68> GLYPH<g3> GLYPH<g90>GLYPH<g82>GLYPH<g85>GLYPH<g79>GLYPH<g71>GLYPH<g90>GLYPH<g76>GLYPH<g71>GLYPH<g72>GLYPH<g3> GLYPH<g86>GLYPH<g82>GLYPH<g88>GLYPH<g85>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g72>GLYPH<g91>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g87>GLYPH<g76>GLYPH<g86>GLYPH<g72></paragraph>
<figure>
<location><page_3><loc_10><loc_13><loc_42><loc_24></location>
</figure>
@ -33,15 +33,15 @@
<paragraph><location><page_3><loc_46><loc_46><loc_82><loc_52></location>With combined experiences and direct access to development groups, we're the experts in IBM DB2® for i. The DB2 for i Center of Excellence (CoE) can help you achieve-perhaps reexamine and exceed-your business requirements and gain more confidence and satisfaction in IBM product data management products and solutions.</paragraph>
<subtitle-level-1><location><page_3><loc_46><loc_44><loc_71><loc_45></location>Who we are, some of what we do</subtitle-level-1>
<paragraph><location><page_3><loc_46><loc_42><loc_71><loc_43></location>Global CoE engagements cover topics including:</paragraph>
<paragraph><location><page_3><loc_46><loc_40><loc_66><loc_41></location>- r Database performance and scalability</paragraph>
<paragraph><location><page_3><loc_46><loc_39><loc_69><loc_39></location>- r Advanced SQL knowledge and skills transfer</paragraph>
<paragraph><location><page_3><loc_46><loc_37><loc_64><loc_38></location>- r Business intelligence and analytics</paragraph>
<paragraph><location><page_3><loc_46><loc_36><loc_56><loc_37></location>- r DB2 Web Query</paragraph>
<paragraph><location><page_3><loc_46><loc_35><loc_82><loc_36></location>- r Query/400 modernization for better reporting and analysis capabilities</paragraph>
<paragraph><location><page_3><loc_46><loc_33><loc_69><loc_34></location>- r Database modernization and re-engineering</paragraph>
<paragraph><location><page_3><loc_46><loc_32><loc_65><loc_33></location>- r Data-centric architecture and design</paragraph>
<paragraph><location><page_3><loc_46><loc_31><loc_76><loc_32></location>- r Extremely large database and overcoming limits to growth</paragraph>
<paragraph><location><page_3><loc_46><loc_30><loc_62><loc_30></location>- r ISV education and enablement</paragraph>
<paragraph><location><page_3><loc_46><loc_40><loc_66><loc_41></location>r Database performance and scalability</paragraph>
<paragraph><location><page_3><loc_46><loc_39><loc_69><loc_39></location>r Advanced SQL knowledge and skills transfer</paragraph>
<paragraph><location><page_3><loc_46><loc_37><loc_64><loc_38></location>r Business intelligence and analytics</paragraph>
<paragraph><location><page_3><loc_46><loc_36><loc_56><loc_37></location>r DB2 Web Query</paragraph>
<paragraph><location><page_3><loc_46><loc_35><loc_82><loc_36></location>r Query/400 modernization for better reporting and analysis capabilities</paragraph>
<paragraph><location><page_3><loc_46><loc_33><loc_69><loc_34></location>r Database modernization and re-engineering</paragraph>
<paragraph><location><page_3><loc_46><loc_32><loc_65><loc_33></location>r Data-centric architecture and design</paragraph>
<paragraph><location><page_3><loc_46><loc_31><loc_76><loc_32></location>r Extremely large database and overcoming limits to growth</paragraph>
<paragraph><location><page_3><loc_46><loc_30><loc_62><loc_30></location>r ISV education and enablement</paragraph>
<subtitle-level-1><location><page_4><loc_11><loc_88><loc_25><loc_91></location>Preface</subtitle-level-1>
<paragraph><location><page_4><loc_22><loc_75><loc_89><loc_83></location>This IBMfi Redpaper™ publication provides information about the IBM i 7.2 feature of IBM DB2fi for i Row and Column Access Control (RCAC). It offers a broad description of the function and advantages of controlling access to data in a comprehensive and transparent way. This publication helps you understand the capabilities of RCAC and provides examples of defining, creating, and implementing the row permissions and column masks in a relational database environment.</paragraph>
<paragraph><location><page_4><loc_22><loc_67><loc_89><loc_73></location>This paper is intended for database engineers, data-centric application developers, and security officers who want to design and implement RCAC as a part of their data control and governance policy. A solid background in IBM i object level security, DB2 for i relational database concepts, and SQL is assumed.</paragraph>
@ -64,15 +64,15 @@
<paragraph><location><page_5><loc_22><loc_46><loc_89><loc_56></location>Recent news headlines are filled with reports of data breaches and cyber-attacks impacting global businesses of all sizes. The Identity Theft Resource Center$^{1}$ reports that almost 5000 data breaches have occurred since 2005, exposing over 600 million records of data. The financial cost of these data breaches is skyrocketing. Studies from the Ponemon Institute$^{2}$ revealed that the average cost of a data breach increased in 2013 by 15% globally and resulted in a brand equity loss of $9.4 million per attack. The average cost that is incurred for each lost record containing sensitive information increased more than 9% to $145 per record.</paragraph>
<paragraph><location><page_5><loc_22><loc_38><loc_86><loc_44></location>Businesses must make a serious effort to secure their data and recognize that securing information assets is a cost of doing business. In many parts of the world and in many industries, securing the data is required by law and subject to audits. Data security is no longer an option; it is a requirement.</paragraph>
<paragraph><location><page_5><loc_22><loc_34><loc_89><loc_37></location>This chapter describes how you can secure and protect data in DB2 for i. The following topics are covered in this chapter:</paragraph>
<paragraph><location><page_5><loc_22><loc_32><loc_41><loc_33></location>- GLYPH<SM590000> Security fundamentals</paragraph>
<paragraph><location><page_5><loc_22><loc_30><loc_46><loc_32></location>- GLYPH<SM590000> Current state of IBM i security</paragraph>
<paragraph><location><page_5><loc_22><loc_29><loc_43><loc_30></location>- GLYPH<SM590000> DB2 for i security controls</paragraph>
<paragraph><location><page_5><loc_22><loc_32><loc_41><loc_33></location>GLYPH<SM590000> Security fundamentals</paragraph>
<paragraph><location><page_5><loc_22><loc_30><loc_46><loc_32></location>GLYPH<SM590000> Current state of IBM i security</paragraph>
<paragraph><location><page_5><loc_22><loc_29><loc_43><loc_30></location>GLYPH<SM590000> DB2 for i security controls</paragraph>
<subtitle-level-1><location><page_6><loc_11><loc_89><loc_44><loc_91></location>1.1 Security fundamentals</subtitle-level-1>
<paragraph><location><page_6><loc_22><loc_84><loc_89><loc_87></location>Before reviewing database security techniques, there are two fundamental steps in securing information assets that must be described:</paragraph>
<paragraph><location><page_6><loc_22><loc_77><loc_89><loc_83></location>- GLYPH<SM590000> First, and most important, is the definition of a company's security policy . Without a security policy, there is no definition of what are acceptable practices for using, accessing, and storing information by who, what, when, where, and how. A security policy should minimally address three things: confidentiality, integrity, and availability.</paragraph>
<paragraph><location><page_6><loc_25><loc_66><loc_89><loc_76></location>- The monitoring and assessment of adherence to the security policy determines whether your security strategy is working. Often, IBM security consultants are asked to perform security assessments for companies without regard to the security policy. Although these assessments can be useful for observing how the system is defined and how data is being accessed, they cannot determine the level of security without a security policy. Without a security policy, it really is not an assessment as much as it is a baseline for monitoring the changes in the security settings that are captured.</paragraph>
<paragraph><location><page_6><loc_22><loc_77><loc_89><loc_83></location>GLYPH<SM590000> First, and most important, is the definition of a company's security policy . Without a security policy, there is no definition of what are acceptable practices for using, accessing, and storing information by who, what, when, where, and how. A security policy should minimally address three things: confidentiality, integrity, and availability.</paragraph>
<paragraph><location><page_6><loc_25><loc_66><loc_89><loc_76></location>The monitoring and assessment of adherence to the security policy determines whether your security strategy is working. Often, IBM security consultants are asked to perform security assessments for companies without regard to the security policy. Although these assessments can be useful for observing how the system is defined and how data is being accessed, they cannot determine the level of security without a security policy. Without a security policy, it really is not an assessment as much as it is a baseline for monitoring the changes in the security settings that are captured.</paragraph>
<paragraph><location><page_6><loc_25><loc_64><loc_89><loc_65></location>A security policy is what defines whether the system and its settings are secure (or not).</paragraph>
<paragraph><location><page_6><loc_22><loc_53><loc_89><loc_63></location>- GLYPH<SM590000> The second fundamental in securing data assets is the use of resource security . If implemented properly, resource security prevents data breaches from both internal and external intrusions. Resource security controls are closely tied to the part of the security policy that defines who should have access to what information resources. A hacker might be good enough to get through your company firewalls and sift his way through to your system, but if they do not have explicit access to your database, the hacker cannot compromise your information assets.</paragraph>
<paragraph><location><page_6><loc_22><loc_53><loc_89><loc_63></location>GLYPH<SM590000> The second fundamental in securing data assets is the use of resource security . If implemented properly, resource security prevents data breaches from both internal and external intrusions. Resource security controls are closely tied to the part of the security policy that defines who should have access to what information resources. A hacker might be good enough to get through your company firewalls and sift his way through to your system, but if they do not have explicit access to your database, the hacker cannot compromise your information assets.</paragraph>
<paragraph><location><page_6><loc_22><loc_48><loc_87><loc_51></location>With your eyes now open to the importance of securing information assets, the rest of this chapter reviews the methods that are available for securing database resources on IBM i.</paragraph>
<subtitle-level-1><location><page_6><loc_11><loc_43><loc_53><loc_45></location>1.2 Current state of IBM i security</subtitle-level-1>
<paragraph><location><page_6><loc_22><loc_35><loc_89><loc_41></location>Because of the inherently secure nature of IBM i, many clients rely on the default system settings to protect their business data that is stored in DB2 for i. In most cases, this means no data protection because the default setting for the Create default public authority (QCRTAUT) system value is *CHANGE.</paragraph>
@ -90,9 +90,9 @@
<caption><location><page_7><loc_22><loc_12><loc_52><loc_13></location>Figure 1-2 Existing row and column controls</caption>
<subtitle-level-1><location><page_8><loc_11><loc_89><loc_55><loc_91></location>2.1.6 Change Function Usage CL command</subtitle-level-1>
<paragraph><location><page_8><loc_22><loc_87><loc_89><loc_88></location>The following CL commands can be used to work with, display, or change function usage IDs:</paragraph>
<paragraph><location><page_8><loc_22><loc_84><loc_49><loc_86></location>- GLYPH<SM590000> Work Function Usage ( WRKFCNUSG )</paragraph>
<paragraph><location><page_8><loc_22><loc_83><loc_51><loc_84></location>- GLYPH<SM590000> Change Function Usage ( CHGFCNUSG )</paragraph>
<paragraph><location><page_8><loc_22><loc_81><loc_51><loc_83></location>- GLYPH<SM590000> Display Function Usage ( DSPFCNUSG )</paragraph>
<paragraph><location><page_8><loc_22><loc_84><loc_49><loc_86></location>GLYPH<SM590000> Work Function Usage ( WRKFCNUSG )</paragraph>
<paragraph><location><page_8><loc_22><loc_83><loc_51><loc_84></location>GLYPH<SM590000> Change Function Usage ( CHGFCNUSG )</paragraph>
<paragraph><location><page_8><loc_22><loc_81><loc_51><loc_83></location>GLYPH<SM590000> Display Function Usage ( DSPFCNUSG )</paragraph>
<paragraph><location><page_8><loc_22><loc_77><loc_84><loc_80></location>For example, the following CHGFCNUSG command shows granting authorization to user HBEDOYA to administer and manage RCAC rules:</paragraph>
<paragraph><location><page_8><loc_22><loc_75><loc_72><loc_76></location>CHGFCNUSG FCNID(QIBM_DB_SECADM) USER(HBEDOYA) USAGE(*ALLOWED)</paragraph>
<subtitle-level-1><location><page_8><loc_11><loc_71><loc_89><loc_72></location>2.1.7 Verifying function usage IDs for RCAC with the FUNCTION_USAGE view</subtitle-level-1>
@ -165,11 +165,11 @@
</table>
<caption><location><page_11><loc_22><loc_87><loc_61><loc_88></location>Table 3-1 Special registers and their corresponding values</caption>
<paragraph><location><page_11><loc_22><loc_70><loc_88><loc_73></location>Figure 3-5 shows the difference in the special register values when an adopted authority is used:</paragraph>
<paragraph><location><page_11><loc_22><loc_68><loc_67><loc_69></location>- GLYPH<SM590000> A user connects to the server using the user profile ALICE.</paragraph>
<paragraph><location><page_11><loc_22><loc_66><loc_74><loc_67></location>- GLYPH<SM590000> USER and CURRENT USER initially have the same value of ALICE.</paragraph>
<paragraph><location><page_11><loc_22><loc_62><loc_88><loc_65></location>- GLYPH<SM590000> ALICE calls an SQL procedure that is named proc1, which is owned by user profile JOE and was created to adopt JOE's authority when it is called.</paragraph>
<paragraph><location><page_11><loc_22><loc_57><loc_89><loc_61></location>- GLYPH<SM590000> While the procedure is running, the special register USER still contains the value of ALICE because it excludes any adopted authority. The special register CURRENT USER contains the value of JOE because it includes any adopted authority.</paragraph>
<paragraph><location><page_11><loc_22><loc_53><loc_89><loc_56></location>- GLYPH<SM590000> When proc1 ends, the session reverts to its original state with both USER and CURRENT USER having the value of ALICE.</paragraph>
<paragraph><location><page_11><loc_22><loc_68><loc_67><loc_69></location>GLYPH<SM590000> A user connects to the server using the user profile ALICE.</paragraph>
<paragraph><location><page_11><loc_22><loc_66><loc_74><loc_67></location>GLYPH<SM590000> USER and CURRENT USER initially have the same value of ALICE.</paragraph>
<paragraph><location><page_11><loc_22><loc_62><loc_88><loc_65></location>GLYPH<SM590000> ALICE calls an SQL procedure that is named proc1, which is owned by user profile JOE and was created to adopt JOE's authority when it is called.</paragraph>
<paragraph><location><page_11><loc_22><loc_57><loc_89><loc_61></location>GLYPH<SM590000> While the procedure is running, the special register USER still contains the value of ALICE because it excludes any adopted authority. The special register CURRENT USER contains the value of JOE because it includes any adopted authority.</paragraph>
<paragraph><location><page_11><loc_22><loc_53><loc_89><loc_56></location>GLYPH<SM590000> When proc1 ends, the session reverts to its original state with both USER and CURRENT USER having the value of ALICE.</paragraph>
<figure>
<location><page_11><loc_22><loc_25><loc_49><loc_51></location>
<caption>Figure 3-5 Special registers and adopted authority</caption>
@ -206,11 +206,11 @@
<paragraph><location><page_13><loc_22><loc_88><loc_26><loc_89></location>CASE</paragraph>
<paragraph><location><page_13><loc_22><loc_67><loc_85><loc_88></location>WHEN VERIFY_GROUP_FOR_USER ( SESSION_USER , 'HR', 'EMP' ) = 1 THEN EMPLOYEES . DATE_OF_BIRTH WHEN VERIFY_GROUP_FOR_USER ( SESSION_USER , 'MGR' ) = 1 AND SESSION_USER = EMPLOYEES . USER_ID THEN EMPLOYEES . DATE_OF_BIRTH WHEN VERIFY_GROUP_FOR_USER ( SESSION_USER , 'MGR' ) = 1 AND SESSION_USER <> EMPLOYEES . USER_ID THEN ( 9999 || '-' || MONTH ( EMPLOYEES . DATE_OF_BIRTH ) || '-' || DAY (EMPLOYEES.DATE_OF_BIRTH )) ELSE NULL END ENABLE ;</paragraph>
<paragraph><location><page_13><loc_22><loc_63><loc_89><loc_65></location>2. The other column to mask in this example is the TAX_ID information. In this example, the rules to enforce include the following ones:</paragraph>
<paragraph><location><page_13><loc_25><loc_60><loc_77><loc_62></location>- -Human Resources can see the unmasked TAX_ID of the employees.</paragraph>
<paragraph><location><page_13><loc_25><loc_58><loc_66><loc_59></location>- -Employees can see only their own unmasked TAX_ID.</paragraph>
<paragraph><location><page_13><loc_25><loc_55><loc_89><loc_57></location>- -Managers see a masked version of TAX_ID with the first five characters replaced with the X character (for example, XXX-XX-1234).</paragraph>
<paragraph><location><page_13><loc_25><loc_52><loc_87><loc_54></location>- -Any other person sees the entire TAX_ID as masked, for example, XXX-XX-XXXX.</paragraph>
<paragraph><location><page_13><loc_25><loc_50><loc_87><loc_51></location>- To implement this column mask, run the SQL statement that is shown in Example 3-9.</paragraph>
<paragraph><location><page_13><loc_25><loc_60><loc_77><loc_62></location>-Human Resources can see the unmasked TAX_ID of the employees.</paragraph>
<paragraph><location><page_13><loc_25><loc_58><loc_66><loc_59></location>-Employees can see only their own unmasked TAX_ID.</paragraph>
<paragraph><location><page_13><loc_25><loc_55><loc_89><loc_57></location>-Managers see a masked version of TAX_ID with the first five characters replaced with the X character (for example, XXX-XX-1234).</paragraph>
<paragraph><location><page_13><loc_25><loc_52><loc_87><loc_54></location>-Any other person sees the entire TAX_ID as masked, for example, XXX-XX-XXXX.</paragraph>
<paragraph><location><page_13><loc_25><loc_50><loc_87><loc_51></location>To implement this column mask, run the SQL statement that is shown in Example 3-9.</paragraph>
<paragraph><location><page_13><loc_22><loc_14><loc_86><loc_47></location>CREATE MASK HR_SCHEMA.MASK_TAX_ID_ON_EMPLOYEES ON HR_SCHEMA.EMPLOYEES AS EMPLOYEES FOR COLUMN TAX_ID RETURN CASE WHEN VERIFY_GROUP_FOR_USER ( SESSION_USER , 'HR' ) = 1 THEN EMPLOYEES . TAX_ID WHEN VERIFY_GROUP_FOR_USER ( SESSION_USER , 'MGR' ) = 1 AND SESSION_USER = EMPLOYEES . USER_ID THEN EMPLOYEES . TAX_ID WHEN VERIFY_GROUP_FOR_USER ( SESSION_USER , 'MGR' ) = 1 AND SESSION_USER <> EMPLOYEES . USER_ID THEN ( 'XXX-XX-' CONCAT QSYS2 . SUBSTR ( EMPLOYEES . TAX_ID , 8 , 4 ) ) WHEN VERIFY_GROUP_FOR_USER ( SESSION_USER , 'EMP' ) = 1 THEN EMPLOYEES . TAX_ID ELSE 'XXX-XX-XXXX' END ENABLE ;</paragraph>
<caption><location><page_13><loc_22><loc_48><loc_58><loc_49></location>Example 3-9 Creating a mask on the TAX_ID column</caption>
<paragraph><location><page_14><loc_22><loc_90><loc_74><loc_91></location>3. Figure 3-10 shows the masks that are created in the HR_SCHEMA.</paragraph>
@ -223,8 +223,8 @@
<paragraph><location><page_14><loc_22><loc_67><loc_89><loc_71></location>Now that you have created the row permission and the two column masks, RCAC must be activated. The row permission and the two column masks are enabled (last clause in the scripts), but now you must activate RCAC on the table. To do so, complete the following steps:</paragraph>
<paragraph><location><page_14><loc_22><loc_65><loc_67><loc_66></location>1. Run the SQL statements that are shown in Example 3-10.</paragraph>
<subtitle-level-1><location><page_14><loc_22><loc_62><loc_61><loc_63></location>Example 3-10 Activating RCAC on the EMPLOYEES table</subtitle-level-1>
<paragraph><location><page_14><loc_22><loc_60><loc_62><loc_61></location>- /* Active Row Access Control (permissions) */</paragraph>
<paragraph><location><page_14><loc_22><loc_58><loc_58><loc_60></location>- /* Active Column Access Control (masks)</paragraph>
<paragraph><location><page_14><loc_22><loc_60><loc_62><loc_61></location>/* Active Row Access Control (permissions) */</paragraph>
<paragraph><location><page_14><loc_22><loc_58><loc_58><loc_60></location>/* Active Column Access Control (masks)</paragraph>
<paragraph><location><page_14><loc_60><loc_58><loc_62><loc_60></location>*/</paragraph>
<paragraph><location><page_14><loc_22><loc_57><loc_48><loc_58></location>ALTER TABLE HR_SCHEMA.EMPLOYEES</paragraph>
<paragraph><location><page_14><loc_22><loc_55><loc_44><loc_56></location>ACTIVATE ROW ACCESS CONTROL</paragraph>

View File

@ -305,7 +305,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<g115>GLYPH<g3> GLYPH<g40>GLYPH<g81>GLYPH<g75>GLYPH<g68>GLYPH<g81>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g87>GLYPH<g75>GLYPH<g72>GLYPH<g3> GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g73>GLYPH<g82>GLYPH<g85>GLYPH<g80>GLYPH<g68>GLYPH<g81>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g92>GLYPH<g82>GLYPH<g88>GLYPH<g85> GLYPH<g3> GLYPH<g71>GLYPH<g68>GLYPH<g87>GLYPH<g68>GLYPH<g69>GLYPH<g68>GLYPH<g86>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g86>",
"text": "GLYPH<g115>GLYPH<g3> GLYPH<g40>GLYPH<g81>GLYPH<g75>GLYPH<g68>GLYPH<g81>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g87>GLYPH<g75>GLYPH<g72>GLYPH<g3> GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g73>GLYPH<g82>GLYPH<g85>GLYPH<g80>GLYPH<g68>GLYPH<g81>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g92>GLYPH<g82>GLYPH<g88>GLYPH<g85> GLYPH<g3> GLYPH<g71>GLYPH<g68>GLYPH<g87>GLYPH<g68>GLYPH<g69>GLYPH<g68>GLYPH<g86>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g86>",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -328,7 +328,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<g115>GLYPH<g3> GLYPH<g40>GLYPH<g68>GLYPH<g85> GLYPH<g81>GLYPH<g3> GLYPH<g74>GLYPH<g85>GLYPH<g72>GLYPH<g68>GLYPH<g87>GLYPH<g72>GLYPH<g85>GLYPH<g3> GLYPH<g85>GLYPH<g72>GLYPH<g87>GLYPH<g88>GLYPH<g85> GLYPH<g81>GLYPH<g3> GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g44>GLYPH<g55>GLYPH<g3> GLYPH<g83>GLYPH<g85>GLYPH<g82>GLYPH<g77>GLYPH<g72>GLYPH<g70>GLYPH<g87>GLYPH<g86> GLYPH<g3> GLYPH<g87>GLYPH<g75>GLYPH<g85>GLYPH<g82>GLYPH<g88>GLYPH<g74>GLYPH<g75>GLYPH<g3> GLYPH<g80>GLYPH<g82>GLYPH<g71>GLYPH<g72>GLYPH<g85> GLYPH<g81>GLYPH<g76>GLYPH<g93>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g71>GLYPH<g68>GLYPH<g87>GLYPH<g68>GLYPH<g69>GLYPH<g68>GLYPH<g86>GLYPH<g72>GLYPH<g3> GLYPH<g68>GLYPH<g81>GLYPH<g71> GLYPH<g3> GLYPH<g68>GLYPH<g83>GLYPH<g83>GLYPH<g79>GLYPH<g76>GLYPH<g70>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g86>",
"text": "GLYPH<g115>GLYPH<g3> GLYPH<g40>GLYPH<g68>GLYPH<g85> GLYPH<g81>GLYPH<g3> GLYPH<g74>GLYPH<g85>GLYPH<g72>GLYPH<g68>GLYPH<g87>GLYPH<g72>GLYPH<g85>GLYPH<g3> GLYPH<g85>GLYPH<g72>GLYPH<g87>GLYPH<g88>GLYPH<g85> GLYPH<g81>GLYPH<g3> GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g44>GLYPH<g55>GLYPH<g3> GLYPH<g83>GLYPH<g85>GLYPH<g82>GLYPH<g77>GLYPH<g72>GLYPH<g70>GLYPH<g87>GLYPH<g86> GLYPH<g3> GLYPH<g87>GLYPH<g75>GLYPH<g85>GLYPH<g82>GLYPH<g88>GLYPH<g74>GLYPH<g75>GLYPH<g3> GLYPH<g80>GLYPH<g82>GLYPH<g71>GLYPH<g72>GLYPH<g85> GLYPH<g81>GLYPH<g76>GLYPH<g93>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g71>GLYPH<g68>GLYPH<g87>GLYPH<g68>GLYPH<g69>GLYPH<g68>GLYPH<g86>GLYPH<g72>GLYPH<g3> GLYPH<g68>GLYPH<g81>GLYPH<g71> GLYPH<g3> GLYPH<g68>GLYPH<g83>GLYPH<g83>GLYPH<g79>GLYPH<g76>GLYPH<g70>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g86>",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -351,7 +351,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<g115>GLYPH<g3> GLYPH<g53>GLYPH<g72>GLYPH<g79>GLYPH<g92>GLYPH<g3> GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g44>GLYPH<g37>GLYPH<g48>GLYPH<g3> GLYPH<g72>GLYPH<g91>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g87>GLYPH<g3> GLYPH<g70>GLYPH<g82>GLYPH<g81>GLYPH<g86>GLYPH<g88>GLYPH<g79>GLYPH<g87>GLYPH<g76>GLYPH<g81>GLYPH<g74>GLYPH<g15>GLYPH<g3> GLYPH<g86>GLYPH<g78>GLYPH<g76>GLYPH<g79>GLYPH<g79>GLYPH<g86> GLYPH<g3> GLYPH<g86>GLYPH<g75>GLYPH<g68>GLYPH<g85>GLYPH<g76>GLYPH<g81>GLYPH<g74>GLYPH<g3> GLYPH<g68>GLYPH<g81>GLYPH<g71>GLYPH<g3> GLYPH<g85>GLYPH<g72>GLYPH<g81>GLYPH<g82>GLYPH<g90>GLYPH<g81>GLYPH<g3> GLYPH<g86>GLYPH<g72>GLYPH<g85>GLYPH<g89>GLYPH<g76>GLYPH<g70>GLYPH<g72>GLYPH<g86>",
"text": "GLYPH<g115>GLYPH<g3> GLYPH<g53>GLYPH<g72>GLYPH<g79>GLYPH<g92>GLYPH<g3> GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g44>GLYPH<g37>GLYPH<g48>GLYPH<g3> GLYPH<g72>GLYPH<g91>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g87>GLYPH<g3> GLYPH<g70>GLYPH<g82>GLYPH<g81>GLYPH<g86>GLYPH<g88>GLYPH<g79>GLYPH<g87>GLYPH<g76>GLYPH<g81>GLYPH<g74>GLYPH<g15>GLYPH<g3> GLYPH<g86>GLYPH<g78>GLYPH<g76>GLYPH<g79>GLYPH<g79>GLYPH<g86> GLYPH<g3> GLYPH<g86>GLYPH<g75>GLYPH<g68>GLYPH<g85>GLYPH<g76>GLYPH<g81>GLYPH<g74>GLYPH<g3> GLYPH<g68>GLYPH<g81>GLYPH<g71>GLYPH<g3> GLYPH<g85>GLYPH<g72>GLYPH<g81>GLYPH<g82>GLYPH<g90>GLYPH<g81>GLYPH<g3> GLYPH<g86>GLYPH<g72>GLYPH<g85>GLYPH<g89>GLYPH<g76>GLYPH<g70>GLYPH<g72>GLYPH<g86>",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -374,7 +374,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<g115>GLYPH<g3> GLYPH<g55> GLYPH<g68>GLYPH<g78>GLYPH<g72>GLYPH<g3> GLYPH<g68>GLYPH<g71>GLYPH<g89>GLYPH<g68>GLYPH<g81>GLYPH<g87>GLYPH<g68>GLYPH<g74>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g68>GLYPH<g70>GLYPH<g70>GLYPH<g72>GLYPH<g86>GLYPH<g86>GLYPH<g3> GLYPH<g87>GLYPH<g82>GLYPH<g3> GLYPH<g68> GLYPH<g3> GLYPH<g90>GLYPH<g82>GLYPH<g85>GLYPH<g79>GLYPH<g71>GLYPH<g90>GLYPH<g76>GLYPH<g71>GLYPH<g72>GLYPH<g3> GLYPH<g86>GLYPH<g82>GLYPH<g88>GLYPH<g85>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g72>GLYPH<g91>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g87>GLYPH<g76>GLYPH<g86>GLYPH<g72>",
"text": "GLYPH<g115>GLYPH<g3> GLYPH<g55> GLYPH<g68>GLYPH<g78>GLYPH<g72>GLYPH<g3> GLYPH<g68>GLYPH<g71>GLYPH<g89>GLYPH<g68>GLYPH<g81>GLYPH<g87>GLYPH<g68>GLYPH<g74>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g68>GLYPH<g70>GLYPH<g70>GLYPH<g72>GLYPH<g86>GLYPH<g86>GLYPH<g3> GLYPH<g87>GLYPH<g82>GLYPH<g3> GLYPH<g68> GLYPH<g3> GLYPH<g90>GLYPH<g82>GLYPH<g85>GLYPH<g79>GLYPH<g71>GLYPH<g90>GLYPH<g76>GLYPH<g71>GLYPH<g72>GLYPH<g3> GLYPH<g86>GLYPH<g82>GLYPH<g88>GLYPH<g85>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g72>GLYPH<g91>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g87>GLYPH<g76>GLYPH<g86>GLYPH<g72>",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -609,7 +609,7 @@
"__ref_s3_data": null
}
],
"text": "- r Database performance and scalability",
"text": "r Database performance and scalability",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -632,7 +632,7 @@
"__ref_s3_data": null
}
],
"text": "- r Advanced SQL knowledge and skills transfer",
"text": "r Advanced SQL knowledge and skills transfer",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -655,7 +655,7 @@
"__ref_s3_data": null
}
],
"text": "- r Business intelligence and analytics",
"text": "r Business intelligence and analytics",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -678,7 +678,7 @@
"__ref_s3_data": null
}
],
"text": "- r DB2 Web Query",
"text": "r DB2 Web Query",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -701,7 +701,7 @@
"__ref_s3_data": null
}
],
"text": "- r Query/400 modernization for better reporting and analysis capabilities",
"text": "r Query/400 modernization for better reporting and analysis capabilities",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -724,7 +724,7 @@
"__ref_s3_data": null
}
],
"text": "- r Database modernization and re-engineering",
"text": "r Database modernization and re-engineering",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -747,7 +747,7 @@
"__ref_s3_data": null
}
],
"text": "- r Data-centric architecture and design",
"text": "r Data-centric architecture and design",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -770,7 +770,7 @@
"__ref_s3_data": null
}
],
"text": "- r Extremely large database and overcoming limits to growth",
"text": "r Extremely large database and overcoming limits to growth",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -793,7 +793,7 @@
"__ref_s3_data": null
}
],
"text": "- r ISV education and enablement",
"text": "r ISV education and enablement",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -1130,7 +1130,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<SM590000> Security fundamentals",
"text": "GLYPH<SM590000> Security fundamentals",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -1153,7 +1153,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<SM590000> Current state of IBM i security",
"text": "GLYPH<SM590000> Current state of IBM i security",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -1176,7 +1176,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<SM590000> DB2 for i security controls",
"text": "GLYPH<SM590000> DB2 for i security controls",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -1291,7 +1291,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<SM590000> First, and most important, is the definition of a company's security policy . Without a security policy, there is no definition of what are acceptable practices for using, accessing, and storing information by who, what, when, where, and how. A security policy should minimally address three things: confidentiality, integrity, and availability.",
"text": "GLYPH<SM590000> First, and most important, is the definition of a company's security policy . Without a security policy, there is no definition of what are acceptable practices for using, accessing, and storing information by who, what, when, where, and how. A security policy should minimally address three things: confidentiality, integrity, and availability.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -1314,7 +1314,7 @@
"__ref_s3_data": null
}
],
"text": "- The monitoring and assessment of adherence to the security policy determines whether your security strategy is working. Often, IBM security consultants are asked to perform security assessments for companies without regard to the security policy. Although these assessments can be useful for observing how the system is defined and how data is being accessed, they cannot determine the level of security without a security policy. Without a security policy, it really is not an assessment as much as it is a baseline for monitoring the changes in the security settings that are captured.",
"text": "The monitoring and assessment of adherence to the security policy determines whether your security strategy is working. Often, IBM security consultants are asked to perform security assessments for companies without regard to the security policy. Although these assessments can be useful for observing how the system is defined and how data is being accessed, they cannot determine the level of security without a security policy. Without a security policy, it really is not an assessment as much as it is a baseline for monitoring the changes in the security settings that are captured.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -1360,7 +1360,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<SM590000> The second fundamental in securing data assets is the use of resource security . If implemented properly, resource security prevents data breaches from both internal and external intrusions. Resource security controls are closely tied to the part of the security policy that defines who should have access to what information resources. A hacker might be good enough to get through your company firewalls and sift his way through to your system, but if they do not have explicit access to your database, the hacker cannot compromise your information assets.",
"text": "GLYPH<SM590000> The second fundamental in securing data assets is the use of resource security . If implemented properly, resource security prevents data breaches from both internal and external intrusions. Resource security controls are closely tied to the part of the security policy that defines who should have access to what information resources. A hacker might be good enough to get through your company firewalls and sift his way through to your system, but if they do not have explicit access to your database, the hacker cannot compromise your information assets.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -1687,7 +1687,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<SM590000> Work Function Usage ( WRKFCNUSG )",
"text": "GLYPH<SM590000> Work Function Usage ( WRKFCNUSG )",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -1710,7 +1710,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<SM590000> Change Function Usage ( CHGFCNUSG )",
"text": "GLYPH<SM590000> Change Function Usage ( CHGFCNUSG )",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -1733,7 +1733,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<SM590000> Display Function Usage ( DSPFCNUSG )",
"text": "GLYPH<SM590000> Display Function Usage ( DSPFCNUSG )",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -2558,7 +2558,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<SM590000> A user connects to the server using the user profile ALICE.",
"text": "GLYPH<SM590000> A user connects to the server using the user profile ALICE.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -2581,7 +2581,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<SM590000> USER and CURRENT USER initially have the same value of ALICE.",
"text": "GLYPH<SM590000> USER and CURRENT USER initially have the same value of ALICE.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -2604,7 +2604,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<SM590000> ALICE calls an SQL procedure that is named proc1, which is owned by user profile JOE and was created to adopt JOE's authority when it is called.",
"text": "GLYPH<SM590000> ALICE calls an SQL procedure that is named proc1, which is owned by user profile JOE and was created to adopt JOE's authority when it is called.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -2627,7 +2627,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<SM590000> While the procedure is running, the special register USER still contains the value of ALICE because it excludes any adopted authority. The special register CURRENT USER contains the value of JOE because it includes any adopted authority.",
"text": "GLYPH<SM590000> While the procedure is running, the special register USER still contains the value of ALICE because it excludes any adopted authority. The special register CURRENT USER contains the value of JOE because it includes any adopted authority.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -2650,7 +2650,7 @@
"__ref_s3_data": null
}
],
"text": "- GLYPH<SM590000> When proc1 ends, the session reverts to its original state with both USER and CURRENT USER having the value of ALICE.",
"text": "GLYPH<SM590000> When proc1 ends, the session reverts to its original state with both USER and CURRENT USER having the value of ALICE.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -3097,7 +3097,7 @@
"__ref_s3_data": null
}
],
"text": "- -Human Resources can see the unmasked TAX_ID of the employees.",
"text": "-Human Resources can see the unmasked TAX_ID of the employees.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -3120,7 +3120,7 @@
"__ref_s3_data": null
}
],
"text": "- -Employees can see only their own unmasked TAX_ID.",
"text": "-Employees can see only their own unmasked TAX_ID.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -3143,7 +3143,7 @@
"__ref_s3_data": null
}
],
"text": "- -Managers see a masked version of TAX_ID with the first five characters replaced with the X character (for example, XXX-XX-1234).",
"text": "-Managers see a masked version of TAX_ID with the first five characters replaced with the X character (for example, XXX-XX-1234).",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -3166,7 +3166,7 @@
"__ref_s3_data": null
}
],
"text": "- -Any other person sees the entire TAX_ID as masked, for example, XXX-XX-XXXX.",
"text": "-Any other person sees the entire TAX_ID as masked, for example, XXX-XX-XXXX.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -3189,7 +3189,7 @@
"__ref_s3_data": null
}
],
"text": "- To implement this column mask, run the SQL statement that is shown in Example 3-9.",
"text": "To implement this column mask, run the SQL statement that is shown in Example 3-9.",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -3401,7 +3401,7 @@
"__ref_s3_data": null
}
],
"text": "- /* Active Row Access Control (permissions) */",
"text": "/* Active Row Access Control (permissions) */",
"type": "paragraph",
"payload": null,
"name": "List-item",
@ -3424,7 +3424,7 @@
"__ref_s3_data": null
}
],
"text": "- /* Active Column Access Control (masks)",
"text": "/* Active Column Access Control (masks)",
"type": "paragraph",
"payload": null,
"name": "List-item",

View File

@ -18,13 +18,13 @@ Solution Brief IBM Systems Lab Services and Training
## Highlights
- GLYPH<g115>GLYPH<g3> GLYPH<g40>GLYPH<g81>GLYPH<g75>GLYPH<g68>GLYPH<g81>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g87>GLYPH<g75>GLYPH<g72>GLYPH<g3> GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g73>GLYPH<g82>GLYPH<g85>GLYPH<g80>GLYPH<g68>GLYPH<g81>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g92>GLYPH<g82>GLYPH<g88>GLYPH<g85> GLYPH<g3> GLYPH<g71>GLYPH<g68>GLYPH<g87>GLYPH<g68>GLYPH<g69>GLYPH<g68>GLYPH<g86>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g86>
GLYPH<g115>GLYPH<g3> GLYPH<g40>GLYPH<g81>GLYPH<g75>GLYPH<g68>GLYPH<g81>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g87>GLYPH<g75>GLYPH<g72>GLYPH<g3> GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g73>GLYPH<g82>GLYPH<g85>GLYPH<g80>GLYPH<g68>GLYPH<g81>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g92>GLYPH<g82>GLYPH<g88>GLYPH<g85> GLYPH<g3> GLYPH<g71>GLYPH<g68>GLYPH<g87>GLYPH<g68>GLYPH<g69>GLYPH<g68>GLYPH<g86>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g86>
- GLYPH<g115>GLYPH<g3> GLYPH<g40>GLYPH<g68>GLYPH<g85> GLYPH<g81>GLYPH<g3> GLYPH<g74>GLYPH<g85>GLYPH<g72>GLYPH<g68>GLYPH<g87>GLYPH<g72>GLYPH<g85>GLYPH<g3> GLYPH<g85>GLYPH<g72>GLYPH<g87>GLYPH<g88>GLYPH<g85> GLYPH<g81>GLYPH<g3> GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g44>GLYPH<g55>GLYPH<g3> GLYPH<g83>GLYPH<g85>GLYPH<g82>GLYPH<g77>GLYPH<g72>GLYPH<g70>GLYPH<g87>GLYPH<g86> GLYPH<g3> GLYPH<g87>GLYPH<g75>GLYPH<g85>GLYPH<g82>GLYPH<g88>GLYPH<g74>GLYPH<g75>GLYPH<g3> GLYPH<g80>GLYPH<g82>GLYPH<g71>GLYPH<g72>GLYPH<g85> GLYPH<g81>GLYPH<g76>GLYPH<g93>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g71>GLYPH<g68>GLYPH<g87>GLYPH<g68>GLYPH<g69>GLYPH<g68>GLYPH<g86>GLYPH<g72>GLYPH<g3> GLYPH<g68>GLYPH<g81>GLYPH<g71> GLYPH<g3> GLYPH<g68>GLYPH<g83>GLYPH<g83>GLYPH<g79>GLYPH<g76>GLYPH<g70>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g86>
GLYPH<g115>GLYPH<g3> GLYPH<g40>GLYPH<g68>GLYPH<g85> GLYPH<g81>GLYPH<g3> GLYPH<g74>GLYPH<g85>GLYPH<g72>GLYPH<g68>GLYPH<g87>GLYPH<g72>GLYPH<g85>GLYPH<g3> GLYPH<g85>GLYPH<g72>GLYPH<g87>GLYPH<g88>GLYPH<g85> GLYPH<g81>GLYPH<g3> GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g44>GLYPH<g55>GLYPH<g3> GLYPH<g83>GLYPH<g85>GLYPH<g82>GLYPH<g77>GLYPH<g72>GLYPH<g70>GLYPH<g87>GLYPH<g86> GLYPH<g3> GLYPH<g87>GLYPH<g75>GLYPH<g85>GLYPH<g82>GLYPH<g88>GLYPH<g74>GLYPH<g75>GLYPH<g3> GLYPH<g80>GLYPH<g82>GLYPH<g71>GLYPH<g72>GLYPH<g85> GLYPH<g81>GLYPH<g76>GLYPH<g93>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g71>GLYPH<g68>GLYPH<g87>GLYPH<g68>GLYPH<g69>GLYPH<g68>GLYPH<g86>GLYPH<g72>GLYPH<g3> GLYPH<g68>GLYPH<g81>GLYPH<g71> GLYPH<g3> GLYPH<g68>GLYPH<g83>GLYPH<g83>GLYPH<g79>GLYPH<g76>GLYPH<g70>GLYPH<g68>GLYPH<g87>GLYPH<g76>GLYPH<g82>GLYPH<g81>GLYPH<g86>
- GLYPH<g115>GLYPH<g3> GLYPH<g53>GLYPH<g72>GLYPH<g79>GLYPH<g92>GLYPH<g3> GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g44>GLYPH<g37>GLYPH<g48>GLYPH<g3> GLYPH<g72>GLYPH<g91>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g87>GLYPH<g3> GLYPH<g70>GLYPH<g82>GLYPH<g81>GLYPH<g86>GLYPH<g88>GLYPH<g79>GLYPH<g87>GLYPH<g76>GLYPH<g81>GLYPH<g74>GLYPH<g15>GLYPH<g3> GLYPH<g86>GLYPH<g78>GLYPH<g76>GLYPH<g79>GLYPH<g79>GLYPH<g86> GLYPH<g3> GLYPH<g86>GLYPH<g75>GLYPH<g68>GLYPH<g85>GLYPH<g76>GLYPH<g81>GLYPH<g74>GLYPH<g3> GLYPH<g68>GLYPH<g81>GLYPH<g71>GLYPH<g3> GLYPH<g85>GLYPH<g72>GLYPH<g81>GLYPH<g82>GLYPH<g90>GLYPH<g81>GLYPH<g3> GLYPH<g86>GLYPH<g72>GLYPH<g85>GLYPH<g89>GLYPH<g76>GLYPH<g70>GLYPH<g72>GLYPH<g86>
GLYPH<g115>GLYPH<g3> GLYPH<g53>GLYPH<g72>GLYPH<g79>GLYPH<g92>GLYPH<g3> GLYPH<g82>GLYPH<g81>GLYPH<g3> GLYPH<g44>GLYPH<g37>GLYPH<g48>GLYPH<g3> GLYPH<g72>GLYPH<g91>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g87>GLYPH<g3> GLYPH<g70>GLYPH<g82>GLYPH<g81>GLYPH<g86>GLYPH<g88>GLYPH<g79>GLYPH<g87>GLYPH<g76>GLYPH<g81>GLYPH<g74>GLYPH<g15>GLYPH<g3> GLYPH<g86>GLYPH<g78>GLYPH<g76>GLYPH<g79>GLYPH<g79>GLYPH<g86> GLYPH<g3> GLYPH<g86>GLYPH<g75>GLYPH<g68>GLYPH<g85>GLYPH<g76>GLYPH<g81>GLYPH<g74>GLYPH<g3> GLYPH<g68>GLYPH<g81>GLYPH<g71>GLYPH<g3> GLYPH<g85>GLYPH<g72>GLYPH<g81>GLYPH<g82>GLYPH<g90>GLYPH<g81>GLYPH<g3> GLYPH<g86>GLYPH<g72>GLYPH<g85>GLYPH<g89>GLYPH<g76>GLYPH<g70>GLYPH<g72>GLYPH<g86>
- GLYPH<g115>GLYPH<g3> GLYPH<g55> GLYPH<g68>GLYPH<g78>GLYPH<g72>GLYPH<g3> GLYPH<g68>GLYPH<g71>GLYPH<g89>GLYPH<g68>GLYPH<g81>GLYPH<g87>GLYPH<g68>GLYPH<g74>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g68>GLYPH<g70>GLYPH<g70>GLYPH<g72>GLYPH<g86>GLYPH<g86>GLYPH<g3> GLYPH<g87>GLYPH<g82>GLYPH<g3> GLYPH<g68> GLYPH<g3> GLYPH<g90>GLYPH<g82>GLYPH<g85>GLYPH<g79>GLYPH<g71>GLYPH<g90>GLYPH<g76>GLYPH<g71>GLYPH<g72>GLYPH<g3> GLYPH<g86>GLYPH<g82>GLYPH<g88>GLYPH<g85>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g72>GLYPH<g91>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g87>GLYPH<g76>GLYPH<g86>GLYPH<g72>
GLYPH<g115>GLYPH<g3> GLYPH<g55> GLYPH<g68>GLYPH<g78>GLYPH<g72>GLYPH<g3> GLYPH<g68>GLYPH<g71>GLYPH<g89>GLYPH<g68>GLYPH<g81>GLYPH<g87>GLYPH<g68>GLYPH<g74>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g68>GLYPH<g70>GLYPH<g70>GLYPH<g72>GLYPH<g86>GLYPH<g86>GLYPH<g3> GLYPH<g87>GLYPH<g82>GLYPH<g3> GLYPH<g68> GLYPH<g3> GLYPH<g90>GLYPH<g82>GLYPH<g85>GLYPH<g79>GLYPH<g71>GLYPH<g90>GLYPH<g76>GLYPH<g71>GLYPH<g72>GLYPH<g3> GLYPH<g86>GLYPH<g82>GLYPH<g88>GLYPH<g85>GLYPH<g70>GLYPH<g72>GLYPH<g3> GLYPH<g82>GLYPH<g73>GLYPH<g3> GLYPH<g72>GLYPH<g91>GLYPH<g83>GLYPH<g72>GLYPH<g85>GLYPH<g87>GLYPH<g76>GLYPH<g86>GLYPH<g72>
<!-- image -->
@ -46,23 +46,23 @@ With combined experiences and direct access to development groups, we're the exp
Global CoE engagements cover topics including:
- r Database performance and scalability
r Database performance and scalability
- r Advanced SQL knowledge and skills transfer
r Advanced SQL knowledge and skills transfer
- r Business intelligence and analytics
r Business intelligence and analytics
- r DB2 Web Query
r DB2 Web Query
- r Query/400 modernization for better reporting and analysis capabilities
r Query/400 modernization for better reporting and analysis capabilities
- r Database modernization and re-engineering
r Database modernization and re-engineering
- r Data-centric architecture and design
r Data-centric architecture and design
- r Extremely large database and overcoming limits to growth
r Extremely large database and overcoming limits to growth
- r ISV education and enablement
r ISV education and enablement
## Preface
@ -96,23 +96,23 @@ Businesses must make a serious effort to secure their data and recognize that se
This chapter describes how you can secure and protect data in DB2 for i. The following topics are covered in this chapter:
- GLYPH<SM590000> Security fundamentals
GLYPH<SM590000> Security fundamentals
- GLYPH<SM590000> Current state of IBM i security
GLYPH<SM590000> Current state of IBM i security
- GLYPH<SM590000> DB2 for i security controls
GLYPH<SM590000> DB2 for i security controls
## 1.1 Security fundamentals
Before reviewing database security techniques, there are two fundamental steps in securing information assets that must be described:
- GLYPH<SM590000> First, and most important, is the definition of a company's security policy . Without a security policy, there is no definition of what are acceptable practices for using, accessing, and storing information by who, what, when, where, and how. A security policy should minimally address three things: confidentiality, integrity, and availability.
GLYPH<SM590000> First, and most important, is the definition of a company's security policy . Without a security policy, there is no definition of what are acceptable practices for using, accessing, and storing information by who, what, when, where, and how. A security policy should minimally address three things: confidentiality, integrity, and availability.
- The monitoring and assessment of adherence to the security policy determines whether your security strategy is working. Often, IBM security consultants are asked to perform security assessments for companies without regard to the security policy. Although these assessments can be useful for observing how the system is defined and how data is being accessed, they cannot determine the level of security without a security policy. Without a security policy, it really is not an assessment as much as it is a baseline for monitoring the changes in the security settings that are captured.
The monitoring and assessment of adherence to the security policy determines whether your security strategy is working. Often, IBM security consultants are asked to perform security assessments for companies without regard to the security policy. Although these assessments can be useful for observing how the system is defined and how data is being accessed, they cannot determine the level of security without a security policy. Without a security policy, it really is not an assessment as much as it is a baseline for monitoring the changes in the security settings that are captured.
A security policy is what defines whether the system and its settings are secure (or not).
- GLYPH<SM590000> The second fundamental in securing data assets is the use of resource security . If implemented properly, resource security prevents data breaches from both internal and external intrusions. Resource security controls are closely tied to the part of the security policy that defines who should have access to what information resources. A hacker might be good enough to get through your company firewalls and sift his way through to your system, but if they do not have explicit access to your database, the hacker cannot compromise your information assets.
GLYPH<SM590000> The second fundamental in securing data assets is the use of resource security . If implemented properly, resource security prevents data breaches from both internal and external intrusions. Resource security controls are closely tied to the part of the security policy that defines who should have access to what information resources. A hacker might be good enough to get through your company firewalls and sift his way through to your system, but if they do not have explicit access to your database, the hacker cannot compromise your information assets.
With your eyes now open to the importance of securing information assets, the rest of this chapter reviews the methods that are available for securing database resources on IBM i.
@ -141,11 +141,11 @@ Figure 1-2 Existing row and column controls
The following CL commands can be used to work with, display, or change function usage IDs:
- GLYPH<SM590000> Work Function Usage ( WRKFCNUSG )
GLYPH<SM590000> Work Function Usage ( WRKFCNUSG )
- GLYPH<SM590000> Change Function Usage ( CHGFCNUSG )
GLYPH<SM590000> Change Function Usage ( CHGFCNUSG )
- GLYPH<SM590000> Display Function Usage ( DSPFCNUSG )
GLYPH<SM590000> Display Function Usage ( DSPFCNUSG )
For example, the following CHGFCNUSG command shows granting authorization to user HBEDOYA to administer and manage RCAC rules:
@ -244,15 +244,15 @@ Table 3-1 Special registers and their corresponding values
Figure 3-5 shows the difference in the special register values when an adopted authority is used:
- GLYPH<SM590000> A user connects to the server using the user profile ALICE.
GLYPH<SM590000> A user connects to the server using the user profile ALICE.
- GLYPH<SM590000> USER and CURRENT USER initially have the same value of ALICE.
GLYPH<SM590000> USER and CURRENT USER initially have the same value of ALICE.
- GLYPH<SM590000> ALICE calls an SQL procedure that is named proc1, which is owned by user profile JOE and was created to adopt JOE's authority when it is called.
GLYPH<SM590000> ALICE calls an SQL procedure that is named proc1, which is owned by user profile JOE and was created to adopt JOE's authority when it is called.
- GLYPH<SM590000> While the procedure is running, the special register USER still contains the value of ALICE because it excludes any adopted authority. The special register CURRENT USER contains the value of JOE because it includes any adopted authority.
GLYPH<SM590000> While the procedure is running, the special register USER still contains the value of ALICE because it excludes any adopted authority. The special register CURRENT USER contains the value of JOE because it includes any adopted authority.
- GLYPH<SM590000> When proc1 ends, the session reverts to its original state with both USER and CURRENT USER having the value of ALICE.
GLYPH<SM590000> When proc1 ends, the session reverts to its original state with both USER and CURRENT USER having the value of ALICE.
Figure 3-5 Special registers and adopted authority
<!-- image -->
@ -303,15 +303,15 @@ WHEN VERIFY_GROUP_FOR_USER ( SESSION_USER , 'HR', 'EMP' ) = 1 THEN EMPLOYEES . D
2. The other column to mask in this example is the TAX_ID information. In this example, the rules to enforce include the following ones:
- -Human Resources can see the unmasked TAX_ID of the employees.
-Human Resources can see the unmasked TAX_ID of the employees.
- -Employees can see only their own unmasked TAX_ID.
-Employees can see only their own unmasked TAX_ID.
- -Managers see a masked version of TAX_ID with the first five characters replaced with the X character (for example, XXX-XX-1234).
-Managers see a masked version of TAX_ID with the first five characters replaced with the X character (for example, XXX-XX-1234).
- -Any other person sees the entire TAX_ID as masked, for example, XXX-XX-XXXX.
-Any other person sees the entire TAX_ID as masked, for example, XXX-XX-XXXX.
- To implement this column mask, run the SQL statement that is shown in Example 3-9.
To implement this column mask, run the SQL statement that is shown in Example 3-9.
CREATE MASK HR_SCHEMA.MASK_TAX_ID_ON_EMPLOYEES ON HR_SCHEMA.EMPLOYEES AS EMPLOYEES FOR COLUMN TAX_ID RETURN CASE WHEN VERIFY_GROUP_FOR_USER ( SESSION_USER , 'HR' ) = 1 THEN EMPLOYEES . TAX_ID WHEN VERIFY_GROUP_FOR_USER ( SESSION_USER , 'MGR' ) = 1 AND SESSION_USER = EMPLOYEES . USER_ID THEN EMPLOYEES . TAX_ID WHEN VERIFY_GROUP_FOR_USER ( SESSION_USER , 'MGR' ) = 1 AND SESSION_USER <> EMPLOYEES . USER_ID THEN ( 'XXX-XX-' CONCAT QSYS2 . SUBSTR ( EMPLOYEES . TAX_ID , 8 , 4 ) ) WHEN VERIFY_GROUP_FOR_USER ( SESSION_USER , 'EMP' ) = 1 THEN EMPLOYEES . TAX_ID ELSE 'XXX-XX-XXXX' END ENABLE ;
@ -330,9 +330,9 @@ Now that you have created the row permission and the two column masks, RCAC must
## Example 3-10 Activating RCAC on the EMPLOYEES table
- /* Active Row Access Control (permissions) */
/* Active Row Access Control (permissions) */
- /* Active Column Access Control (masks)
/* Active Column Access Control (masks)
*/

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "2203.01017v2",
"origin": {
"mimetype": "application/pdf",
@ -9249,7 +9249,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/284",
@ -9280,7 +9280,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/285",
@ -11348,7 +11348,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/356",
@ -12553,7 +12553,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/395",
@ -15148,7 +15148,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/483",
@ -15452,7 +15452,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/493",
@ -15483,7 +15483,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/494",
@ -15514,7 +15514,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/495",
@ -15545,7 +15545,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/496",

View File

@ -16,8 +16,8 @@ The occurrence of tables in documents is ubiquitous. They often summarise quanti
<!-- image -->
- Red-annotation of bounding boxes, Blue-predictions by TableFormer
- Structure predicted by TableFormer:
- b. Red-annotation of bounding boxes, Blue-predictions by TableFormer
- c. Structure predicted by TableFormer:
<!-- image -->
@ -280,50 +280,50 @@ In this paper, we presented TableFormer an end-to-end transformer based approach
## References
- Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
- [1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
- end object detection with transformers. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 , pages 213-229, Cham, 2020. Springer International Publishing. 5
- Zewen Chi, Heyan Huang, Heng-Da Xu, Houjin Yu, Wanxuan Yin, and Xian-Ling Mao. Complicated table structure recognition. arXiv preprint arXiv:1908.04729 , 2019. 3
- Bertrand Couasnon and Aurelie Lemaitre. Recognition of Tables and Forms , pages 647-677. Springer London, London, 2014. 2
- Herv´e D´ejean, Jean-Luc Meunier, Liangcai Gao, Yilun Huang, Yu Fang, Florian Kleber, and Eva-Maria Lang. ICDAR 2019 Competition on Table Detection and Recognition (cTDaR), Apr. 2019. http://sac.founderit.com/. 2
- Basilios Gatos, Dimitrios Danatsas, Ioannis Pratikakis, and Stavros J Perantonis. Automatic table detection in document images. In International Conference on Pattern Recognition and Image Analysis , pages 609-618. Springer, 2005. 2
- Max G¨obel, Tamir Hassan, Ermelinda Oro, and Giorgio Orsi. Icdar 2013 table competition. In 2013 12th International Conference on Document Analysis and Recognition , pages 1449-1453, 2013. 2
- EA Green and M Krishnamoorthy. Recognition of tables using table grammars. procs. In Symposium on Document Analysis and Recognition (SDAIR'95) , pages 261-277. 2
- Khurram Azeem Hashmi, Alain Pagani, Marcus Liwicki, Didier Stricker, and Muhammad Zeshan Afzal. Castabdetectors: Cascade network for table detection in document images with recursive feature pyramid and switchable atrous convolution. Journal of Imaging , 7(10), 2021. 1
- Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision (ICCV) , Oct 2017. 1
- Yelin He, X. Qi, Jiaquan Ye, Peng Gao, Yihao Chen, Bingcong Li, Xin Tang, and Rong Xiao. Pingan-vcgroup's solution for icdar 2021 competition on scientific table image recognition to latex. ArXiv , abs/2105.01846, 2021. 2
- Jianying Hu, Ramanujan S Kashi, Daniel P Lopresti, and Gordon Wilfong. Medium-independent table detection. In Document Recognition and Retrieval VII , volume 3967, pages 291-302. International Society for Optics and Photonics, 1999. 2
- Matthew Hurst. A constraint-based approach to table structure derivation. In Proceedings of the Seventh International Conference on Document Analysis and Recognition - Volume 2 , ICDAR '03, page 911, USA, 2003. IEEE Computer Society. 2
- Thotreingam Kasar, Philippine Barlas, Sebastien Adam, Cl´ement Chatelain, and Thierry Paquet. Learning to detect tables in scanned document images using line information. In 2013 12th International Conference on Document Analysis and Recognition , pages 1185-1189. IEEE, 2013. 2
- Pratik Kayal, Mrinal Anand, Harsh Desai, and Mayank Singh. Icdar 2021 competition on scientific table image recognition to latex, 2021. 2
- Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly , 2(1-2):83-97, 1955. 6
- Girish Kulkarni, Visruth Premraj, Vicente Ordonez, Sagnik Dhar, Siming Li, Yejin Choi, Alexander C. Berg, and Tamara L. Berg. Babytalk: Understanding and generating simple image descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence , 35(12):2891-2903, 2013. 4
- Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, and Zhoujun Li. Tablebank: A benchmark dataset for table detection and recognition, 2019. 2, 3
- Yiren Li, Zheng Huang, Junchi Yan, Yi Zhou, Fan Ye, and Xianhui Liu. Gfte: Graph-based financial table extraction. In Alberto Del Bimbo, Rita Cucchiara, Stan Sclaroff, Giovanni Maria Farinella, Tao Mei, Marco Bertini, Hugo Jair Escalante, and Roberto Vezzani, editors, Pattern Recognition. ICPR International Workshops and Challenges , pages 644-658, Cham, 2021. Springer International Publishing. 2, 3
- Nikolaos Livathinos, Cesar Berrospi, Maksym Lysak, Viktor Kuropiatnyk, Ahmed Nassar, Andre Carvalho, Michele Dolfi, Christoph Auer, Kasper Dinkla, and Peter Staar. Robust pdf document conversion using recurrent neural networks. Proceedings of the AAAI Conference on Artificial Intelligence , 35(17):15137-15145, May 2021. 1
- Rujiao Long, Wen Wang, Nan Xue, Feiyu Gao, Zhibo Yang, Yongpan Wang, and Gui-Song Xia. Parsing table structures in the wild. In Proceedings of the IEEE/CVF International Conference on Computer Vision , pages 944-952, 2021. 2
- Shubham Singh Paliwal, D Vishwanath, Rohit Rahul, Monika Sharma, and Lovekesh Vig. Tablenet: Deep learning model for end-to-end table detection and tabular data extraction from scanned document images. In 2019 International Conference on Document Analysis and Recognition (ICDAR) , pages 128-133. IEEE, 2019. 1
- Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alch´e-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32 , pages 8024-8035. Curran Associates, Inc., 2019. 6
- Devashish Prasad, Ayan Gadpal, Kshitij Kapadni, Manish Visave, and Kavita Sultanpure. Cascadetabnet: An approach for end to end table detection and structure recognition from image-based documents. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops , pages 572-573, 2020. 1
- Shah Rukh Qasim, Hassan Mahmood, and Faisal Shafait. Rethinking table recognition using graph neural networks. In 2019 International Conference on Document Analysis and Recognition (ICDAR) , pages 142-147. IEEE, 2019. 3
- Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio Savarese. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on
- [2] Zewen Chi, Heyan Huang, Heng-Da Xu, Houjin Yu, Wanxuan Yin, and Xian-Ling Mao. Complicated table structure recognition. arXiv preprint arXiv:1908.04729 , 2019. 3
- [3] Bertrand Couasnon and Aurelie Lemaitre. Recognition of Tables and Forms , pages 647-677. Springer London, London, 2014. 2
- [4] Herv´e D´ejean, Jean-Luc Meunier, Liangcai Gao, Yilun Huang, Yu Fang, Florian Kleber, and Eva-Maria Lang. ICDAR 2019 Competition on Table Detection and Recognition (cTDaR), Apr. 2019. http://sac.founderit.com/. 2
- [5] Basilios Gatos, Dimitrios Danatsas, Ioannis Pratikakis, and Stavros J Perantonis. Automatic table detection in document images. In International Conference on Pattern Recognition and Image Analysis , pages 609-618. Springer, 2005. 2
- [6] Max G¨obel, Tamir Hassan, Ermelinda Oro, and Giorgio Orsi. Icdar 2013 table competition. In 2013 12th International Conference on Document Analysis and Recognition , pages 1449-1453, 2013. 2
- [7] EA Green and M Krishnamoorthy. Recognition of tables using table grammars. procs. In Symposium on Document Analysis and Recognition (SDAIR'95) , pages 261-277. 2
- [8] Khurram Azeem Hashmi, Alain Pagani, Marcus Liwicki, Didier Stricker, and Muhammad Zeshan Afzal. Castabdetectors: Cascade network for table detection in document images with recursive feature pyramid and switchable atrous convolution. Journal of Imaging , 7(10), 2021. 1
- [9] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision (ICCV) , Oct 2017. 1
- [10] Yelin He, X. Qi, Jiaquan Ye, Peng Gao, Yihao Chen, Bingcong Li, Xin Tang, and Rong Xiao. Pingan-vcgroup's solution for icdar 2021 competition on scientific table image recognition to latex. ArXiv , abs/2105.01846, 2021. 2
- [11] Jianying Hu, Ramanujan S Kashi, Daniel P Lopresti, and Gordon Wilfong. Medium-independent table detection. In Document Recognition and Retrieval VII , volume 3967, pages 291-302. International Society for Optics and Photonics, 1999. 2
- [12] Matthew Hurst. A constraint-based approach to table structure derivation. In Proceedings of the Seventh International Conference on Document Analysis and Recognition - Volume 2 , ICDAR '03, page 911, USA, 2003. IEEE Computer Society. 2
- [13] Thotreingam Kasar, Philippine Barlas, Sebastien Adam, Cl´ement Chatelain, and Thierry Paquet. Learning to detect tables in scanned document images using line information. In 2013 12th International Conference on Document Analysis and Recognition , pages 1185-1189. IEEE, 2013. 2
- [14] Pratik Kayal, Mrinal Anand, Harsh Desai, and Mayank Singh. Icdar 2021 competition on scientific table image recognition to latex, 2021. 2
- [15] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly , 2(1-2):83-97, 1955. 6
- [16] Girish Kulkarni, Visruth Premraj, Vicente Ordonez, Sagnik Dhar, Siming Li, Yejin Choi, Alexander C. Berg, and Tamara L. Berg. Babytalk: Understanding and generating simple image descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence , 35(12):2891-2903, 2013. 4
- [17] Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, and Zhoujun Li. Tablebank: A benchmark dataset for table detection and recognition, 2019. 2, 3
- [18] Yiren Li, Zheng Huang, Junchi Yan, Yi Zhou, Fan Ye, and Xianhui Liu. Gfte: Graph-based financial table extraction. In Alberto Del Bimbo, Rita Cucchiara, Stan Sclaroff, Giovanni Maria Farinella, Tao Mei, Marco Bertini, Hugo Jair Escalante, and Roberto Vezzani, editors, Pattern Recognition. ICPR International Workshops and Challenges , pages 644-658, Cham, 2021. Springer International Publishing. 2, 3
- [19] Nikolaos Livathinos, Cesar Berrospi, Maksym Lysak, Viktor Kuropiatnyk, Ahmed Nassar, Andre Carvalho, Michele Dolfi, Christoph Auer, Kasper Dinkla, and Peter Staar. Robust pdf document conversion using recurrent neural networks. Proceedings of the AAAI Conference on Artificial Intelligence , 35(17):15137-15145, May 2021. 1
- [20] Rujiao Long, Wen Wang, Nan Xue, Feiyu Gao, Zhibo Yang, Yongpan Wang, and Gui-Song Xia. Parsing table structures in the wild. In Proceedings of the IEEE/CVF International Conference on Computer Vision , pages 944-952, 2021. 2
- [21] Shubham Singh Paliwal, D Vishwanath, Rohit Rahul, Monika Sharma, and Lovekesh Vig. Tablenet: Deep learning model for end-to-end table detection and tabular data extraction from scanned document images. In 2019 International Conference on Document Analysis and Recognition (ICDAR) , pages 128-133. IEEE, 2019. 1
- [22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alch´e-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32 , pages 8024-8035. Curran Associates, Inc., 2019. 6
- [23] Devashish Prasad, Ayan Gadpal, Kshitij Kapadni, Manish Visave, and Kavita Sultanpure. Cascadetabnet: An approach for end to end table detection and structure recognition from image-based documents. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops , pages 572-573, 2020. 1
- [24] Shah Rukh Qasim, Hassan Mahmood, and Faisal Shafait. Rethinking table recognition using graph neural networks. In 2019 International Conference on Document Analysis and Recognition (ICDAR) , pages 142-147. IEEE, 2019. 3
- [25] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio Savarese. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition , pages 658-666, 2019. 6
- Sebastian Schreiber, Stefan Agne, Ivo Wolf, Andreas Dengel, and Sheraz Ahmed. Deepdesrt: Deep learning for detection and structure recognition of tables in document images. In 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) , volume 01, pages 11621167, 2017. 1
- Sebastian Schreiber, Stefan Agne, Ivo Wolf, Andreas Dengel, and Sheraz Ahmed. Deepdesrt: Deep learning for detection and structure recognition of tables in document images. In 2017 14th IAPR international conference on document analysis and recognition (ICDAR) , volume 1, pages 1162-1167. IEEE, 2017. 3
- Faisal Shafait and Ray Smith. Table detection in heterogeneous documents. In Proceedings of the 9th IAPR International Workshop on Document Analysis Systems , pages 6572, 2010. 2
- Shoaib Ahmed Siddiqui, Imran Ali Fateh, Syed Tahseen Raza Rizvi, Andreas Dengel, and Sheraz Ahmed. Deeptabstr: Deep learning based table structure recognition. In 2019 International Conference on Document Analysis and Recognition (ICDAR) , pages 1403-1409. IEEE, 2019. 3
- Peter W J Staar, Michele Dolfi, Christoph Auer, and Costas Bekas. Corpus conversion service: A machine learning platform to ingest documents at scale. In Proceedings of the 24th ACM SIGKDD , KDD '18, pages 774-782, New York, NY, USA, 2018. ACM. 1
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30 , pages 5998-6008. Curran Associates, Inc., 2017. 5
- Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image caption generator. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , June 2015. 2
- Wenyuan Xue, Qingyong Li, and Dacheng Tao. Res2tim: reconstruct syntactic structures from table images. In 2019 International Conference on Document Analysis and Recognition (ICDAR) , pages 749-755. IEEE, 2019. 3
- Wenyuan Xue, Baosheng Yu, Wen Wang, Dacheng Tao, and Qingyong Li. Tgrnet: A table graph reconstruction network for table structure recognition. arXiv preprint arXiv:2106.10598 , 2021. 3
- Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. Image captioning with semantic attention. In Proceedings of the IEEE conference on computer vision and pattern recognition , pages 4651-4659, 2016. 4
- Xinyi Zheng, Doug Burdick, Lucian Popa, Peter Zhong, and Nancy Xin Ru Wang. Global table extractor (gte): A framework for joint table identification and cell structure recognition using visual context. Winter Conference for Applications in Computer Vision (WACV) , 2021. 2, 3
- Xu Zhong, Elaheh ShafieiBavani, and Antonio Jimeno Yepes. Image-based table recognition: Data, model,
- [26] Sebastian Schreiber, Stefan Agne, Ivo Wolf, Andreas Dengel, and Sheraz Ahmed. Deepdesrt: Deep learning for detection and structure recognition of tables in document images. In 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) , volume 01, pages 11621167, 2017. 1
- [27] Sebastian Schreiber, Stefan Agne, Ivo Wolf, Andreas Dengel, and Sheraz Ahmed. Deepdesrt: Deep learning for detection and structure recognition of tables in document images. In 2017 14th IAPR international conference on document analysis and recognition (ICDAR) , volume 1, pages 1162-1167. IEEE, 2017. 3
- [28] Faisal Shafait and Ray Smith. Table detection in heterogeneous documents. In Proceedings of the 9th IAPR International Workshop on Document Analysis Systems , pages 6572, 2010. 2
- [29] Shoaib Ahmed Siddiqui, Imran Ali Fateh, Syed Tahseen Raza Rizvi, Andreas Dengel, and Sheraz Ahmed. Deeptabstr: Deep learning based table structure recognition. In 2019 International Conference on Document Analysis and Recognition (ICDAR) , pages 1403-1409. IEEE, 2019. 3
- [30] Peter W J Staar, Michele Dolfi, Christoph Auer, and Costas Bekas. Corpus conversion service: A machine learning platform to ingest documents at scale. In Proceedings of the 24th ACM SIGKDD , KDD '18, pages 774-782, New York, NY, USA, 2018. ACM. 1
- [31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30 , pages 5998-6008. Curran Associates, Inc., 2017. 5
- [32] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image caption generator. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , June 2015. 2
- [33] Wenyuan Xue, Qingyong Li, and Dacheng Tao. Res2tim: reconstruct syntactic structures from table images. In 2019 International Conference on Document Analysis and Recognition (ICDAR) , pages 749-755. IEEE, 2019. 3
- [34] Wenyuan Xue, Baosheng Yu, Wen Wang, Dacheng Tao, and Qingyong Li. Tgrnet: A table graph reconstruction network for table structure recognition. arXiv preprint arXiv:2106.10598 , 2021. 3
- [35] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. Image captioning with semantic attention. In Proceedings of the IEEE conference on computer vision and pattern recognition , pages 4651-4659, 2016. 4
- [36] Xinyi Zheng, Doug Burdick, Lucian Popa, Peter Zhong, and Nancy Xin Ru Wang. Global table extractor (gte): A framework for joint table identification and cell structure recognition using visual context. Winter Conference for Applications in Computer Vision (WACV) , 2021. 2, 3
- [37] Xu Zhong, Elaheh ShafieiBavani, and Antonio Jimeno Yepes. Image-based table recognition: Data, model,
- and evaluation. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision ECCV 2020 , pages 564-580, Cham, 2020. Springer International Publishing. 2, 3, 7
- Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Publaynet: Largest dataset ever for document layout analysis. In 2019 International Conference on Document Analysis and Recognition (ICDAR) , pages 1015-1022, 2019. 1
- [38] Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Publaynet: Largest dataset ever for document layout analysis. In 2019 International Conference on Document Analysis and Recognition (ICDAR) , pages 1015-1022, 2019. 1
## TableFormer: Table Structure Understanding with Transformers Supplementary Material
@ -343,11 +343,11 @@ Aiming to train and evaluate our models in a broader spectrum of table data we h
The process of generating a synthetic dataset can be decomposed into the following steps:
- Prepare styling and content templates: The styling templates have been manually designed and organized into groups of scope specific appearances (e.g. financial data, marketing data, etc.) Additionally, we have prepared curated collections of content templates by extracting the most frequently used terms out of non-synthetic datasets (e.g. PubTabNet, FinTabNet, etc.).
- Generate table structures: The structure of each synthetic dataset assumes a horizontal table header which potentially spans over multiple rows and a table body that may contain a combination of row spans and column spans. However, spans are not allowed to cross the header - body boundary. The table structure is described by the parameters: Total number of table rows and columns, number of header rows, type of spans (header only spans, row only spans, column only spans, both row and column spans), maximum span size and the ratio of the table area covered by spans.
- Generate content: Based on the dataset theme , a set of suitable content templates is chosen first. Then, this content can be combined with purely random text to produce the synthetic content.
- Apply styling templates: Depending on the domain of the synthetic dataset, a set of styling templates is first manually selected. Then, a style is randomly selected to format the appearance of the synthesized table.
- Render the complete tables: The synthetic table is finally rendered by a web browser engine to generate the bounding boxes for each table cell. A batching technique is utilized to optimize the runtime overhead of the rendering process.
1. Prepare styling and content templates: The styling templates have been manually designed and organized into groups of scope specific appearances (e.g. financial data, marketing data, etc.) Additionally, we have prepared curated collections of content templates by extracting the most frequently used terms out of non-synthetic datasets (e.g. PubTabNet, FinTabNet, etc.).
2. Generate table structures: The structure of each synthetic dataset assumes a horizontal table header which potentially spans over multiple rows and a table body that may contain a combination of row spans and column spans. However, spans are not allowed to cross the header - body boundary. The table structure is described by the parameters: Total number of table rows and columns, number of header rows, type of spans (header only spans, row only spans, column only spans, both row and column spans), maximum span size and the ratio of the table area covered by spans.
3. Generate content: Based on the dataset theme , a set of suitable content templates is chosen first. Then, this content can be combined with purely random text to produce the synthetic content.
4. Apply styling templates: Depending on the domain of the synthetic dataset, a set of styling templates is first manually selected. Then, a style is randomly selected to format the appearance of the synthesized table.
5. Render the complete tables: The synthetic table is finally rendered by a web browser engine to generate the bounding boxes for each table cell. A batching technique is utilized to optimize the runtime overhead of the rendering process.
## 2. Prediction post-processing for PDF documents
@ -366,21 +366,21 @@ However, it is possible to mitigate those limitations by combining the TableForm
Here is a step-by-step description of the prediction postprocessing:
- Get the minimal grid dimensions - number of rows and columns for the predicted table structure. This represents the most granular grid for the underlying table structure.
- Generate pair-wise matches between the bounding boxes of the PDF cells and the predicted cells. The Intersection Over Union (IOU) metric is used to evaluate the quality of the matches.
- Use a carefully selected IOU threshold to designate the matches as "good" ones and "bad" ones.
1. Get the minimal grid dimensions - number of rows and columns for the predicted table structure. This represents the most granular grid for the underlying table structure.
2. Generate pair-wise matches between the bounding boxes of the PDF cells and the predicted cells. The Intersection Over Union (IOU) metric is used to evaluate the quality of the matches.
3. Use a carefully selected IOU threshold to designate the matches as "good" ones and "bad" ones.
- 3.a. If all IOU scores in a column are below the threshold, discard all predictions (structure and bounding boxes) for that column.
- Find the best-fitting content alignment for the predicted cells with good IOU per each column. The alignment of the column can be identified by the following formula:
4. Find the best-fitting content alignment for the predicted cells with good IOU per each column. The alignment of the column can be identified by the following formula:
<!-- formula-not-decoded -->
where c is one of { left, centroid, right } and x$\_{c}$ is the xcoordinate for the corresponding point.
- Use the alignment computed in step 4, to compute the median x -coordinate for all table columns and the me-
- Snap all cells with bad IOU to their corresponding median x -coordinates and cell sizes.
- Generate a new set of pair-wise matches between the corrected bounding boxes and PDF cells. This time use a modified version of the IOU metric, where the area of the intersection between the predicted and PDF cells is divided by the PDF cell area. In case there are multiple matches for the same PDF cell, the prediction with the higher score is preferred. This covers the cases where the PDF cells are smaller than the area of predicted or corrected prediction cells.
- In some rare occasions, we have noticed that TableFormer can confuse a single column as two. When the postprocessing steps are applied, this results with two predicted columns pointing to the same PDF column. In such case we must de-duplicate the columns according to highest total column intersection score.
- Pick up the remaining orphan cells. There could be cases, when after applying all the previous post-processing steps, some PDF cells could still remain without any match to predicted cells. However, it is still possible to deduce the correct matching for an orphan PDF cell by mapping its bounding box on the geometry of the grid. This mapping decides if the content of the orphan cell will be appended to an already matched table cell, or a new table cell should be created to match with the orphan.
5. Use the alignment computed in step 4, to compute the median x -coordinate for all table columns and the me-
6. Snap all cells with bad IOU to their corresponding median x -coordinates and cell sizes.
7. Generate a new set of pair-wise matches between the corrected bounding boxes and PDF cells. This time use a modified version of the IOU metric, where the area of the intersection between the predicted and PDF cells is divided by the PDF cell area. In case there are multiple matches for the same PDF cell, the prediction with the higher score is preferred. This covers the cases where the PDF cells are smaller than the area of predicted or corrected prediction cells.
8. In some rare occasions, we have noticed that TableFormer can confuse a single column as two. When the postprocessing steps are applied, this results with two predicted columns pointing to the same PDF column. In such case we must de-duplicate the columns according to highest total column intersection score.
9. Pick up the remaining orphan cells. There could be cases, when after applying all the previous post-processing steps, some PDF cells could still remain without any match to predicted cells. However, it is still possible to deduce the correct matching for an orphan PDF cell by mapping its bounding box on the geometry of the grid. This mapping decides if the content of the orphan cell will be appended to an already matched table cell, or a new table cell should be created to match with the orphan.
9a. Compute the top and bottom boundary of the horizontal band for each grid row (min/max y coordinates per row).

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "2206.01062",
"origin": {
"mimetype": "application/pdf",

View File

@ -48,16 +48,16 @@ A key problem in the process of document conversion is to understand the structu
In this paper, we present the DocLayNet dataset. It provides pageby-page layout annotation ground-truth using bounding-boxes for 11 distinct class labels on 80863 unique document pages, of which a fraction carry double- or triple-annotations. DocLayNet is similar in spirit to PubLayNet and DocBank and will likewise be made available to the public 1 in order to stimulate the document-layout analysis community. It distinguishes itself in the following aspects:
- Human Annotation : In contrast to PubLayNet and DocBank, we relied on human annotation instead of automation approaches to generate the data set.
- Large Layout Variability : We include diverse and complex layouts from a large variety of public sources.
- Detailed Label Set : We define 11 class labels to distinguish layout features in high detail. PubLayNet provides 5 labels; DocBank provides 13, although not a superset of ours.
- Redundant Annotations : A fraction of the pages in the DocLayNet data set carry more than one human annotation.
- (1) Human Annotation : In contrast to PubLayNet and DocBank, we relied on human annotation instead of automation approaches to generate the data set.
- (2) Large Layout Variability : We include diverse and complex layouts from a large variety of public sources.
- (3) Detailed Label Set : We define 11 class labels to distinguish layout features in high detail. PubLayNet provides 5 labels; DocBank provides 13, although not a superset of ours.
- (4) Redundant Annotations : A fraction of the pages in the DocLayNet data set carry more than one human annotation.
$^{1}$https://developer.ibm.com/exchanges/data/all/doclaynet
This enables experimentation with annotation uncertainty and quality control analysis.
- Pre-defined Train-, Test- &amp; Validation-set : Like DocBank, we provide fixed train-, test- &amp; validation-sets to ensure proportional representation of the class-labels. Further, we prevent leakage of unique layouts across sets, which has a large effect on model accuracy scores.
- (5) Pre-defined Train-, Test- &amp; Validation-set : Like DocBank, we provide fixed train-, test- &amp; validation-sets to ensure proportional representation of the class-labels. Further, we prevent leakage of unique layouts across sets, which has a large effect on model accuracy scores.
All aspects outlined above are detailed in Section 3. In Section 4, we will elaborate on how we designed and executed this large-scale human annotation campaign. We will also share key insights and lessons learned that might prove helpful for other parties planning to set up annotation campaigns.
@ -137,12 +137,12 @@ At first sight, the task of visual document-layout interpretation appears intuit
Obviously, this inconsistency in annotations is not desirable for datasets which are intended to be used for model training. To minimise these inconsistencies, we created a detailed annotation guideline. While perfect consistency across 40 annotation staff members is clearly not possible to achieve, we saw a huge improvement in annotation consistency after the introduction of our annotation guideline. A few selected, non-trivial highlights of the guideline are:
- Every list-item is an individual object instance with class label List-item . This definition is different from PubLayNet and DocBank, where all list-items are grouped together into one List object.
- A List-item is a paragraph with hanging indentation. Singleline elements can qualify as List-item if the neighbour elements expose hanging indentation. Bullet or enumeration symbols are not a requirement.
- For every Caption , there must be exactly one corresponding Picture or Table .
- Connected sub-pictures are grouped together in one Picture object.
- Formula numbers are included in a Formula object.
- Emphasised text (e.g. in italic or bold) at the beginning of a paragraph is not considered a Section-header , unless it appears exclusively on its own line.
- (1) Every list-item is an individual object instance with class label List-item . This definition is different from PubLayNet and DocBank, where all list-items are grouped together into one List object.
- (2) A List-item is a paragraph with hanging indentation. Singleline elements can qualify as List-item if the neighbour elements expose hanging indentation. Bullet or enumeration symbols are not a requirement.
- (3) For every Caption , there must be exactly one corresponding Picture or Table .
- (4) Connected sub-pictures are grouped together in one Picture object.
- (5) Formula numbers are included in a Formula object.
- (6) Emphasised text (e.g. in italic or bold) at the beginning of a paragraph is not considered a Section-header , unless it appears exclusively on its own line.
The complete annotation guideline is over 100 pages long and a detailed description is obviously out of scope for this paper. Nevertheless, it will be made publicly available alongside with DocLayNet for future reference.
@ -284,19 +284,19 @@ To date, there is still a significant gap between human and ML accuracy on the l
## REFERENCES
- Max Göbel, Tamir Hassan, Ermelinda Oro, and Giorgio Orsi. Icdar 2013 table competition. In 2013 12th International Conference on Document Analysis and Recognition , pages 1449-1453, 2013.
- Christian Clausner, Apostolos Antonacopoulos, and Stefan Pletschacher. Icdar2017 competition on recognition of documents with complex layouts rdcl2017. In 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) , volume 01, pages 1404-1410, 2017.
- Hervé Déjean, Jean-Luc Meunier, Liangcai Gao, Yilun Huang, Yu Fang, Florian Kleber, and Eva-Maria Lang. ICDAR 2019 Competition on Table Detection and Recognition (cTDaR), April 2019. http://sac.founderit.com/.
- Antonio Jimeno Yepes, Peter Zhong, and Douglas Burdick. Competition on scientific literature parsing. In Proceedings of the International Conference on Document Analysis and Recognition , ICDAR, pages 605-617. LNCS 12824, SpringerVerlag, sep 2021.
- Logan Markewich, Hao Zhang, Yubin Xing, Navid Lambert-Shirzad, Jiang Zhexin, Roy Lee, Zhi Li, and Seok-Bum Ko. Segmentation for document layout analysis: not dead yet. International Journal on Document Analysis and Recognition (IJDAR) , pages 1-11, 01 2022.
- Xu Zhong, Jianbin Tang, and Antonio Jimeno-Yepes. Publaynet: Largest dataset ever for document layout analysis. In Proceedings of the International Conference on Document Analysis and Recognition , ICDAR, pages 1015-1022, sep 2019.
- Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang, Furu Wei, Zhoujun Li, and Ming Zhou. Docbank: A benchmark dataset for document layout analysis. In Proceedings of the 28th International Conference on Computational Linguistics , COLING, pages 949-960. International Committee on Computational Linguistics, dec 2020.
- Riaz Ahmad, Muhammad Tanvir Afzal, and M. Qadir. Information extraction from pdf sources based on rule-based system using integrated formats. In SemWebEval@ESWC , 2016.
- Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition , CVPR, pages 580-587. IEEE Computer Society, jun 2014.
- Ross B. Girshick. Fast R-CNN. In 2015 IEEE International Conference on Computer Vision , ICCV, pages 1440-1448. IEEE Computer Society, dec 2015.
- Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence , 39(6):1137-1149, 2017.
- Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. In IEEE International Conference on Computer Vision , ICCV, pages 2980-2988. IEEE Computer Society, Oct 2017.
- Glenn Jocher, Alex Stoken, Ayush Chaurasia, Jirka Borovec, NanoCode012, TaoXie, Yonghye Kwon, Kalen Michael, Liu Changyu, Jiacong Fang, Abhiram V, Laughing, tkianai, yxNONG, Piotr Skalski, Adam Hogan, Jebastin Nadar, imyhxy, Lorenzo Mammana, Alex Wang, Cristi Fati, Diego Montes, Jan Hajek, Laurentiu
- [1] Max Göbel, Tamir Hassan, Ermelinda Oro, and Giorgio Orsi. Icdar 2013 table competition. In 2013 12th International Conference on Document Analysis and Recognition , pages 1449-1453, 2013.
- [2] Christian Clausner, Apostolos Antonacopoulos, and Stefan Pletschacher. Icdar2017 competition on recognition of documents with complex layouts rdcl2017. In 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) , volume 01, pages 1404-1410, 2017.
- [3] Hervé Déjean, Jean-Luc Meunier, Liangcai Gao, Yilun Huang, Yu Fang, Florian Kleber, and Eva-Maria Lang. ICDAR 2019 Competition on Table Detection and Recognition (cTDaR), April 2019. http://sac.founderit.com/.
- [4] Antonio Jimeno Yepes, Peter Zhong, and Douglas Burdick. Competition on scientific literature parsing. In Proceedings of the International Conference on Document Analysis and Recognition , ICDAR, pages 605-617. LNCS 12824, SpringerVerlag, sep 2021.
- [5] Logan Markewich, Hao Zhang, Yubin Xing, Navid Lambert-Shirzad, Jiang Zhexin, Roy Lee, Zhi Li, and Seok-Bum Ko. Segmentation for document layout analysis: not dead yet. International Journal on Document Analysis and Recognition (IJDAR) , pages 1-11, 01 2022.
- [6] Xu Zhong, Jianbin Tang, and Antonio Jimeno-Yepes. Publaynet: Largest dataset ever for document layout analysis. In Proceedings of the International Conference on Document Analysis and Recognition , ICDAR, pages 1015-1022, sep 2019.
- [7] Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang, Furu Wei, Zhoujun Li, and Ming Zhou. Docbank: A benchmark dataset for document layout analysis. In Proceedings of the 28th International Conference on Computational Linguistics , COLING, pages 949-960. International Committee on Computational Linguistics, dec 2020.
- [8] Riaz Ahmad, Muhammad Tanvir Afzal, and M. Qadir. Information extraction from pdf sources based on rule-based system using integrated formats. In SemWebEval@ESWC , 2016.
- [9] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition , CVPR, pages 580-587. IEEE Computer Society, jun 2014.
- [10] Ross B. Girshick. Fast R-CNN. In 2015 IEEE International Conference on Computer Vision , ICCV, pages 1440-1448. IEEE Computer Society, dec 2015.
- [11] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence , 39(6):1137-1149, 2017.
- [12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. In IEEE International Conference on Computer Vision , ICCV, pages 2980-2988. IEEE Computer Society, Oct 2017.
- [13] Glenn Jocher, Alex Stoken, Ayush Chaurasia, Jirka Borovec, NanoCode012, TaoXie, Yonghye Kwon, Kalen Michael, Liu Changyu, Jiacong Fang, Abhiram V, Laughing, tkianai, yxNONG, Piotr Skalski, Adam Hogan, Jebastin Nadar, imyhxy, Lorenzo Mammana, Alex Wang, Cristi Fati, Diego Montes, Jan Hajek, Laurentiu
Text Caption List-Item Formula Table Section-Header Picture Page-Header Page-Footer Title
@ -306,13 +306,13 @@ Figure 6: Example layout predictions on selected pages from the DocLayNet test-s
Diaconu, Mai Thanh Minh, Marc, albinxavi, fatih, oleg, and wanghao yang. ultralytics/yolov5: v6.0 - yolov5n nano models, roboflow integration, tensorflow export, opencv dnn support, October 2021.
- Shoubin Li, Xuyan Ma, Shuaiqun Pan, Jun Hu, Lin Shi, and Qing Wang. Vtlayout: Fusion of visual and text features for document layout analysis, 2021.
- Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. CoRR , abs/2005.12872, 2020.
- Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet: Scalable and efficient object detection. CoRR , abs/1911.09070, 2019.
- Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context, 2014.
- Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2, 2019.
- Nikolaos Livathinos, Cesar Berrospi, Maksym Lysak, Viktor Kuropiatnyk, Ahmed Nassar, Andre Carvalho, Michele Dolfi, Christoph Auer, Kasper Dinkla, and Peter W. J. Staar. Robust pdf document conversion using recurrent neural networks. In Proceedings of the 35th Conference on Artificial Intelligence , AAAI, pages 1513715145, feb 2021.
- Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. Layoutlm: Pre-training of text and layout for document image understanding. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , KDD, pages 1192-1200, New York, USA, 2020. Association for Computing Machinery.
- Peng Zhang, Can Li, Liang Qiao, Zhanzhan Cheng, Shiliang Pu, Yi Niu, and Fei Wu. Vsr: A unified framework for document layout analysis combining vision, semantics and relations, 2021.
- Peter W J Staar, Michele Dolfi, Christoph Auer, and Costas Bekas. Corpus conversion service: A machine learning platform to ingest documents at scale. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , KDD, pages 774-782. ACM, 2018.
- Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation for deep learning. Journal of Big Data , 6(1):60, 2019.
- [20] Shoubin Li, Xuyan Ma, Shuaiqun Pan, Jun Hu, Lin Shi, and Qing Wang. Vtlayout: Fusion of visual and text features for document layout analysis, 2021.
- [14] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. CoRR , abs/2005.12872, 2020.
- [15] Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet: Scalable and efficient object detection. CoRR , abs/1911.09070, 2019.
- [16] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context, 2014.
- [17] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2, 2019.
- [18] Nikolaos Livathinos, Cesar Berrospi, Maksym Lysak, Viktor Kuropiatnyk, Ahmed Nassar, Andre Carvalho, Michele Dolfi, Christoph Auer, Kasper Dinkla, and Peter W. J. Staar. Robust pdf document conversion using recurrent neural networks. In Proceedings of the 35th Conference on Artificial Intelligence , AAAI, pages 1513715145, feb 2021.
- [19] Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. Layoutlm: Pre-training of text and layout for document image understanding. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , KDD, pages 1192-1200, New York, USA, 2020. Association for Computing Machinery.
- [21] Peng Zhang, Can Li, Liang Qiao, Zhanzhan Cheng, Shiliang Pu, Yi Niu, and Fei Wu. Vsr: A unified framework for document layout analysis combining vision, semantics and relations, 2021.
- [22] Peter W J Staar, Michele Dolfi, Christoph Auer, and Costas Bekas. Corpus conversion service: A machine learning platform to ingest documents at scale. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , KDD, pages 774-782. ACM, 2018.
- [23] Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation for deep learning. Journal of Big Data , 6(1):60, 2019.

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "2305.03393v1-pg9",
"origin": {
"mimetype": "application/pdf",

View File

@ -60,8 +60,6 @@
<page_header><loc_159><loc_59><loc_366><loc_64>Optimized Table Tokenization for Table Structure Recognition</page_header>
<page_header><loc_389><loc_59><loc_393><loc_64>7</page_header>
<picture><loc_135><loc_103><loc_367><loc_177><caption><loc_110><loc_79><loc_393><loc_98>Fig. 3. OTSL description of table structure: A - table example; B - graphical representation of table structure; C - mapping structure on a grid; D - OTSL structure encoding; E - explanation on cell encoding</caption></picture>
<unordered_list><list_item><loc_273><loc_172><loc_349><loc_176>4 - 2d merges: "C", "L", "U", "X"</list_item>
</unordered_list>
<section_header_level_1><loc_110><loc_193><loc_202><loc_198>4.2 Language Syntax</section_header_level_1>
<text><loc_110><loc_205><loc_297><loc_211>The OTSL representation follows these syntax rules:</text>
<unordered_list><list_item><loc_114><loc_219><loc_393><loc_232>Left-looking cell rule : The left neighbour of an "L" cell must be either another "L" cell or a "C" cell.</list_item>

File diff suppressed because it is too large Load Diff

View File

@ -84,21 +84,19 @@ Fig. 3. OTSL description of table structure: A - table example; B - graphical re
<!-- image -->
- 4 - 2d merges: "C", "L", "U", "X"
## 4.2 Language Syntax
The OTSL representation follows these syntax rules:
- Left-looking cell rule : The left neighbour of an "L" cell must be either another "L" cell or a "C" cell.
- Up-looking cell rule : The upper neighbour of a "U" cell must be either another "U" cell or a "C" cell.
1. Left-looking cell rule : The left neighbour of an "L" cell must be either another "L" cell or a "C" cell.
2. Up-looking cell rule : The upper neighbour of a "U" cell must be either another "U" cell or a "C" cell.
## 3. Cross cell rule :
- The left neighbour of an "X" cell must be either another "X" cell or a "U" cell, and the upper neighbour of an "X" cell must be either another "X" cell or an "L" cell.
- First row rule : Only "L" cells and "C" cells are allowed in the first row.
- First column rule : Only "U" cells and "C" cells are allowed in the first column.
- Rectangular rule : The table representation is always rectangular - all rows must have an equal number of tokens, terminated with "NL" token.
4. First row rule : Only "L" cells and "C" cells are allowed in the first row.
5. First column rule : Only "U" cells and "C" cells are allowed in the first column.
6. Rectangular rule : The table representation is always rectangular - all rows must have an equal number of tokens, terminated with "NL" token.
The application of these rules gives OTSL a set of unique properties. First of all, the OTSL enforces a strictly rectangular structure representation, where every new-line token starts a new row. As a consequence, all rows and all columns have exactly the same number of tokens, irrespective of cell spans. Secondly, the OTSL representation is unambiguous: Every table structure is represented in one way. In this representation every table cell corresponds to a "C"-cell token, which in case of spans is always located in the top-left corner of the table cell definition. Third, OTSL syntax rules are only backward-looking. As a consequence, every predicted token can be validated straight during sequence generation by looking at the previously predicted sequence. As such, OTSL can guarantee that every predicted sequence is syntactically valid.
@ -177,28 +175,28 @@ Secondly, OTSL has more inherent structure and a significantly restricted vocabu
## References
- Auer, C., Dolfi, M., Carvalho, A., Ramis, C.B., Staar, P.W.J.: Delivering document conversion as a cloud service with high throughput and responsiveness. CoRR abs/2206.00785 (2022). https://doi.org/10.48550/arXiv.2206.00785 , https://doi.org/10.48550/arXiv.2206.00785
- Chen, B., Peng, D., Zhang, J., Ren, Y., Jin, L.: Complex table structure recognition in the wild using transformer and identity matrix-based augmentation. In: Porwal, U., Fornés, A., Shafait, F. (eds.) Frontiers in Handwriting Recognition. pp. 545561. Springer International Publishing, Cham (2022)
- Chi, Z., Huang, H., Xu, H.D., Yu, H., Yin, W., Mao, X.L.: Complicated table structure recognition. arXiv preprint arXiv:1908.04729 (2019)
- Deng, Y., Rosenberg, D., Mann, G.: Challenges in end-to-end neural scientific table recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 894-901. IEEE (2019)
1. Auer, C., Dolfi, M., Carvalho, A., Ramis, C.B., Staar, P.W.J.: Delivering document conversion as a cloud service with high throughput and responsiveness. CoRR abs/2206.00785 (2022). https://doi.org/10.48550/arXiv.2206.00785 , https://doi.org/10.48550/arXiv.2206.00785
2. Chen, B., Peng, D., Zhang, J., Ren, Y., Jin, L.: Complex table structure recognition in the wild using transformer and identity matrix-based augmentation. In: Porwal, U., Fornés, A., Shafait, F. (eds.) Frontiers in Handwriting Recognition. pp. 545561. Springer International Publishing, Cham (2022)
3. Chi, Z., Huang, H., Xu, H.D., Yu, H., Yin, W., Mao, X.L.: Complicated table structure recognition. arXiv preprint arXiv:1908.04729 (2019)
4. Deng, Y., Rosenberg, D., Mann, G.: Challenges in end-to-end neural scientific table recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 894-901. IEEE (2019)
- Kayal, P., Anand, M., Desai, H., Singh, M.: Tables to latex: structure and content extraction from scientific tables. International Journal on Document Analysis and Recognition (IJDAR) pp. 1-10 (2022)
- Lee, E., Kwon, J., Yang, H., Park, J., Lee, S., Koo, H.I., Cho, N.I.: Table structure recognition based on grid shape graph. In: 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). pp. 18681873. IEEE (2022)
- Li, M., Cui, L., Huang, S., Wei, F., Zhou, M., Li, Z.: Tablebank: A benchmark dataset for table detection and recognition (2019)
- Livathinos, N., Berrospi, C., Lysak, M., Kuropiatnyk, V., Nassar, A., Carvalho, A., Dolfi, M., Auer, C., Dinkla, K., Staar, P.: Robust pdf document conversion using recurrent neural networks. Proceedings of the AAAI Conference on Artificial Intelligence 35 (17), 15137-15145 (May 2021), https://ojs.aaai.org/index.php/ AAAI/article/view/17777
- Nassar, A., Livathinos, N., Lysak, M., Staar, P.: Tableformer: Table structure understanding with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4614-4623 (June 2022)
- Pfitzmann, B., Auer, C., Dolfi, M., Nassar, A.S., Staar, P.W.J.: Doclaynet: A large human-annotated dataset for document-layout segmentation. In: Zhang, A., Rangwala, H. (eds.) KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022. pp. 3743-3751. ACM (2022). https://doi.org/10.1145/3534678.3539043 , https:// doi.org/10.1145/3534678.3539043
- Prasad, D., Gadpal, A., Kapadni, K., Visave, M., Sultanpure, K.: Cascadetabnet: An approach for end to end table detection and structure recognition from imagebased documents. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. pp. 572-573 (2020)
- Schreiber, S., Agne, S., Wolf, I., Dengel, A., Ahmed, S.: Deepdesrt: Deep learning for detection and structure recognition of tables in document images. In: 2017 14th IAPR international conference on document analysis and recognition (ICDAR). vol. 1, pp. 1162-1167. IEEE (2017)
- Siddiqui, S.A., Fateh, I.A., Rizvi, S.T.R., Dengel, A., Ahmed, S.: Deeptabstr: Deep learning based table structure recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 1403-1409 (2019). https:// doi.org/10.1109/ICDAR.2019.00226
- Smock, B., Pesala, R., Abraham, R.: PubTables-1M: Towards comprehensive table extraction from unstructured documents. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4634-4642 (June 2022)
- Staar, P.W.J., Dolfi, M., Auer, C., Bekas, C.: Corpus conversion service: A machine learning platform to ingest documents at scale. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &amp; Data Mining. pp. 774-782. KDD '18, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3219819.3219834 , https://doi.org/10. 1145/3219819.3219834
- Wang, X.: Tabular Abstraction, Editing, and Formatting. Ph.D. thesis, CAN (1996), aAINN09397
- Xue, W., Li, Q., Tao, D.: Res2tim: Reconstruct syntactic structures from table images. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 749-755. IEEE (2019)
5. Kayal, P., Anand, M., Desai, H., Singh, M.: Tables to latex: structure and content extraction from scientific tables. International Journal on Document Analysis and Recognition (IJDAR) pp. 1-10 (2022)
6. Lee, E., Kwon, J., Yang, H., Park, J., Lee, S., Koo, H.I., Cho, N.I.: Table structure recognition based on grid shape graph. In: 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). pp. 18681873. IEEE (2022)
7. Li, M., Cui, L., Huang, S., Wei, F., Zhou, M., Li, Z.: Tablebank: A benchmark dataset for table detection and recognition (2019)
8. Livathinos, N., Berrospi, C., Lysak, M., Kuropiatnyk, V., Nassar, A., Carvalho, A., Dolfi, M., Auer, C., Dinkla, K., Staar, P.: Robust pdf document conversion using recurrent neural networks. Proceedings of the AAAI Conference on Artificial Intelligence 35 (17), 15137-15145 (May 2021), https://ojs.aaai.org/index.php/ AAAI/article/view/17777
9. Nassar, A., Livathinos, N., Lysak, M., Staar, P.: Tableformer: Table structure understanding with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4614-4623 (June 2022)
10. Pfitzmann, B., Auer, C., Dolfi, M., Nassar, A.S., Staar, P.W.J.: Doclaynet: A large human-annotated dataset for document-layout segmentation. In: Zhang, A., Rangwala, H. (eds.) KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022. pp. 3743-3751. ACM (2022). https://doi.org/10.1145/3534678.3539043 , https:// doi.org/10.1145/3534678.3539043
11. Prasad, D., Gadpal, A., Kapadni, K., Visave, M., Sultanpure, K.: Cascadetabnet: An approach for end to end table detection and structure recognition from imagebased documents. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. pp. 572-573 (2020)
12. Schreiber, S., Agne, S., Wolf, I., Dengel, A., Ahmed, S.: Deepdesrt: Deep learning for detection and structure recognition of tables in document images. In: 2017 14th IAPR international conference on document analysis and recognition (ICDAR). vol. 1, pp. 1162-1167. IEEE (2017)
13. Siddiqui, S.A., Fateh, I.A., Rizvi, S.T.R., Dengel, A., Ahmed, S.: Deeptabstr: Deep learning based table structure recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 1403-1409 (2019). https:// doi.org/10.1109/ICDAR.2019.00226
14. Smock, B., Pesala, R., Abraham, R.: PubTables-1M: Towards comprehensive table extraction from unstructured documents. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4634-4642 (June 2022)
15. Staar, P.W.J., Dolfi, M., Auer, C., Bekas, C.: Corpus conversion service: A machine learning platform to ingest documents at scale. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &amp; Data Mining. pp. 774-782. KDD '18, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3219819.3219834 , https://doi.org/10. 1145/3219819.3219834
16. Wang, X.: Tabular Abstraction, Editing, and Formatting. Ph.D. thesis, CAN (1996), aAINN09397
17. Xue, W., Li, Q., Tao, D.: Res2tim: Reconstruct syntactic structures from table images. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 749-755. IEEE (2019)
- Xue, W., Yu, B., Wang, W., Tao, D., Li, Q.: Tgrnet: A table graph reconstruction network for table structure recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 1295-1304 (2021)
- Ye, J., Qi, X., He, Y., Chen, Y., Gu, D., Gao, P., Xiao, R.: Pingan-vcgroup's solution for icdar 2021 competition on scientific literature parsing task b: Table recognition to html (2021). https://doi.org/10.48550/ARXIV.2105.01848 , https://arxiv.org/abs/2105.01848
- Zhang, Z., Zhang, J., Du, J., Wang, F.: Split, embed and merge: An accurate table structure recognizer. Pattern Recognition 126 , 108565 (2022)
- Zheng, X., Burdick, D., Popa, L., Zhong, X., Wang, N.X.R.: Global table extractor (gte): A framework for joint table identification and cell structure recognition using visual context. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 697-706 (2021). https://doi.org/10.1109/WACV48630.2021. 00074
- Zhong, X., ShafieiBavani, E., Jimeno Yepes, A.: Image-based table recognition: Data, model, and evaluation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision - ECCV 2020. pp. 564-580. Springer International Publishing, Cham (2020)
- Zhong, X., Tang, J., Yepes, A.J.: Publaynet: largest dataset ever for document layout analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 1015-1022. IEEE (2019)
18. Xue, W., Yu, B., Wang, W., Tao, D., Li, Q.: Tgrnet: A table graph reconstruction network for table structure recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 1295-1304 (2021)
19. Ye, J., Qi, X., He, Y., Chen, Y., Gu, D., Gao, P., Xiao, R.: Pingan-vcgroup's solution for icdar 2021 competition on scientific literature parsing task b: Table recognition to html (2021). https://doi.org/10.48550/ARXIV.2105.01848 , https://arxiv.org/abs/2105.01848
20. Zhang, Z., Zhang, J., Du, J., Wang, F.: Split, embed and merge: An accurate table structure recognizer. Pattern Recognition 126 , 108565 (2022)
21. Zheng, X., Burdick, D., Popa, L., Zhong, X., Wang, N.X.R.: Global table extractor (gte): A framework for joint table identification and cell structure recognition using visual context. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 697-706 (2021). https://doi.org/10.1109/WACV48630.2021. 00074
22. Zhong, X., ShafieiBavani, E., Jimeno Yepes, A.: Image-based table recognition: Data, model, and evaluation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision - ECCV 2020. pp. 564-580. Springer International Publishing, Cham (2020)
23. Zhong, X., Tang, J., Yepes, A.J.: Publaynet: largest dataset ever for document layout analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). pp. 1015-1022. IEEE (2019)

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "amt_handbook_sample",
"origin": {
"mimetype": "application/pdf",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "code_and_formula",
"origin": {
"mimetype": "application/pdf",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "csv-comma-in-cell",
"origin": {
"mimetype": "text/csv",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "csv-comma",
"origin": {
"mimetype": "text/csv",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "csv-inconsistent-header",
"origin": {
"mimetype": "text/csv",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "csv-pipe",
"origin": {
"mimetype": "text/csv",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "csv-semicolon",
"origin": {
"mimetype": "text/csv",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "csv-tab",
"origin": {
"mimetype": "text/csv",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "csv-too-few-columns",
"origin": {
"mimetype": "text/csv",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "csv-too-many-columns",
"origin": {
"mimetype": "text/csv",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "equations",
"origin": {
"mimetype": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",

View File

@ -7,6 +7,9 @@ item-0 at level 0: unspecified: group _root_
item-6 at level 3: list: group list
item-7 at level 4: list_item: First item in unordered list
item-8 at level 4: list_item: Second item in unordered list
item-9 at level 3: ordered_list: group ordered list
item-9 at level 3: list: group ordered list
item-10 at level 4: list_item: First item in ordered list
item-11 at level 4: list_item: Second item in ordered list
item-11 at level 4: list_item: Second item in ordered list
item-12 at level 3: list: group ordered list start 42
item-13 at level 4: list_item: First item in ordered list with start
item-14 at level 4: list_item: Second item in ordered list with start

View File

@ -1,10 +1,10 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "example_01",
"origin": {
"mimetype": "text/html",
"binary_hash": 13782069548509991617,
"binary_hash": 13726679883013609282,
"filename": "example_01.html"
},
"furniture": {
@ -58,7 +58,24 @@
],
"content_layer": "body",
"name": "ordered list",
"label": "ordered_list"
"label": "list"
},
{
"self_ref": "#/groups/2",
"parent": {
"$ref": "#/texts/2"
},
"children": [
{
"$ref": "#/texts/8"
},
{
"$ref": "#/texts/9"
}
],
"content_layer": "body",
"name": "ordered list start 42",
"label": "list"
}
],
"texts": [
@ -110,6 +127,9 @@
},
{
"$ref": "#/groups/1"
},
{
"$ref": "#/groups/2"
}
],
"content_layer": "body",
@ -143,7 +163,7 @@
"orig": "First item in unordered list",
"text": "First item in unordered list",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/5",
@ -157,7 +177,7 @@
"orig": "Second item in unordered list",
"text": "Second item in unordered list",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/6",
@ -171,7 +191,7 @@
"orig": "First item in ordered list",
"text": "First item in ordered list",
"enumerated": true,
"marker": "1."
"marker": ""
},
{
"self_ref": "#/texts/7",
@ -185,7 +205,35 @@
"orig": "Second item in ordered list",
"text": "Second item in ordered list",
"enumerated": true,
"marker": "2."
"marker": ""
},
{
"self_ref": "#/texts/8",
"parent": {
"$ref": "#/groups/2"
},
"children": [],
"content_layer": "body",
"label": "list_item",
"prov": [],
"orig": "First item in ordered list with start",
"text": "First item in ordered list with start",
"enumerated": true,
"marker": "42."
},
{
"self_ref": "#/texts/9",
"parent": {
"$ref": "#/groups/2"
},
"children": [],
"content_layer": "body",
"label": "list_item",
"prov": [],
"orig": "Second item in ordered list with start",
"text": "Second item in ordered list with start",
"enumerated": true,
"marker": "43."
}
],
"pictures": [

View File

@ -12,4 +12,7 @@ Some background information here.
- Second item in unordered list
1. First item in ordered list
2. Second item in ordered list
2. Second item in ordered list
42. First item in ordered list with start
43. Second item in ordered list with start

View File

@ -6,6 +6,6 @@ item-0 at level 0: unspecified: group _root_
item-5 at level 3: list: group list
item-6 at level 4: list_item: First item in unordered list
item-7 at level 4: list_item: Second item in unordered list
item-8 at level 3: ordered_list: group ordered list
item-8 at level 3: list: group ordered list
item-9 at level 4: list_item: First item in ordered list
item-10 at level 4: list_item: Second item in ordered list

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "example_02",
"origin": {
"mimetype": "text/html",
@ -58,7 +58,7 @@
],
"content_layer": "body",
"name": "ordered list",
"label": "ordered_list"
"label": "list"
}
],
"texts": [
@ -140,7 +140,7 @@
"orig": "First item in unordered list",
"text": "First item in unordered list",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/5",
@ -154,7 +154,7 @@
"orig": "Second item in unordered list",
"text": "Second item in unordered list",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/6",
@ -168,7 +168,7 @@
"orig": "First item in ordered list",
"text": "First item in ordered list",
"enumerated": true,
"marker": "1."
"marker": ""
},
{
"self_ref": "#/texts/7",
@ -182,7 +182,7 @@
"orig": "Second item in ordered list",
"text": "Second item in ordered list",
"enumerated": true,
"marker": "2."
"marker": ""
}
],
"pictures": [],

View File

@ -10,9 +10,9 @@ item-0 at level 0: unspecified: group _root_
item-9 at level 6: list_item: Nested item 1
item-10 at level 6: list_item: Nested item 2
item-11 at level 4: list_item: Second item in unordered list
item-12 at level 3: ordered_list: group ordered list
item-12 at level 3: list: group ordered list
item-13 at level 4: list_item: First item in ordered list
item-14 at level 5: ordered_list: group ordered list
item-14 at level 5: list: group ordered list
item-15 at level 6: list_item: Nested ordered item 1
item-16 at level 6: list_item: Nested ordered item 2
item-17 at level 4: list_item: Second item in ordered list

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "example_03",
"origin": {
"mimetype": "text/html",
@ -75,7 +75,7 @@
],
"content_layer": "body",
"name": "ordered list",
"label": "ordered_list"
"label": "list"
},
{
"self_ref": "#/groups/3",
@ -92,7 +92,7 @@
],
"content_layer": "body",
"name": "ordered list",
"label": "ordered_list"
"label": "list"
}
],
"texts": [
@ -198,7 +198,7 @@
"orig": "First item in unordered list",
"text": "First item in unordered list",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/6",
@ -212,7 +212,7 @@
"orig": "Nested item 1",
"text": "Nested item 1",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/7",
@ -226,7 +226,7 @@
"orig": "Nested item 2",
"text": "Nested item 2",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/8",
@ -240,7 +240,7 @@
"orig": "Second item in unordered list",
"text": "Second item in unordered list",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/9",
@ -258,7 +258,7 @@
"orig": "First item in ordered list",
"text": "First item in ordered list",
"enumerated": true,
"marker": "1"
"marker": ""
},
{
"self_ref": "#/texts/10",
@ -272,7 +272,7 @@
"orig": "Nested ordered item 1",
"text": "Nested ordered item 1",
"enumerated": true,
"marker": "1."
"marker": ""
},
{
"self_ref": "#/texts/11",
@ -286,7 +286,7 @@
"orig": "Nested ordered item 2",
"text": "Nested ordered item 2",
"enumerated": true,
"marker": "2."
"marker": ""
},
{
"self_ref": "#/texts/12",
@ -300,7 +300,7 @@
"orig": "Second item in ordered list",
"text": "Second item in ordered list",
"enumerated": true,
"marker": "2."
"marker": ""
},
{
"self_ref": "#/texts/13",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "example_04",
"origin": {
"mimetype": "text/html",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "example_05",
"origin": {
"mimetype": "text/html",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "example_06",
"origin": {
"mimetype": "text/html",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "example_07",
"origin": {
"mimetype": "text/html",
@ -169,7 +169,7 @@
"orig": "Asia",
"text": "Asia",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/1",
@ -183,7 +183,7 @@
"orig": "China",
"text": "China",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/2",
@ -197,7 +197,7 @@
"orig": "Japan",
"text": "Japan",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/3",
@ -211,7 +211,7 @@
"orig": "Thailand",
"text": "Thailand",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/4",
@ -229,7 +229,7 @@
"orig": "Europe",
"text": "Europe",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/5",
@ -243,7 +243,7 @@
"orig": "UK",
"text": "UK",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/6",
@ -257,7 +257,7 @@
"orig": "Germany",
"text": "Germany",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/7",
@ -275,7 +275,7 @@
"orig": "Switzerland",
"text": "Switzerland",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/8",
@ -289,7 +289,7 @@
"orig": "Bern",
"text": "Bern",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/9",
@ -303,7 +303,7 @@
"orig": "Aargau",
"text": "Aargau",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/10",
@ -321,7 +321,7 @@
"orig": "Italy",
"text": "Italy",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/11",
@ -335,7 +335,7 @@
"orig": "Piedmont",
"text": "Piedmont",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/12",
@ -349,7 +349,7 @@
"orig": "Liguria",
"text": "Liguria",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/13",
@ -363,7 +363,7 @@
"orig": "Africa",
"text": "Africa",
"enumerated": false,
"marker": "-"
"marker": ""
}
],
"pictures": [],

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "example_08",
"origin": {
"mimetype": "text/html",

View File

@ -11,8 +11,22 @@ Create your feature branch: `git checkout -b feature/AmazingFeature` .
3. Commit your changes ( `git commit -m 'Add some AmazingFeature'` )
4. Push to the branch ( `git push origin feature/AmazingFeature` )
5. Open a Pull Request
6. **Whole list item has same formatting**
7. List item has *mixed or partial* formatting
## *Second* section
# *Whole heading is italic*
- **First** : Lorem ipsum.
- **Second** : Dolor `sit` amet.
Some *`formatted_code`*
## *Partially formatted* heading to\_escape `not_to_escape`
[$$E=mc^2$$](https://en.wikipedia.org/wiki/Albert_Einstein)
## Table Heading
| Bold Heading | Italic Heading |
|----------------|------------------|
| data a | data b |

View File

@ -5,8 +5,14 @@ body:
- $ref: '#/groups/0'
- $ref: '#/groups/1'
- $ref: '#/groups/2'
- $ref: '#/texts/27'
- $ref: '#/texts/32'
- $ref: '#/groups/8'
- $ref: '#/groups/11'
- $ref: '#/texts/43'
- $ref: '#/texts/47'
- $ref: '#/texts/48'
- $ref: '#/groups/13'
- $ref: '#/tables/0'
content_layer: body
label: unspecified
name: _root_
@ -47,8 +53,10 @@ groups:
- $ref: '#/texts/18'
- $ref: '#/texts/22'
- $ref: '#/texts/26'
- $ref: '#/texts/27'
- $ref: '#/texts/28'
content_layer: body
label: ordered_list
label: list
name: list
parent:
$ref: '#/body'
@ -94,53 +102,216 @@ groups:
$ref: '#/texts/22'
self_ref: '#/groups/6'
- children:
- $ref: '#/texts/28'
- $ref: '#/texts/29'
- $ref: '#/texts/30'
- $ref: '#/texts/31'
content_layer: body
label: inline
name: group
parent:
$ref: '#/texts/27'
$ref: '#/texts/28'
self_ref: '#/groups/7'
- children:
- $ref: '#/texts/30'
- $ref: '#/texts/33'
- $ref: '#/texts/36'
content_layer: body
label: list
name: list
parent:
$ref: '#/body'
self_ref: '#/groups/8'
- children:
- $ref: '#/texts/31'
- $ref: '#/texts/32'
content_layer: body
label: inline
name: group
parent:
$ref: '#/texts/30'
self_ref: '#/groups/9'
- children:
- $ref: '#/texts/34'
- $ref: '#/texts/35'
- $ref: '#/texts/36'
- $ref: '#/texts/37'
content_layer: body
label: inline
name: group
parent:
$ref: '#/texts/33'
self_ref: '#/groups/9'
- children:
- $ref: '#/texts/37'
- $ref: '#/texts/38'
- $ref: '#/texts/39'
- $ref: '#/texts/40'
content_layer: body
label: inline
name: group
parent:
$ref: '#/texts/36'
self_ref: '#/groups/10'
- children:
- $ref: '#/texts/41'
- $ref: '#/texts/42'
content_layer: body
label: inline
name: group
parent:
$ref: '#/body'
self_ref: '#/groups/11'
- children:
- $ref: '#/texts/44'
- $ref: '#/texts/45'
- $ref: '#/texts/46'
content_layer: body
label: inline
name: group
parent:
$ref: '#/texts/43'
self_ref: '#/groups/12'
- children: []
content_layer: body
label: inline
name: group
parent:
$ref: '#/body'
self_ref: '#/groups/13'
key_value_items: []
name: inline_and_formatting
origin:
binary_hash: 9342273634728023910
binary_hash: 14550011543526094526
filename: inline_and_formatting.md
mimetype: text/markdown
pages: {}
pictures: []
schema_name: DoclingDocument
tables: []
tables:
- annotations: []
captions: []
children: []
content_layer: body
data:
grid:
- - col_span: 1
column_header: true
end_col_offset_idx: 1
end_row_offset_idx: 1
row_header: false
row_section: false
row_span: 1
start_col_offset_idx: 0
start_row_offset_idx: 0
text: Bold Heading
- col_span: 1
column_header: true
end_col_offset_idx: 2
end_row_offset_idx: 1
row_header: false
row_section: false
row_span: 1
start_col_offset_idx: 1
start_row_offset_idx: 0
text: Italic Heading
- - col_span: 1
column_header: false
end_col_offset_idx: 1
end_row_offset_idx: 2
row_header: false
row_section: false
row_span: 1
start_col_offset_idx: 0
start_row_offset_idx: 1
text: data a
- col_span: 1
column_header: false
end_col_offset_idx: 2
end_row_offset_idx: 2
row_header: false
row_section: false
row_span: 1
start_col_offset_idx: 1
start_row_offset_idx: 1
text: data b
num_cols: 2
num_rows: 2
table_cells:
- col_span: 1
column_header: true
end_col_offset_idx: 1
end_row_offset_idx: 1
row_header: false
row_section: false
row_span: 1
start_col_offset_idx: 0
start_row_offset_idx: 0
text: Bold Heading
- col_span: 1
column_header: true
end_col_offset_idx: 2
end_row_offset_idx: 1
row_header: false
row_section: false
row_span: 1
start_col_offset_idx: 1
start_row_offset_idx: 0
text: Italic Heading
- col_span: 1
column_header: false
end_col_offset_idx: 1
end_row_offset_idx: 2
row_header: false
row_section: false
row_span: 1
start_col_offset_idx: 0
start_row_offset_idx: 1
text: data a
- col_span: 1
column_header: false
end_col_offset_idx: 2
end_row_offset_idx: 2
row_header: false
row_section: false
row_span: 1
start_col_offset_idx: 1
start_row_offset_idx: 1
text: data b
- col_span: 1
column_header: true
end_col_offset_idx: 1
end_row_offset_idx: 1
row_header: false
row_section: false
row_span: 1
start_col_offset_idx: 0
start_row_offset_idx: 0
text: Bold Heading
- col_span: 1
column_header: true
end_col_offset_idx: 2
end_row_offset_idx: 1
row_header: false
row_section: false
row_span: 1
start_col_offset_idx: 1
start_row_offset_idx: 0
text: Italic Heading
- col_span: 1
column_header: false
end_col_offset_idx: 1
end_row_offset_idx: 2
row_header: false
row_section: false
row_span: 1
start_col_offset_idx: 0
start_row_offset_idx: 1
text: data a
- col_span: 1
column_header: false
end_col_offset_idx: 2
end_row_offset_idx: 2
row_header: false
row_section: false
row_span: 1
start_col_offset_idx: 1
start_row_offset_idx: 1
text: data b
footnotes: []
label: table
parent:
$ref: '#/body'
prov: []
references: []
self_ref: '#/tables/0'
texts:
- children: []
content_layer: body
@ -259,7 +430,7 @@ texts:
content_layer: body
enumerated: true
label: list_item
marker: '-'
marker: ''
orig: ''
parent:
$ref: '#/groups/2'
@ -305,7 +476,7 @@ texts:
content_layer: body
enumerated: true
label: list_item
marker: '-'
marker: ''
orig: ''
parent:
$ref: '#/groups/2'
@ -348,7 +519,7 @@ texts:
content_layer: body
enumerated: true
label: list_item
marker: '-'
marker: ''
orig: ''
parent:
$ref: '#/groups/2'
@ -391,7 +562,7 @@ texts:
content_layer: body
enumerated: true
label: list_item
marker: '-'
marker: ''
orig: ''
parent:
$ref: '#/groups/2'
@ -433,24 +604,51 @@ texts:
content_layer: body
enumerated: true
label: list_item
marker: '-'
marker: ''
orig: Open a Pull Request
parent:
$ref: '#/groups/2'
prov: []
self_ref: '#/texts/26'
text: Open a Pull Request
- children: []
content_layer: body
enumerated: true
formatting:
bold: true
italic: false
script: baseline
strikethrough: false
underline: false
label: list_item
marker: ''
orig: Whole list item has same formatting
parent:
$ref: '#/groups/2'
prov: []
self_ref: '#/texts/27'
text: Whole list item has same formatting
- children:
- $ref: '#/groups/7'
content_layer: body
label: section_header
level: 1
enumerated: true
label: list_item
marker: ''
orig: ''
parent:
$ref: '#/body'
$ref: '#/groups/2'
prov: []
self_ref: '#/texts/27'
self_ref: '#/texts/28'
text: ''
- children: []
content_layer: body
label: text
orig: List item has
parent:
$ref: '#/groups/7'
prov: []
self_ref: '#/texts/29'
text: List item has
- children: []
content_layer: body
formatting:
@ -460,69 +658,84 @@ texts:
strikethrough: false
underline: false
label: text
orig: Second
orig: mixed or partial
parent:
$ref: '#/groups/7'
prov: []
self_ref: '#/texts/28'
text: Second
self_ref: '#/texts/30'
text: mixed or partial
- children: []
content_layer: body
label: text
orig: section
orig: formatting
parent:
$ref: '#/groups/7'
prov: []
self_ref: '#/texts/29'
text: section
self_ref: '#/texts/31'
text: formatting
- children: []
content_layer: body
formatting:
bold: false
italic: true
script: baseline
strikethrough: false
underline: false
label: title
orig: Whole heading is italic
parent:
$ref: '#/body'
prov: []
self_ref: '#/texts/32'
text: Whole heading is italic
- children:
- $ref: '#/groups/9'
content_layer: body
enumerated: false
label: list_item
marker: '-'
orig: ''
parent:
$ref: '#/groups/8'
prov: []
self_ref: '#/texts/30'
text: ''
- children: []
content_layer: body
formatting:
bold: true
italic: false
script: baseline
strikethrough: false
underline: false
label: text
orig: First
parent:
$ref: '#/groups/9'
prov: []
self_ref: '#/texts/31'
text: First
- children: []
content_layer: body
label: text
orig: ': Lorem ipsum.'
parent:
$ref: '#/groups/9'
prov: []
self_ref: '#/texts/32'
text: ': Lorem ipsum.'
- children:
- $ref: '#/groups/10'
content_layer: body
enumerated: false
label: list_item
marker: '-'
marker: ''
orig: ''
parent:
$ref: '#/groups/8'
prov: []
self_ref: '#/texts/33'
text: ''
- children: []
content_layer: body
formatting:
bold: true
italic: false
script: baseline
strikethrough: false
underline: false
label: text
orig: First
parent:
$ref: '#/groups/9'
prov: []
self_ref: '#/texts/34'
text: First
- children: []
content_layer: body
label: text
orig: ': Lorem ipsum.'
parent:
$ref: '#/groups/9'
prov: []
self_ref: '#/texts/35'
text: ': Lorem ipsum.'
- children:
- $ref: '#/groups/10'
content_layer: body
enumerated: false
label: list_item
marker: ''
orig: ''
parent:
$ref: '#/groups/8'
prov: []
self_ref: '#/texts/36'
text: ''
- children: []
content_layer: body
formatting:
@ -536,7 +749,7 @@ texts:
parent:
$ref: '#/groups/10'
prov: []
self_ref: '#/texts/34'
self_ref: '#/texts/37'
text: Second
- children: []
content_layer: body
@ -545,7 +758,7 @@ texts:
parent:
$ref: '#/groups/10'
prov: []
self_ref: '#/texts/35'
self_ref: '#/texts/38'
text: ': Dolor'
- captions: []
children: []
@ -558,7 +771,7 @@ texts:
$ref: '#/groups/10'
prov: []
references: []
self_ref: '#/texts/36'
self_ref: '#/texts/39'
text: sit
- children: []
content_layer: body
@ -567,6 +780,102 @@ texts:
parent:
$ref: '#/groups/10'
prov: []
self_ref: '#/texts/37'
self_ref: '#/texts/40'
text: amet.
version: 1.4.0
- children: []
content_layer: body
label: text
orig: Some
parent:
$ref: '#/groups/11'
prov: []
self_ref: '#/texts/41'
text: Some
- captions: []
children: []
code_language: unknown
content_layer: body
footnotes: []
formatting:
bold: false
italic: true
script: baseline
strikethrough: false
underline: false
label: code
orig: formatted_code
parent:
$ref: '#/groups/11'
prov: []
references: []
self_ref: '#/texts/42'
text: formatted_code
- children:
- $ref: '#/groups/12'
content_layer: body
label: section_header
level: 1
orig: ''
parent:
$ref: '#/body'
prov: []
self_ref: '#/texts/43'
text: ''
- children: []
content_layer: body
formatting:
bold: false
italic: true
script: baseline
strikethrough: false
underline: false
label: text
orig: Partially formatted
parent:
$ref: '#/groups/12'
prov: []
self_ref: '#/texts/44'
text: Partially formatted
- children: []
content_layer: body
label: text
orig: heading to_escape
parent:
$ref: '#/groups/12'
prov: []
self_ref: '#/texts/45'
text: heading to_escape
- captions: []
children: []
code_language: unknown
content_layer: body
footnotes: []
label: code
orig: not_to_escape
parent:
$ref: '#/groups/12'
prov: []
references: []
self_ref: '#/texts/46'
text: not_to_escape
- children: []
content_layer: body
hyperlink: https://en.wikipedia.org/wiki/Albert_Einstein
label: text
orig: $$E=mc^2$$
parent:
$ref: '#/body'
prov: []
self_ref: '#/texts/47'
text: $$E=mc^2$$
- children: []
content_layer: body
label: section_header
level: 1
orig: Table Heading
parent:
$ref: '#/body'
prov: []
self_ref: '#/texts/48'
text: Table Heading
version: 1.5.0

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "ipa20180000016.xml",
"origin": {
"mimetype": "application/xml",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "ipa20200022300.xml",
"origin": {
"mimetype": "application/xml",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "lorem_ipsum",
"origin": {
"mimetype": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "multi_page",
"origin": {
"mimetype": "application/pdf",

View File

@ -52,11 +52,11 @@ In addition to general-purpose word processors, specialized tools have emerged t
The evolution of word processors wasn't just about hardware or software improvements-it was about the features that revolutionized how people wrote and edited. Some of these transformative features include:
- Undo/Redo : Introduced in the 1980s, the ability to undo mistakes and redo actions made experimentation and error correction much easier.
- Spell Check and Grammar Check : By the 1990s, these became standard, allowing users to spot errors automatically.
- Templates : Pre-designed formats for documents, such as resumes, letters, and invoices, helped users save time.
- Track Changes : A game-changer for collaboration, this feature allowed multiple users to suggest edits while maintaining the original text.
- Real-Time Collaboration : Tools like Google Docs and Microsoft 365 enabled multiple users to edit the same document simultaneously, forever changing teamwork dynamics.
1. Undo/Redo : Introduced in the 1980s, the ability to undo mistakes and redo actions made experimentation and error correction much easier.
2. Spell Check and Grammar Check : By the 1990s, these became standard, allowing users to spot errors automatically.
3. Templates : Pre-designed formats for documents, such as resumes, letters, and invoices, helped users save time.
4. Track Changes : A game-changer for collaboration, this feature allowed multiple users to suggest edits while maintaining the original text.
5. Real-Time Collaboration : Tools like Google Docs and Microsoft 365 enabled multiple users to edit the same document simultaneously, forever changing teamwork dynamics.
## The Cultural Impact of Word Processors
@ -70,11 +70,11 @@ The word processor didn't just change workplaces-it changed culture. It democrat
As we move further into the 21st century, the role of the word processor continues to evolve:
- Artificial Intelligence : Modern word processors are leveraging AI to suggest content improvements. Tools like Grammarly, ProWritingAid, and even native features in Word now analyze tone, conciseness, and clarity. Some AI systems can even generate entire paragraphs or rewrite sentences.
- Integration with Other Tools : Word processors are no longer standalone. They integrate with task managers, cloud storage, and project management platforms. For instance, Google Docs syncs with Google Drive, while Microsoft Word integrates seamlessly with OneDrive and Teams.
- Voice Typing : Speech-to-text capabilities have made word processing more accessible, particularly for those with disabilities. Tools like Dragon NaturallySpeaking and built-in options in Google Docs and Microsoft Word have made dictation mainstream.
- Multimedia Documents : Word processing has expanded beyond text. Modern tools allow users to embed images, videos, charts, and interactive elements, transforming simple documents into rich multimedia experiences.
- Cross-Platform Accessibility : Thanks to cloud computing, documents can now be accessed and edited across devices. Whether you're on a desktop, tablet, or smartphone, you can continue working seamlessly.
1. Artificial Intelligence : Modern word processors are leveraging AI to suggest content improvements. Tools like Grammarly, ProWritingAid, and even native features in Word now analyze tone, conciseness, and clarity. Some AI systems can even generate entire paragraphs or rewrite sentences.
2. Integration with Other Tools : Word processors are no longer standalone. They integrate with task managers, cloud storage, and project management platforms. For instance, Google Docs syncs with Google Drive, while Microsoft Word integrates seamlessly with OneDrive and Teams.
3. Voice Typing : Speech-to-text capabilities have made word processing more accessible, particularly for those with disabilities. Tools like Dragon NaturallySpeaking and built-in options in Google Docs and Microsoft Word have made dictation mainstream.
4. Multimedia Documents : Word processing has expanded beyond text. Modern tools allow users to embed images, videos, charts, and interactive elements, transforming simple documents into rich multimedia experiences.
5. Cross-Platform Accessibility : Thanks to cloud computing, documents can now be accessed and edited across devices. Whether you're on a desktop, tablet, or smartphone, you can continue working seamlessly.
## A Glimpse Into the Future

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "pa20010031492.xml",
"origin": {
"mimetype": "application/xml",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "pftaps057006474.txt",
"origin": {
"mimetype": "text/plain",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "pg06442728.xml",
"origin": {
"mimetype": "application/xml",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "picture_classification",
"origin": {
"mimetype": "application/pdf",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "powerpoint_bad_text",
"origin": {
"mimetype": "application/vnd.ms-powerpoint",

View File

@ -11,7 +11,7 @@ item-0 at level 0: unspecified: group _root_
item-10 at level 2: paragraph: And baz things
item-11 at level 2: paragraph: A rectangle shape with this text inside.
item-12 at level 1: chapter: group slide-2
item-13 at level 2: ordered_list: group list
item-13 at level 2: list: group list
item-14 at level 3: list_item: List item4
item-15 at level 3: list_item: List item5
item-16 at level 3: list_item: List item6
@ -25,7 +25,7 @@ item-0 at level 0: unspecified: group _root_
item-24 at level 3: list_item: Item A
item-25 at level 3: list_item: Item B
item-26 at level 2: paragraph: Maybe a list?
item-27 at level 2: ordered_list: group list
item-27 at level 2: list: group list
item-28 at level 3: list_item: List1
item-29 at level 3: list_item: List2
item-30 at level 3: list_item: List3

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "powerpoint_sample",
"origin": {
"mimetype": "application/vnd.ms-powerpoint",
@ -137,7 +137,7 @@
],
"content_layer": "body",
"name": "list",
"label": "ordered_list"
"label": "list"
},
{
"self_ref": "#/groups/4",
@ -197,7 +197,7 @@
],
"content_layer": "body",
"name": "list",
"label": "ordered_list"
"label": "list"
},
{
"self_ref": "#/groups/7",
@ -578,7 +578,7 @@
"orig": "I1",
"text": "I1",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/13",
@ -607,7 +607,7 @@
"orig": "I2",
"text": "I2",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/14",
@ -636,7 +636,7 @@
"orig": "I3",
"text": "I3",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/15",
@ -665,7 +665,7 @@
"orig": "I4",
"text": "I4",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/16",
@ -721,7 +721,7 @@
"orig": "Item A",
"text": "Item A",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/18",
@ -750,7 +750,7 @@
"orig": "Item B",
"text": "Item B",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/19",
@ -893,7 +893,7 @@
"orig": "l1 ",
"text": "l1 ",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/24",
@ -922,7 +922,7 @@
"orig": "l2",
"text": "l2",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/25",
@ -951,7 +951,7 @@
"orig": "l3",
"text": "l3",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/26",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "powerpoint_with_image",
"origin": {
"mimetype": "application/vnd.ms-powerpoint",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "redp5110_sampled",
"origin": {
"mimetype": "application/pdf",
@ -1295,7 +1295,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/15",
@ -1326,7 +1326,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/16",
@ -1357,7 +1357,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/17",
@ -1388,7 +1388,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/18",
@ -1683,7 +1683,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/28",
@ -1714,7 +1714,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/29",
@ -1745,7 +1745,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/30",
@ -1776,7 +1776,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/31",
@ -1807,7 +1807,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/32",
@ -1838,7 +1838,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/33",
@ -1869,7 +1869,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/34",
@ -1900,7 +1900,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/35",
@ -1931,7 +1931,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/36",
@ -2400,7 +2400,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/52",
@ -2431,7 +2431,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/53",
@ -2462,7 +2462,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/54",
@ -2668,7 +2668,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/61",
@ -2699,7 +2699,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/62",
@ -2759,7 +2759,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/64",
@ -3344,7 +3344,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/84",
@ -3375,7 +3375,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/85",
@ -3406,7 +3406,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/86",
@ -5992,7 +5992,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/175",
@ -6023,7 +6023,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/176",
@ -6054,7 +6054,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/177",
@ -6085,7 +6085,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/178",
@ -6116,7 +6116,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/179",
@ -7095,7 +7095,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/212",
@ -7126,7 +7126,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/213",
@ -7157,7 +7157,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/214",
@ -7188,7 +7188,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/215",
@ -7219,7 +7219,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/216",
@ -7559,7 +7559,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/227",
@ -7590,7 +7590,7 @@
"formatting": null,
"hyperlink": null,
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/228",

View File

@ -318,9 +318,9 @@ If a special register value is in the list of user profiles or it is a member of
Here is an example of using the VERIFY\_GROUP\_FOR\_USER function:
- There are user profiles for MGR, JANE, JUDY, and TONY.
- The user profile JANE specifies a group profile of MGR.
- If a user is connected to the server using user profile JANE, all of the following function invocations return a value of 1:
1. There are user profiles for MGR, JANE, JUDY, and TONY.
2. The user profile JANE specifies a group profile of MGR.
3. If a user is connected to the server using user profile JANE, all of the following function invocations return a value of 1:
```
VERIFY_GROUP_FOR_USER (CURRENT_USER, 'MGR') VERIFY_GROUP_FOR_USER (CURRENT_USER, 'JANE', 'MGR') VERIFY_GROUP_FOR_USER (CURRENT_USER, 'JANE', 'MGR', 'STEVE') The following function invocation returns a value of 0: VERIFY_GROUP_FOR_USER (CURRENT_USER, 'JUDY', 'TONY')
@ -334,7 +334,7 @@ CASE
WHEN VERIFY_GROUP_FOR_USER ( SESSION_USER , 'HR', 'EMP' ) = 1 THEN EMPLOYEES . DATE_OF_BIRTH WHEN VERIFY_GROUP_FOR_USER ( SESSION_USER , 'MGR' ) = 1 AND SESSION_USER = EMPLOYEES . USER_ID THEN EMPLOYEES . DATE_OF_BIRTH WHEN VERIFY_GROUP_FOR_USER ( SESSION_USER , 'MGR' ) = 1 AND SESSION_USER <> EMPLOYEES . USER_ID THEN ( 9999 || '-' || MONTH ( EMPLOYEES . DATE_OF_BIRTH ) || '-' || DAY (EMPLOYEES.DATE_OF_BIRTH )) ELSE NULL END ENABLE ;
```
- The other column to mask in this example is the TAX\_ID information. In this example, the rules to enforce include the following ones:
2. The other column to mask in this example is the TAX\_ID information. In this example, the rules to enforce include the following ones:
- -Human Resources can see the unmasked TAX\_ID of the employees.
- -Employees can see only their own unmasked TAX\_ID.
- -Managers see a masked version of TAX\_ID with the first five characters replaced with the X character (for example, XXX-XX-1234).
@ -347,7 +347,7 @@ CREATE MASK HR_SCHEMA.MASK_TAX_ID_ON_EMPLOYEES ON HR_SCHEMA.EMPLOYEES AS EMPLOYE
Example 3-9 Creating a mask on the TAX\_ID column
- Figure 3-10 shows the masks that are created in the HR\_SCHEMA.
3. Figure 3-10 shows the masks that are created in the HR\_SCHEMA.
Figure 3-10 Column masks shown in System i Navigator
@ -357,7 +357,7 @@ Figure 3-10 Column masks shown in System i Navigator
Now that you have created the row permission and the two column masks, RCAC must be activated. The row permission and the two column masks are enabled (last clause in the scripts), but now you must activate RCAC on the table. To do so, complete the following steps:
- Run the SQL statements that are shown in Example 3-10.
1. Run the SQL statements that are shown in Example 3-10.
## Example 3-10 Activating RCAC on the EMPLOYEES table
@ -372,14 +372,14 @@ ACTIVATE ROW ACCESS CONTROL
ACTIVATE COLUMN ACCESS CONTROL;
- Look at the definition of the EMPLOYEE table, as shown in Figure 3-11. To do this, from the main navigation pane of System i Navigator, click Schemas  HR\_SCHEMA  Tables , right-click the EMPLOYEES table, and click Definition .
2. Look at the definition of the EMPLOYEE table, as shown in Figure 3-11. To do this, from the main navigation pane of System i Navigator, click Schemas  HR\_SCHEMA  Tables , right-click the EMPLOYEES table, and click Definition .
Figure 3-11 Selecting the EMPLOYEES table from System i Navigator
<!-- image -->
- Figure 4-68 shows the Visual Explain of the same SQL statement, but with RCAC enabled. It is clear that the implementation of the SQL statement is more complex because the row permission rule becomes part of the WHERE clause.
- Compare the advised indexes that are provided by the Optimizer without RCAC and with RCAC enabled. Figure 4-69 shows the index advice for the SQL statement without RCAC enabled. The index being advised is for the ORDER BY clause.
2. Figure 4-68 shows the Visual Explain of the same SQL statement, but with RCAC enabled. It is clear that the implementation of the SQL statement is more complex because the row permission rule becomes part of the WHERE clause.
3. Compare the advised indexes that are provided by the Optimizer without RCAC and with RCAC enabled. Figure 4-69 shows the index advice for the SQL statement without RCAC enabled. The index being advised is for the ORDER BY clause.
Figure 4-68 Visual Explain with RCAC enabled

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "right_to_left_01",
"origin": {
"mimetype": "application/pdf",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "right_to_left_02",
"origin": {
"mimetype": "application/pdf",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "right_to_left_03",
"origin": {
"mimetype": "application/pdf",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "sample_sales_data",
"origin": {
"mimetype": "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "tablecell",
"origin": {
"mimetype": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
@ -82,7 +82,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/1",
@ -103,7 +103,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/2",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "test-01",
"origin": {
"mimetype": "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "test_emf_docx",
"origin": {
"mimetype": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",

View File

@ -29,64 +29,62 @@ item-0 at level 0: unspecified: group _root_
item-24 at level 3: list_item: A report must also be submitted ... d Infectious Disease Reporting System.
item-25 at level 2: paragraph:
item-26 at level 1: list: group list
item-27 at level 2: list_item:
item-27 at level 1: paragraph:
item-28 at level 1: paragraph:
item-29 at level 1: paragraph:
item-30 at level 1: paragraph:
item-31 at level 1: paragraph:
item-32 at level 1: paragraph:
item-33 at level 1: section: group textbox
item-34 at level 2: paragraph: Health Bureau:
item-35 at level 2: paragraph: Upon receiving a report from the ... rt to the Centers for Disease Control.
item-36 at level 2: list: group list
item-37 at level 3: list_item: If necessary, provide health edu ... vidual to undergo specimen collection.
item-38 at level 3: list_item: Implement appropriate epidemic p ... the Communicable Disease Control Act.
item-39 at level 2: paragraph:
item-40 at level 1: list: group list
item-41 at level 2: list_item:
item-42 at level 1: paragraph:
item-43 at level 1: section: group textbox
item-44 at level 2: paragraph: Department of Education:
item-32 at level 1: section: group textbox
item-33 at level 2: paragraph: Health Bureau:
item-34 at level 2: paragraph: Upon receiving a report from the ... rt to the Centers for Disease Control.
item-35 at level 2: list: group list
item-36 at level 3: list_item: If necessary, provide health edu ... vidual to undergo specimen collection.
item-37 at level 3: list_item: Implement appropriate epidemic p ... the Communicable Disease Control Act.
item-38 at level 2: paragraph:
item-39 at level 1: list: group list
item-40 at level 1: paragraph:
item-41 at level 1: section: group textbox
item-42 at level 2: paragraph: Department of Education:
Collabo ... vention measures at all school levels.
item-43 at level 1: paragraph:
item-44 at level 1: paragraph:
item-45 at level 1: paragraph:
item-46 at level 1: paragraph:
item-47 at level 1: paragraph:
item-48 at level 1: paragraph:
item-49 at level 1: paragraph:
item-50 at level 1: paragraph:
item-51 at level 1: paragraph:
item-52 at level 1: section: group textbox
item-53 at level 2: inline: group group
item-54 at level 3: paragraph: The Health Bureau will handle
item-55 at level 3: paragraph: reporting and specimen collection
item-56 at level 3: paragraph: .
item-57 at level 2: paragraph:
item-50 at level 1: section: group textbox
item-51 at level 2: inline: group group
item-52 at level 3: paragraph: The Health Bureau will handle
item-53 at level 3: paragraph: reporting and specimen collection
item-54 at level 3: paragraph: .
item-55 at level 2: paragraph:
item-56 at level 1: paragraph:
item-57 at level 1: paragraph:
item-58 at level 1: paragraph:
item-59 at level 1: paragraph:
item-60 at level 1: paragraph:
item-61 at level 1: section: group textbox
item-62 at level 2: paragraph: Whether the epidemic has eased.
item-63 at level 2: paragraph:
item-64 at level 1: paragraph:
item-65 at level 1: section: group textbox
item-66 at level 2: paragraph: Whether the test results are pos ... legally designated infectious disease.
item-67 at level 2: paragraph: No
item-68 at level 1: paragraph:
item-69 at level 1: paragraph:
item-70 at level 1: section: group textbox
item-71 at level 2: paragraph: Yes
item-72 at level 1: paragraph:
item-73 at level 1: section: group textbox
item-74 at level 2: paragraph: Yes
item-75 at level 1: paragraph:
item-76 at level 1: paragraph:
item-77 at level 1: section: group textbox
item-78 at level 2: paragraph: Case closed.
item-79 at level 2: paragraph:
item-80 at level 2: paragraph: The Health Bureau will carry out ... ters for Disease Control if necessary.
item-81 at level 1: paragraph:
item-82 at level 1: section: group textbox
item-83 at level 2: paragraph: No
item-84 at level 1: paragraph:
item-85 at level 1: paragraph:
item-86 at level 1: paragraph:
item-59 at level 1: section: group textbox
item-60 at level 2: paragraph: Whether the epidemic has eased.
item-61 at level 2: paragraph:
item-62 at level 1: paragraph:
item-63 at level 1: section: group textbox
item-64 at level 2: paragraph: Whether the test results are pos ... legally designated infectious disease.
item-65 at level 2: paragraph: No
item-66 at level 1: paragraph:
item-67 at level 1: paragraph:
item-68 at level 1: section: group textbox
item-69 at level 2: paragraph: Yes
item-70 at level 1: paragraph:
item-71 at level 1: section: group textbox
item-72 at level 2: paragraph: Yes
item-73 at level 1: paragraph:
item-74 at level 1: paragraph:
item-75 at level 1: section: group textbox
item-76 at level 2: paragraph: Case closed.
item-77 at level 2: paragraph:
item-78 at level 2: paragraph: The Health Bureau will carry out ... ters for Disease Control if necessary.
item-79 at level 1: paragraph:
item-80 at level 1: section: group textbox
item-81 at level 2: paragraph: No
item-82 at level 1: paragraph:
item-83 at level 1: paragraph:
item-84 at level 1: paragraph:

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "textbox",
"origin": {
"mimetype": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
@ -65,6 +65,9 @@
{
"$ref": "#/groups/6"
},
{
"$ref": "#/texts/19"
},
{
"$ref": "#/texts/20"
},
@ -77,9 +80,6 @@
{
"$ref": "#/texts/23"
},
{
"$ref": "#/texts/24"
},
{
"$ref": "#/groups/7"
},
@ -87,11 +87,17 @@
"$ref": "#/groups/9"
},
{
"$ref": "#/texts/31"
"$ref": "#/texts/29"
},
{
"$ref": "#/groups/10"
},
{
"$ref": "#/texts/31"
},
{
"$ref": "#/texts/32"
},
{
"$ref": "#/texts/33"
},
@ -107,71 +113,65 @@
{
"$ref": "#/texts/37"
},
{
"$ref": "#/texts/38"
},
{
"$ref": "#/texts/39"
},
{
"$ref": "#/groups/11"
},
{
"$ref": "#/texts/42"
},
{
"$ref": "#/texts/43"
},
{
"$ref": "#/texts/44"
},
{
"$ref": "#/texts/45"
},
{
"$ref": "#/texts/46"
},
{
"$ref": "#/groups/13"
},
{
"$ref": "#/texts/49"
"$ref": "#/texts/47"
},
{
"$ref": "#/groups/14"
},
{
"$ref": "#/texts/52"
"$ref": "#/texts/50"
},
{
"$ref": "#/texts/53"
"$ref": "#/texts/51"
},
{
"$ref": "#/groups/15"
},
{
"$ref": "#/texts/55"
"$ref": "#/texts/53"
},
{
"$ref": "#/groups/16"
},
{
"$ref": "#/texts/57"
"$ref": "#/texts/55"
},
{
"$ref": "#/texts/58"
"$ref": "#/texts/56"
},
{
"$ref": "#/groups/17"
},
{
"$ref": "#/texts/62"
"$ref": "#/texts/60"
},
{
"$ref": "#/groups/18"
},
{
"$ref": "#/texts/62"
},
{
"$ref": "#/texts/63"
},
{
"$ref": "#/texts/64"
},
{
"$ref": "#/texts/65"
},
{
"$ref": "#/texts/66"
}
],
"content_layer": "body",
@ -280,11 +280,7 @@
"parent": {
"$ref": "#/body"
},
"children": [
{
"$ref": "#/texts/19"
}
],
"children": [],
"content_layer": "body",
"name": "list",
"label": "list"
@ -296,16 +292,16 @@
},
"children": [
{
"$ref": "#/texts/25"
"$ref": "#/texts/24"
},
{
"$ref": "#/texts/26"
"$ref": "#/texts/25"
},
{
"$ref": "#/groups/8"
},
{
"$ref": "#/texts/29"
"$ref": "#/texts/28"
}
],
"content_layer": "body",
@ -319,10 +315,10 @@
},
"children": [
{
"$ref": "#/texts/27"
"$ref": "#/texts/26"
},
{
"$ref": "#/texts/28"
"$ref": "#/texts/27"
}
],
"content_layer": "body",
@ -334,11 +330,7 @@
"parent": {
"$ref": "#/body"
},
"children": [
{
"$ref": "#/texts/30"
}
],
"children": [],
"content_layer": "body",
"name": "list",
"label": "list"
@ -350,7 +342,7 @@
},
"children": [
{
"$ref": "#/texts/32"
"$ref": "#/texts/30"
}
],
"content_layer": "body",
@ -367,7 +359,7 @@
"$ref": "#/groups/12"
},
{
"$ref": "#/texts/43"
"$ref": "#/texts/41"
}
],
"content_layer": "body",
@ -380,14 +372,14 @@
"$ref": "#/groups/11"
},
"children": [
{
"$ref": "#/texts/38"
},
{
"$ref": "#/texts/39"
},
{
"$ref": "#/texts/40"
},
{
"$ref": "#/texts/41"
},
{
"$ref": "#/texts/42"
}
],
"content_layer": "body",
@ -401,10 +393,10 @@
},
"children": [
{
"$ref": "#/texts/47"
"$ref": "#/texts/45"
},
{
"$ref": "#/texts/48"
"$ref": "#/texts/46"
}
],
"content_layer": "body",
@ -418,10 +410,10 @@
},
"children": [
{
"$ref": "#/texts/50"
"$ref": "#/texts/48"
},
{
"$ref": "#/texts/51"
"$ref": "#/texts/49"
}
],
"content_layer": "body",
@ -435,7 +427,7 @@
},
"children": [
{
"$ref": "#/texts/54"
"$ref": "#/texts/52"
}
],
"content_layer": "body",
@ -449,7 +441,7 @@
},
"children": [
{
"$ref": "#/texts/56"
"$ref": "#/texts/54"
}
],
"content_layer": "body",
@ -462,14 +454,14 @@
"$ref": "#/body"
},
"children": [
{
"$ref": "#/texts/57"
},
{
"$ref": "#/texts/58"
},
{
"$ref": "#/texts/59"
},
{
"$ref": "#/texts/60"
},
{
"$ref": "#/texts/61"
}
],
"content_layer": "body",
@ -483,7 +475,7 @@
},
"children": [
{
"$ref": "#/texts/63"
"$ref": "#/texts/61"
}
],
"content_layer": "body",
@ -592,7 +584,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/6",
@ -747,7 +739,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/17",
@ -768,7 +760,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/18",
@ -785,16 +777,14 @@
{
"self_ref": "#/texts/19",
"parent": {
"$ref": "#/groups/6"
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "list_item",
"label": "paragraph",
"prov": [],
"orig": "",
"text": "",
"enumerated": false,
"marker": "-"
"text": ""
},
{
"self_ref": "#/texts/20",
@ -846,18 +836,6 @@
},
{
"self_ref": "#/texts/24",
"parent": {
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/25",
"parent": {
"$ref": "#/groups/7"
},
@ -876,7 +854,7 @@
}
},
{
"self_ref": "#/texts/26",
"self_ref": "#/texts/25",
"parent": {
"$ref": "#/groups/7"
},
@ -895,7 +873,7 @@
}
},
{
"self_ref": "#/texts/27",
"self_ref": "#/texts/26",
"parent": {
"$ref": "#/groups/8"
},
@ -913,10 +891,10 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/28",
"self_ref": "#/texts/27",
"parent": {
"$ref": "#/groups/8"
},
@ -934,10 +912,10 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/29",
"self_ref": "#/texts/28",
"parent": {
"$ref": "#/groups/7"
},
@ -949,21 +927,7 @@
"text": ""
},
{
"self_ref": "#/texts/30",
"parent": {
"$ref": "#/groups/9"
},
"children": [],
"content_layer": "body",
"label": "list_item",
"prov": [],
"orig": "",
"text": "",
"enumerated": false,
"marker": "-"
},
{
"self_ref": "#/texts/31",
"self_ref": "#/texts/29",
"parent": {
"$ref": "#/body"
},
@ -975,7 +939,7 @@
"text": ""
},
{
"self_ref": "#/texts/32",
"self_ref": "#/texts/30",
"parent": {
"$ref": "#/groups/10"
},
@ -993,6 +957,30 @@
"script": "baseline"
}
},
{
"self_ref": "#/texts/31",
"parent": {
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/32",
"parent": {
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/33",
"parent": {
@ -1055,30 +1043,6 @@
},
{
"self_ref": "#/texts/38",
"parent": {
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/39",
"parent": {
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/40",
"parent": {
"$ref": "#/groups/12"
},
@ -1097,7 +1061,7 @@
}
},
{
"self_ref": "#/texts/41",
"self_ref": "#/texts/39",
"parent": {
"$ref": "#/groups/12"
},
@ -1116,7 +1080,7 @@
}
},
{
"self_ref": "#/texts/42",
"self_ref": "#/texts/40",
"parent": {
"$ref": "#/groups/12"
},
@ -1135,7 +1099,7 @@
}
},
{
"self_ref": "#/texts/43",
"self_ref": "#/texts/41",
"parent": {
"$ref": "#/groups/11"
},
@ -1146,6 +1110,30 @@
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/42",
"parent": {
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/43",
"parent": {
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/44",
"parent": {
@ -1160,30 +1148,6 @@
},
{
"self_ref": "#/texts/45",
"parent": {
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/46",
"parent": {
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/47",
"parent": {
"$ref": "#/groups/13"
},
@ -1202,7 +1166,7 @@
}
},
{
"self_ref": "#/texts/48",
"self_ref": "#/texts/46",
"parent": {
"$ref": "#/groups/13"
},
@ -1214,7 +1178,7 @@
"text": ""
},
{
"self_ref": "#/texts/49",
"self_ref": "#/texts/47",
"parent": {
"$ref": "#/body"
},
@ -1226,7 +1190,7 @@
"text": ""
},
{
"self_ref": "#/texts/50",
"self_ref": "#/texts/48",
"parent": {
"$ref": "#/groups/14"
},
@ -1245,7 +1209,7 @@
}
},
{
"self_ref": "#/texts/51",
"self_ref": "#/texts/49",
"parent": {
"$ref": "#/groups/14"
},
@ -1264,7 +1228,7 @@
}
},
{
"self_ref": "#/texts/52",
"self_ref": "#/texts/50",
"parent": {
"$ref": "#/body"
},
@ -1275,6 +1239,37 @@
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/51",
"parent": {
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/52",
"parent": {
"$ref": "#/groups/15"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "Yes",
"text": "Yes",
"formatting": {
"bold": false,
"italic": false,
"underline": false,
"strikethrough": false,
"script": "baseline"
}
},
{
"self_ref": "#/texts/53",
"parent": {
@ -1290,7 +1285,7 @@
{
"self_ref": "#/texts/54",
"parent": {
"$ref": "#/groups/15"
"$ref": "#/groups/16"
},
"children": [],
"content_layer": "body",
@ -1321,48 +1316,17 @@
{
"self_ref": "#/texts/56",
"parent": {
"$ref": "#/groups/16"
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "Yes",
"text": "Yes",
"formatting": {
"bold": false,
"italic": false,
"underline": false,
"strikethrough": false,
"script": "baseline"
}
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/57",
"parent": {
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/58",
"parent": {
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/59",
"parent": {
"$ref": "#/groups/17"
},
@ -1381,7 +1345,7 @@
}
},
{
"self_ref": "#/texts/60",
"self_ref": "#/texts/58",
"parent": {
"$ref": "#/groups/17"
},
@ -1393,7 +1357,7 @@
"text": ""
},
{
"self_ref": "#/texts/61",
"self_ref": "#/texts/59",
"parent": {
"$ref": "#/groups/17"
},
@ -1411,6 +1375,37 @@
"script": "baseline"
}
},
{
"self_ref": "#/texts/60",
"parent": {
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/61",
"parent": {
"$ref": "#/groups/18"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "No",
"text": "No",
"formatting": {
"bold": false,
"italic": false,
"underline": false,
"strikethrough": false,
"script": "baseline"
}
},
{
"self_ref": "#/texts/62",
"parent": {
@ -1426,21 +1421,14 @@
{
"self_ref": "#/texts/63",
"parent": {
"$ref": "#/groups/18"
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "No",
"text": "No",
"formatting": {
"bold": false,
"italic": false,
"underline": false,
"strikethrough": false,
"script": "baseline"
}
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/64",
@ -1453,30 +1441,6 @@
"prov": [],
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/65",
"parent": {
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "",
"text": ""
},
{
"self_ref": "#/texts/66",
"parent": {
"$ref": "#/body"
},
"children": [],
"content_layer": "body",
"label": "paragraph",
"prov": [],
"orig": "",
"text": ""
}
],
"pictures": [],

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "unit_test_01",
"origin": {
"mimetype": "text/html",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "unit_test_formatting",
"origin": {
"mimetype": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
@ -429,7 +429,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/14",
@ -450,7 +450,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/15",
@ -471,7 +471,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/16",
@ -489,7 +489,7 @@
"orig": "",
"text": "",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/17",
@ -583,7 +583,7 @@
"orig": "",
"text": "",
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/22",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "unit_test_headers",
"origin": {
"mimetype": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "unit_test_headers_numbered",
"origin": {
"mimetype": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "unit_test_lists",
"origin": {
"mimetype": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
@ -456,7 +456,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/9",
@ -477,7 +477,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/10",
@ -498,7 +498,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/11",
@ -551,7 +551,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/14",
@ -572,7 +572,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/15",
@ -593,7 +593,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/16",
@ -646,7 +646,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/19",
@ -667,7 +667,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/20",
@ -688,7 +688,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/21",
@ -709,7 +709,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/22",
@ -730,7 +730,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/23",
@ -751,7 +751,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/24",
@ -804,7 +804,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/27",
@ -825,7 +825,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/28",
@ -846,7 +846,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/29",
@ -899,7 +899,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/32",
@ -920,7 +920,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/33",
@ -941,7 +941,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/34",
@ -962,7 +962,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/35",
@ -1021,7 +1021,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/38",
@ -1042,7 +1042,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/39",
@ -1063,7 +1063,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/40",
@ -1084,7 +1084,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/41",
@ -1105,7 +1105,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/42",
@ -1126,7 +1126,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/43",

View File

@ -302,7 +302,7 @@ item-0 at level 0: unspecified: group _root_
item-288 at level 4: list_item: Rubber duck
item-289 at level 2: section_header: Notes
item-290 at level 3: section_header: Citations
item-291 at level 4: ordered_list: group ordered list
item-291 at level 4: list: group ordered list
item-292 at level 5: list_item: ^ "Duckling". The American Herit ... n Company. 2006. Retrieved 2015-05-22.
item-293 at level 5: list_item: ^ "Duckling". Kernerman English ... Ltd. 20002006. Retrieved 2015-05-22.
item-294 at level 5: list_item: ^ Dohner, Janet Vorwald (2001). ... University Press. ISBN 978-0300138139.

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "word_image_anchors",
"origin": {
"mimetype": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "word_sample",
"origin": {
"mimetype": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
@ -243,7 +243,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/7",
@ -264,7 +264,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/8",
@ -285,7 +285,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/9",
@ -325,7 +325,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/11",
@ -346,7 +346,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/12",
@ -367,7 +367,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/13",
@ -530,7 +530,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/21",
@ -551,7 +551,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
},
{
"self_ref": "#/texts/22",
@ -572,7 +572,7 @@
"script": "baseline"
},
"enumerated": false,
"marker": "-"
"marker": ""
}
],
"pictures": [

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "word_tables",
"origin": {
"mimetype": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",

View File

@ -13,5 +13,9 @@
<li>First item in ordered list</li>
<li>Second item in ordered list</li>
</ol>
<ol start="42">
<li>First item in ordered list with start</li>
<li>Second item in ordered list with start</li>
</ol>
</body>
</html>

View File

@ -11,8 +11,22 @@ Create your feature branch: `git checkout -b feature/AmazingFeature`.
3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request
6. **Whole list item has same formatting**
7. List item has *mixed or partial* formatting
## *Second* section <!-- inline groups in headings not yet supported by serializers -->
# *Whole heading is italic*
- **First**: Lorem ipsum.
- **Second**: Dolor `sit` amet.
Some *`formatted_code`*
## *Partially formatted* heading to_escape `not_to_escape`
[$$E=mc^2$$](https://en.wikipedia.org/wiki/Albert_Einstein)
## Table Heading
| **Bold Heading** | *Italic Heading* |
|------------------|------------------|
| data a | data b |

View File

@ -1,6 +1,6 @@
{
"schema_name": "DoclingDocument",
"version": "1.4.0",
"version": "1.5.0",
"name": "webp-test",
"origin": {
"mimetype": "application/pdf",

Some files were not shown because too many files have changed in this diff Show More