move more argument to options and simplify model init

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
Michele Dolfi 2025-06-01 18:49:00 +02:00
parent 3ff1712787
commit 5d21153948
7 changed files with 91 additions and 103 deletions

View File

@ -19,8 +19,8 @@ from typing_extensions import deprecated
# Import the following for backwards compatibility
from docling.datamodel.pipeline_options_vlm_model import (
ApiVlmOptions,
HuggingFaceVlmOptions,
InferenceFramework,
InlineVlmOptions,
ResponseFormat,
)
from docling.datamodel.vlm_model_spec import (
@ -317,7 +317,7 @@ class VlmPipelineOptions(PaginatedPipelineOptions):
False # (To be used with vlms, or other generative models)
)
# If True, text from backend will be used instead of generated text
vlm_options: Union[HuggingFaceVlmOptions, ApiVlmOptions] = (
vlm_options: Union[InlineVlmOptions, ApiVlmOptions] = (
smoldocling_vlm_conversion_options
)

View File

@ -2,6 +2,7 @@ from enum import Enum
from typing import Any, Dict, Literal
from pydantic import AnyUrl, BaseModel
from typing_extensions import deprecated
class BaseVlmOptions(BaseModel):
@ -17,15 +18,16 @@ class ResponseFormat(str, Enum):
class InferenceFramework(str, Enum):
MLX = "mlx"
TRANSFORMERS = "transformers"
TRANSFORMERS = "transformers" # TODO: how to flag this as outdated?
TRANSFORMERS_VISION2SEQ = "transformers-vision2seq"
TRANSFORMERS_CAUSALLM = "transformers-causallm"
class HuggingFaceVlmOptions(BaseVlmOptions):
kind: Literal["hf_model_options"] = "hf_model_options"
class InlineVlmOptions(BaseVlmOptions):
kind: Literal["inline_model_options"] = "inline_model_options"
repo_id: str
trust_remote_code: bool = False
load_in_8bit: bool = True
llm_int8_threshold: float = 6.0
quantized: bool = False
@ -46,6 +48,11 @@ class HuggingFaceVlmOptions(BaseVlmOptions):
return self.repo_id.replace("/", "--")
@deprecated("Use InlineVlmOptions instead.")
class HuggingFaceVlmOptions(InlineVlmOptions):
pass
class ApiVlmOptions(BaseVlmOptions):
kind: Literal["api_model_options"] = "api_model_options"

View File

@ -7,8 +7,8 @@ from pydantic import (
from docling.datamodel.pipeline_options_vlm_model import (
ApiVlmOptions,
HuggingFaceVlmOptions,
InferenceFramework,
InlineVlmOptions,
ResponseFormat,
)
@ -16,7 +16,7 @@ _log = logging.getLogger(__name__)
# SmolDocling
SMOLDOCLING_MLX = HuggingFaceVlmOptions(
SMOLDOCLING_MLX = InlineVlmOptions(
repo_id="ds4sd/SmolDocling-256M-preview-mlx-bf16",
prompt="Convert this page to docling.",
response_format=ResponseFormat.DOCTAGS,
@ -25,7 +25,7 @@ SMOLDOCLING_MLX = HuggingFaceVlmOptions(
temperature=0.0,
)
SMOLDOCLING_TRANSFORMERS = HuggingFaceVlmOptions(
SMOLDOCLING_TRANSFORMERS = InlineVlmOptions(
repo_id="ds4sd/SmolDocling-256M-preview",
prompt="Convert this page to docling.",
response_format=ResponseFormat.DOCTAGS,
@ -35,7 +35,7 @@ SMOLDOCLING_TRANSFORMERS = HuggingFaceVlmOptions(
)
# GraniteVision
GRANITE_VISION_TRANSFORMERS = HuggingFaceVlmOptions(
GRANITE_VISION_TRANSFORMERS = InlineVlmOptions(
repo_id="ibm-granite/granite-vision-3.2-2b",
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
response_format=ResponseFormat.MARKDOWN,
@ -55,7 +55,7 @@ GRANITE_VISION_OLLAMA = ApiVlmOptions(
)
# Pixtral
PIXTRAL_12B_TRANSFORMERS = HuggingFaceVlmOptions(
PIXTRAL_12B_TRANSFORMERS = InlineVlmOptions(
repo_id="mistral-community/pixtral-12b",
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
response_format=ResponseFormat.MARKDOWN,
@ -64,7 +64,7 @@ PIXTRAL_12B_TRANSFORMERS = HuggingFaceVlmOptions(
temperature=0.0,
)
PIXTRAL_12B_MLX = HuggingFaceVlmOptions(
PIXTRAL_12B_MLX = InlineVlmOptions(
repo_id="mlx-community/pixtral-12b-bf16",
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
response_format=ResponseFormat.MARKDOWN,
@ -74,7 +74,7 @@ PIXTRAL_12B_MLX = HuggingFaceVlmOptions(
)
# Phi4
PHI4_TRANSFORMERS = HuggingFaceVlmOptions(
PHI4_TRANSFORMERS = InlineVlmOptions(
repo_id="microsoft/Phi-4-multimodal-instruct",
prompt="Convert this page to MarkDown. Do not miss any text and only output the bare markdown",
response_format=ResponseFormat.MARKDOWN,
@ -84,7 +84,7 @@ PHI4_TRANSFORMERS = HuggingFaceVlmOptions(
)
# Qwen
QWEN25_VL_3B_MLX = HuggingFaceVlmOptions(
QWEN25_VL_3B_MLX = InlineVlmOptions(
repo_id="mlx-community/Qwen2.5-VL-3B-Instruct-bf16",
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
response_format=ResponseFormat.MARKDOWN,
@ -94,7 +94,7 @@ QWEN25_VL_3B_MLX = HuggingFaceVlmOptions(
)
# Gemma-3
GEMMA3_12B_MLX = HuggingFaceVlmOptions(
GEMMA3_12B_MLX = InlineVlmOptions(
repo_id="mlx-community/gemma-3-12b-it-bf16",
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
response_format=ResponseFormat.MARKDOWN,
@ -103,7 +103,7 @@ GEMMA3_12B_MLX = HuggingFaceVlmOptions(
temperature=0.0,
)
GEMMA3_27B_MLX = HuggingFaceVlmOptions(
GEMMA3_27B_MLX = InlineVlmOptions(
repo_id="mlx-community/gemma-3-27b-it-bf16",
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
response_format=ResponseFormat.MARKDOWN,

View File

@ -9,7 +9,7 @@ from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
AcceleratorOptions,
)
from docling.datamodel.pipeline_options_vlm_model import HuggingFaceVlmOptions
from docling.datamodel.pipeline_options_vlm_model import InlineVlmOptions
from docling.models.base_model import BasePageModel
from docling.models.hf_vlm_model import HuggingFaceVlmModel
from docling.utils.accelerator_utils import decide_device
@ -24,12 +24,10 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
enabled: bool,
artifacts_path: Optional[Path],
accelerator_options: AcceleratorOptions,
vlm_options: HuggingFaceVlmOptions,
vlm_options: InlineVlmOptions,
):
self.enabled = enabled
self.trust_remote_code = True
self.vlm_options = vlm_options
if self.enabled:
@ -58,51 +56,33 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
elif (artifacts_path / repo_cache_folder).exists():
artifacts_path = artifacts_path / repo_cache_folder
self.param_question = vlm_options.prompt # "Perform Layout Analysis."
self.param_quantization_config = BitsAndBytesConfig(
load_in_8bit=vlm_options.load_in_8bit, # True,
llm_int8_threshold=vlm_options.llm_int8_threshold, # 6.0
)
self.param_quantized = vlm_options.quantized # False
self.param_quantization_config: Optional[BitsAndBytesConfig] = None
if vlm_options.quantized:
self.param_quantization_config = BitsAndBytesConfig(
load_in_8bit=vlm_options.load_in_8bit,
llm_int8_threshold=vlm_options.llm_int8_threshold,
)
self.processor = AutoProcessor.from_pretrained(
artifacts_path,
trust_remote_code=self.trust_remote_code,
trust_remote_code=vlm_options.trust_remote_code,
)
self.vlm_model = AutoModelForCausalLM.from_pretrained(
artifacts_path,
device_map=self.device,
torch_dtype="auto",
quantization_config=self.param_quantization_config,
_attn_implementation=(
"flash_attention_2"
if self.device.startswith("cuda")
and accelerator_options.cuda_use_flash_attention2
else "eager"
),
trust_remote_code=vlm_options.trust_remote_code,
)
if self.param_quantized:
print("using quantized")
self.vlm_model = AutoModelForCausalLM.from_pretrained(
artifacts_path,
device_map=self.device,
torch_dtype="auto",
quantization_config=self.param_quantization_config,
_attn_implementation=(
"flash_attention_2"
if self.device.startswith("cuda")
and accelerator_options.cuda_use_flash_attention2
else "eager"
),
trust_remote_code=self.trust_remote_code,
) # .to(self.device)
else:
print("using original")
self.vlm_model = AutoModelForCausalLM.from_pretrained(
artifacts_path,
device_map=self.device,
torch_dtype="auto", # torch.bfloat16,
_attn_implementation=(
"flash_attention_2"
if self.device.startswith("cuda")
and accelerator_options.cuda_use_flash_attention2
else "eager"
),
trust_remote_code=self.trust_remote_code,
) # .to(self.device)
model_path = artifacts_path
# Load generation config
self.generation_config = GenerationConfig.from_pretrained(model_path)
self.generation_config = GenerationConfig.from_pretrained(artifacts_path)
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
@ -161,6 +141,7 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
def formulate_prompt(self) -> str:
"""Formulate a prompt for the VLM."""
if self.vlm_options.repo_id == "microsoft/Phi-4-multimodal-instruct":
_log.debug("Using specialized prompt for Phi-4")
# more info here: https://huggingface.co/microsoft/Phi-4-multimodal-instruct#loading-the-model-locally
user_prompt = "<|user|>"
@ -171,7 +152,22 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
_log.debug(f"prompt for {self.vlm_options.repo_id}: {prompt}")
return prompt
else:
raise ValueError(f"No prompt template for {self.vlm_options.repo_id}")
return ""
_log.debug("Using default prompt for CasualLM using apply_chat_template")
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "This is a page from a document.",
},
{"type": "image"},
{"type": "text", "text": self.vlm_options.prompt},
],
}
]
prompt = self.processor.apply_chat_template(
messages, add_generation_prompt=False
)
return prompt

View File

@ -9,7 +9,7 @@ from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
AcceleratorOptions,
)
from docling.datamodel.pipeline_options_vlm_model import HuggingFaceVlmOptions
from docling.datamodel.pipeline_options_vlm_model import InlineVlmOptions
from docling.models.base_model import BasePageModel
from docling.models.hf_vlm_model import HuggingFaceVlmModel
from docling.utils.accelerator_utils import decide_device
@ -24,7 +24,7 @@ class HuggingFaceVlmModel_AutoModelForVision2Seq(BasePageModel):
enabled: bool,
artifacts_path: Optional[Path],
accelerator_options: AcceleratorOptions,
vlm_options: HuggingFaceVlmOptions,
vlm_options: InlineVlmOptions,
):
self.enabled = enabled
@ -57,45 +57,29 @@ class HuggingFaceVlmModel_AutoModelForVision2Seq(BasePageModel):
elif (artifacts_path / repo_cache_folder).exists():
artifacts_path = artifacts_path / repo_cache_folder
# self.param_question = vlm_options.prompt # "Perform Layout Analysis."
self.param_quantization_config = BitsAndBytesConfig(
load_in_8bit=vlm_options.load_in_8bit, # True,
llm_int8_threshold=vlm_options.llm_int8_threshold, # 6.0
)
self.param_quantized = vlm_options.quantized # False
self.param_quantization_config: Optional[BitsAndBytesConfig] = None
if vlm_options.quantized:
self.param_quantization_config = BitsAndBytesConfig(
load_in_8bit=vlm_options.load_in_8bit,
llm_int8_threshold=vlm_options.llm_int8_threshold,
)
self.processor = AutoProcessor.from_pretrained(
artifacts_path,
# trust_remote_code=True,
trust_remote_code=vlm_options.trust_remote_code,
)
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
artifacts_path,
device_map=self.device,
# torch_dtype=torch.bfloat16,
_attn_implementation=(
"flash_attention_2"
if self.device.startswith("cuda")
and accelerator_options.cuda_use_flash_attention2
else "eager"
),
trust_remote_code=vlm_options.trust_remote_code,
)
if not self.param_quantized:
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
artifacts_path,
device_map=self.device,
# torch_dtype=torch.bfloat16,
_attn_implementation=(
"flash_attention_2"
if self.device.startswith("cuda")
and accelerator_options.cuda_use_flash_attention2
else "eager"
),
# trust_remote_code=True,
) # .to(self.device)
else:
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
artifacts_path,
device_map=self.device,
torch_dtype="auto",
quantization_config=self.param_quantization_config,
_attn_implementation=(
"flash_attention_2"
if self.device.startswith("cuda")
and accelerator_options.cuda_use_flash_attention2
else "eager"
),
# trust_remote_code=True,
) # .to(self.device)
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]

View File

@ -9,7 +9,7 @@ from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
AcceleratorOptions,
)
from docling.datamodel.pipeline_options_vlm_model import HuggingFaceVlmOptions
from docling.datamodel.pipeline_options_vlm_model import InlineVlmOptions
from docling.models.base_model import BasePageModel
from docling.models.hf_vlm_model import HuggingFaceVlmModel
from docling.utils.profiling import TimeRecorder
@ -23,7 +23,7 @@ class HuggingFaceMlxModel(BasePageModel):
enabled: bool,
artifacts_path: Optional[Path],
accelerator_options: AcceleratorOptions,
vlm_options: HuggingFaceVlmOptions,
vlm_options: InlineVlmOptions,
):
self.enabled = enabled

View File

@ -31,8 +31,8 @@ from docling.datamodel.pipeline_options import (
)
from docling.datamodel.pipeline_options_vlm_model import (
ApiVlmOptions,
HuggingFaceVlmOptions,
InferenceFramework,
InlineVlmOptions,
ResponseFormat,
)
from docling.datamodel.settings import settings
@ -86,8 +86,8 @@ class VlmPipeline(PaginatedPipeline):
vlm_options=cast(ApiVlmOptions, self.pipeline_options.vlm_options),
),
]
elif isinstance(self.pipeline_options.vlm_options, HuggingFaceVlmOptions):
vlm_options = cast(HuggingFaceVlmOptions, self.pipeline_options.vlm_options)
elif isinstance(self.pipeline_options.vlm_options, InlineVlmOptions):
vlm_options = cast(InlineVlmOptions, self.pipeline_options.vlm_options)
if vlm_options.inference_framework == InferenceFramework.MLX:
self.build_pipe = [
HuggingFaceMlxModel(
@ -100,6 +100,7 @@ class VlmPipeline(PaginatedPipeline):
elif (
vlm_options.inference_framework
== InferenceFramework.TRANSFORMERS_VISION2SEQ
or vlm_options.inference_framework == InferenceFramework.TRANSFORMERS
):
self.build_pipe = [
HuggingFaceVlmModel_AutoModelForVision2Seq(