ci: add coverage and ruff (#1383)

* add coverage calculation and push

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* new codecov version and usage of token

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* enable ruff formatter instead of black and isort

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* apply ruff lint fixes

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* apply ruff unsafe fixes

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add removed imports

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* runs 1 on linter issues

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* finalize linter fixes

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* Update pyproject.toml

Co-authored-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>
Signed-off-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>

---------

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Signed-off-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>
Co-authored-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>
This commit is contained in:
Michele Dolfi
2025-04-14 18:01:26 +02:00
committed by GitHub
parent 293c28ca7c
commit 5458a88464
104 changed files with 665 additions and 633 deletions

View File

@@ -2,7 +2,6 @@ from pathlib import Path
from docling_core.types.doc import PictureClassificationData
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.datamodel.base_models import InputFormat
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import PdfPipelineOptions
@@ -11,7 +10,6 @@ from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline
def get_converter():
pipeline_options = PdfPipelineOptions()
pipeline_options.generate_page_images = True
@@ -49,32 +47,32 @@ def test_picture_classifier():
res = results[0]
assert len(res.annotations) == 1
assert type(res.annotations[0]) == PictureClassificationData
assert isinstance(res.annotations[0], PictureClassificationData)
classification_data = res.annotations[0]
assert classification_data.provenance == "DocumentPictureClassifier"
assert (
len(classification_data.predicted_classes) == 16
), "Number of predicted classes is not equal to 16"
assert len(classification_data.predicted_classes) == 16, (
"Number of predicted classes is not equal to 16"
)
confidences = [pred.confidence for pred in classification_data.predicted_classes]
assert confidences == sorted(
confidences, reverse=True
), "Predictions are not sorted in descending order of confidence"
assert (
classification_data.predicted_classes[0].class_name == "bar_chart"
), "The prediction is wrong for the bar chart image."
assert confidences == sorted(confidences, reverse=True), (
"Predictions are not sorted in descending order of confidence"
)
assert classification_data.predicted_classes[0].class_name == "bar_chart", (
"The prediction is wrong for the bar chart image."
)
res = results[1]
assert len(res.annotations) == 1
assert type(res.annotations[0]) == PictureClassificationData
assert isinstance(res.annotations[0], PictureClassificationData)
classification_data = res.annotations[0]
assert classification_data.provenance == "DocumentPictureClassifier"
assert (
len(classification_data.predicted_classes) == 16
), "Number of predicted classes is not equal to 16"
assert len(classification_data.predicted_classes) == 16, (
"Number of predicted classes is not equal to 16"
)
confidences = [pred.confidence for pred in classification_data.predicted_classes]
assert confidences == sorted(
confidences, reverse=True
), "Predictions are not sorted in descending order of confidence"
assert (
classification_data.predicted_classes[0].class_name == "map"
), "The prediction is wrong for the bar chart image."
assert confidences == sorted(confidences, reverse=True), (
"Predictions are not sorted in descending order of confidence"
)
assert classification_data.predicted_classes[0].class_name == "map", (
"The prediction is wrong for the bar chart image."
)