mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-26 20:14:47 +00:00
move more argument to options and simplify model init
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
parent
3ff1712787
commit
5d21153948
@ -19,8 +19,8 @@ from typing_extensions import deprecated
|
|||||||
# Import the following for backwards compatibility
|
# Import the following for backwards compatibility
|
||||||
from docling.datamodel.pipeline_options_vlm_model import (
|
from docling.datamodel.pipeline_options_vlm_model import (
|
||||||
ApiVlmOptions,
|
ApiVlmOptions,
|
||||||
HuggingFaceVlmOptions,
|
|
||||||
InferenceFramework,
|
InferenceFramework,
|
||||||
|
InlineVlmOptions,
|
||||||
ResponseFormat,
|
ResponseFormat,
|
||||||
)
|
)
|
||||||
from docling.datamodel.vlm_model_spec import (
|
from docling.datamodel.vlm_model_spec import (
|
||||||
@ -317,7 +317,7 @@ class VlmPipelineOptions(PaginatedPipelineOptions):
|
|||||||
False # (To be used with vlms, or other generative models)
|
False # (To be used with vlms, or other generative models)
|
||||||
)
|
)
|
||||||
# If True, text from backend will be used instead of generated text
|
# If True, text from backend will be used instead of generated text
|
||||||
vlm_options: Union[HuggingFaceVlmOptions, ApiVlmOptions] = (
|
vlm_options: Union[InlineVlmOptions, ApiVlmOptions] = (
|
||||||
smoldocling_vlm_conversion_options
|
smoldocling_vlm_conversion_options
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -2,6 +2,7 @@ from enum import Enum
|
|||||||
from typing import Any, Dict, Literal
|
from typing import Any, Dict, Literal
|
||||||
|
|
||||||
from pydantic import AnyUrl, BaseModel
|
from pydantic import AnyUrl, BaseModel
|
||||||
|
from typing_extensions import deprecated
|
||||||
|
|
||||||
|
|
||||||
class BaseVlmOptions(BaseModel):
|
class BaseVlmOptions(BaseModel):
|
||||||
@ -17,15 +18,16 @@ class ResponseFormat(str, Enum):
|
|||||||
|
|
||||||
class InferenceFramework(str, Enum):
|
class InferenceFramework(str, Enum):
|
||||||
MLX = "mlx"
|
MLX = "mlx"
|
||||||
TRANSFORMERS = "transformers"
|
TRANSFORMERS = "transformers" # TODO: how to flag this as outdated?
|
||||||
TRANSFORMERS_VISION2SEQ = "transformers-vision2seq"
|
TRANSFORMERS_VISION2SEQ = "transformers-vision2seq"
|
||||||
TRANSFORMERS_CAUSALLM = "transformers-causallm"
|
TRANSFORMERS_CAUSALLM = "transformers-causallm"
|
||||||
|
|
||||||
|
|
||||||
class HuggingFaceVlmOptions(BaseVlmOptions):
|
class InlineVlmOptions(BaseVlmOptions):
|
||||||
kind: Literal["hf_model_options"] = "hf_model_options"
|
kind: Literal["inline_model_options"] = "inline_model_options"
|
||||||
|
|
||||||
repo_id: str
|
repo_id: str
|
||||||
|
trust_remote_code: bool = False
|
||||||
load_in_8bit: bool = True
|
load_in_8bit: bool = True
|
||||||
llm_int8_threshold: float = 6.0
|
llm_int8_threshold: float = 6.0
|
||||||
quantized: bool = False
|
quantized: bool = False
|
||||||
@ -46,6 +48,11 @@ class HuggingFaceVlmOptions(BaseVlmOptions):
|
|||||||
return self.repo_id.replace("/", "--")
|
return self.repo_id.replace("/", "--")
|
||||||
|
|
||||||
|
|
||||||
|
@deprecated("Use InlineVlmOptions instead.")
|
||||||
|
class HuggingFaceVlmOptions(InlineVlmOptions):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
class ApiVlmOptions(BaseVlmOptions):
|
class ApiVlmOptions(BaseVlmOptions):
|
||||||
kind: Literal["api_model_options"] = "api_model_options"
|
kind: Literal["api_model_options"] = "api_model_options"
|
||||||
|
|
||||||
|
@ -7,8 +7,8 @@ from pydantic import (
|
|||||||
|
|
||||||
from docling.datamodel.pipeline_options_vlm_model import (
|
from docling.datamodel.pipeline_options_vlm_model import (
|
||||||
ApiVlmOptions,
|
ApiVlmOptions,
|
||||||
HuggingFaceVlmOptions,
|
|
||||||
InferenceFramework,
|
InferenceFramework,
|
||||||
|
InlineVlmOptions,
|
||||||
ResponseFormat,
|
ResponseFormat,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -16,7 +16,7 @@ _log = logging.getLogger(__name__)
|
|||||||
|
|
||||||
|
|
||||||
# SmolDocling
|
# SmolDocling
|
||||||
SMOLDOCLING_MLX = HuggingFaceVlmOptions(
|
SMOLDOCLING_MLX = InlineVlmOptions(
|
||||||
repo_id="ds4sd/SmolDocling-256M-preview-mlx-bf16",
|
repo_id="ds4sd/SmolDocling-256M-preview-mlx-bf16",
|
||||||
prompt="Convert this page to docling.",
|
prompt="Convert this page to docling.",
|
||||||
response_format=ResponseFormat.DOCTAGS,
|
response_format=ResponseFormat.DOCTAGS,
|
||||||
@ -25,7 +25,7 @@ SMOLDOCLING_MLX = HuggingFaceVlmOptions(
|
|||||||
temperature=0.0,
|
temperature=0.0,
|
||||||
)
|
)
|
||||||
|
|
||||||
SMOLDOCLING_TRANSFORMERS = HuggingFaceVlmOptions(
|
SMOLDOCLING_TRANSFORMERS = InlineVlmOptions(
|
||||||
repo_id="ds4sd/SmolDocling-256M-preview",
|
repo_id="ds4sd/SmolDocling-256M-preview",
|
||||||
prompt="Convert this page to docling.",
|
prompt="Convert this page to docling.",
|
||||||
response_format=ResponseFormat.DOCTAGS,
|
response_format=ResponseFormat.DOCTAGS,
|
||||||
@ -35,7 +35,7 @@ SMOLDOCLING_TRANSFORMERS = HuggingFaceVlmOptions(
|
|||||||
)
|
)
|
||||||
|
|
||||||
# GraniteVision
|
# GraniteVision
|
||||||
GRANITE_VISION_TRANSFORMERS = HuggingFaceVlmOptions(
|
GRANITE_VISION_TRANSFORMERS = InlineVlmOptions(
|
||||||
repo_id="ibm-granite/granite-vision-3.2-2b",
|
repo_id="ibm-granite/granite-vision-3.2-2b",
|
||||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
|
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
|
||||||
response_format=ResponseFormat.MARKDOWN,
|
response_format=ResponseFormat.MARKDOWN,
|
||||||
@ -55,7 +55,7 @@ GRANITE_VISION_OLLAMA = ApiVlmOptions(
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Pixtral
|
# Pixtral
|
||||||
PIXTRAL_12B_TRANSFORMERS = HuggingFaceVlmOptions(
|
PIXTRAL_12B_TRANSFORMERS = InlineVlmOptions(
|
||||||
repo_id="mistral-community/pixtral-12b",
|
repo_id="mistral-community/pixtral-12b",
|
||||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
||||||
response_format=ResponseFormat.MARKDOWN,
|
response_format=ResponseFormat.MARKDOWN,
|
||||||
@ -64,7 +64,7 @@ PIXTRAL_12B_TRANSFORMERS = HuggingFaceVlmOptions(
|
|||||||
temperature=0.0,
|
temperature=0.0,
|
||||||
)
|
)
|
||||||
|
|
||||||
PIXTRAL_12B_MLX = HuggingFaceVlmOptions(
|
PIXTRAL_12B_MLX = InlineVlmOptions(
|
||||||
repo_id="mlx-community/pixtral-12b-bf16",
|
repo_id="mlx-community/pixtral-12b-bf16",
|
||||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
||||||
response_format=ResponseFormat.MARKDOWN,
|
response_format=ResponseFormat.MARKDOWN,
|
||||||
@ -74,7 +74,7 @@ PIXTRAL_12B_MLX = HuggingFaceVlmOptions(
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Phi4
|
# Phi4
|
||||||
PHI4_TRANSFORMERS = HuggingFaceVlmOptions(
|
PHI4_TRANSFORMERS = InlineVlmOptions(
|
||||||
repo_id="microsoft/Phi-4-multimodal-instruct",
|
repo_id="microsoft/Phi-4-multimodal-instruct",
|
||||||
prompt="Convert this page to MarkDown. Do not miss any text and only output the bare markdown",
|
prompt="Convert this page to MarkDown. Do not miss any text and only output the bare markdown",
|
||||||
response_format=ResponseFormat.MARKDOWN,
|
response_format=ResponseFormat.MARKDOWN,
|
||||||
@ -84,7 +84,7 @@ PHI4_TRANSFORMERS = HuggingFaceVlmOptions(
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Qwen
|
# Qwen
|
||||||
QWEN25_VL_3B_MLX = HuggingFaceVlmOptions(
|
QWEN25_VL_3B_MLX = InlineVlmOptions(
|
||||||
repo_id="mlx-community/Qwen2.5-VL-3B-Instruct-bf16",
|
repo_id="mlx-community/Qwen2.5-VL-3B-Instruct-bf16",
|
||||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
||||||
response_format=ResponseFormat.MARKDOWN,
|
response_format=ResponseFormat.MARKDOWN,
|
||||||
@ -94,7 +94,7 @@ QWEN25_VL_3B_MLX = HuggingFaceVlmOptions(
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Gemma-3
|
# Gemma-3
|
||||||
GEMMA3_12B_MLX = HuggingFaceVlmOptions(
|
GEMMA3_12B_MLX = InlineVlmOptions(
|
||||||
repo_id="mlx-community/gemma-3-12b-it-bf16",
|
repo_id="mlx-community/gemma-3-12b-it-bf16",
|
||||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
||||||
response_format=ResponseFormat.MARKDOWN,
|
response_format=ResponseFormat.MARKDOWN,
|
||||||
@ -103,7 +103,7 @@ GEMMA3_12B_MLX = HuggingFaceVlmOptions(
|
|||||||
temperature=0.0,
|
temperature=0.0,
|
||||||
)
|
)
|
||||||
|
|
||||||
GEMMA3_27B_MLX = HuggingFaceVlmOptions(
|
GEMMA3_27B_MLX = InlineVlmOptions(
|
||||||
repo_id="mlx-community/gemma-3-27b-it-bf16",
|
repo_id="mlx-community/gemma-3-27b-it-bf16",
|
||||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
||||||
response_format=ResponseFormat.MARKDOWN,
|
response_format=ResponseFormat.MARKDOWN,
|
||||||
|
@ -9,7 +9,7 @@ from docling.datamodel.document import ConversionResult
|
|||||||
from docling.datamodel.pipeline_options import (
|
from docling.datamodel.pipeline_options import (
|
||||||
AcceleratorOptions,
|
AcceleratorOptions,
|
||||||
)
|
)
|
||||||
from docling.datamodel.pipeline_options_vlm_model import HuggingFaceVlmOptions
|
from docling.datamodel.pipeline_options_vlm_model import InlineVlmOptions
|
||||||
from docling.models.base_model import BasePageModel
|
from docling.models.base_model import BasePageModel
|
||||||
from docling.models.hf_vlm_model import HuggingFaceVlmModel
|
from docling.models.hf_vlm_model import HuggingFaceVlmModel
|
||||||
from docling.utils.accelerator_utils import decide_device
|
from docling.utils.accelerator_utils import decide_device
|
||||||
@ -24,12 +24,10 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
|||||||
enabled: bool,
|
enabled: bool,
|
||||||
artifacts_path: Optional[Path],
|
artifacts_path: Optional[Path],
|
||||||
accelerator_options: AcceleratorOptions,
|
accelerator_options: AcceleratorOptions,
|
||||||
vlm_options: HuggingFaceVlmOptions,
|
vlm_options: InlineVlmOptions,
|
||||||
):
|
):
|
||||||
self.enabled = enabled
|
self.enabled = enabled
|
||||||
|
|
||||||
self.trust_remote_code = True
|
|
||||||
|
|
||||||
self.vlm_options = vlm_options
|
self.vlm_options = vlm_options
|
||||||
|
|
||||||
if self.enabled:
|
if self.enabled:
|
||||||
@ -58,19 +56,17 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
|||||||
elif (artifacts_path / repo_cache_folder).exists():
|
elif (artifacts_path / repo_cache_folder).exists():
|
||||||
artifacts_path = artifacts_path / repo_cache_folder
|
artifacts_path = artifacts_path / repo_cache_folder
|
||||||
|
|
||||||
self.param_question = vlm_options.prompt # "Perform Layout Analysis."
|
self.param_quantization_config: Optional[BitsAndBytesConfig] = None
|
||||||
|
if vlm_options.quantized:
|
||||||
self.param_quantization_config = BitsAndBytesConfig(
|
self.param_quantization_config = BitsAndBytesConfig(
|
||||||
load_in_8bit=vlm_options.load_in_8bit, # True,
|
load_in_8bit=vlm_options.load_in_8bit,
|
||||||
llm_int8_threshold=vlm_options.llm_int8_threshold, # 6.0
|
llm_int8_threshold=vlm_options.llm_int8_threshold,
|
||||||
)
|
)
|
||||||
self.param_quantized = vlm_options.quantized # False
|
|
||||||
|
|
||||||
self.processor = AutoProcessor.from_pretrained(
|
self.processor = AutoProcessor.from_pretrained(
|
||||||
artifacts_path,
|
artifacts_path,
|
||||||
trust_remote_code=self.trust_remote_code,
|
trust_remote_code=vlm_options.trust_remote_code,
|
||||||
)
|
)
|
||||||
if self.param_quantized:
|
|
||||||
print("using quantized")
|
|
||||||
self.vlm_model = AutoModelForCausalLM.from_pretrained(
|
self.vlm_model = AutoModelForCausalLM.from_pretrained(
|
||||||
artifacts_path,
|
artifacts_path,
|
||||||
device_map=self.device,
|
device_map=self.device,
|
||||||
@ -82,27 +78,11 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
|||||||
and accelerator_options.cuda_use_flash_attention2
|
and accelerator_options.cuda_use_flash_attention2
|
||||||
else "eager"
|
else "eager"
|
||||||
),
|
),
|
||||||
trust_remote_code=self.trust_remote_code,
|
trust_remote_code=vlm_options.trust_remote_code,
|
||||||
) # .to(self.device)
|
)
|
||||||
else:
|
|
||||||
print("using original")
|
|
||||||
self.vlm_model = AutoModelForCausalLM.from_pretrained(
|
|
||||||
artifacts_path,
|
|
||||||
device_map=self.device,
|
|
||||||
torch_dtype="auto", # torch.bfloat16,
|
|
||||||
_attn_implementation=(
|
|
||||||
"flash_attention_2"
|
|
||||||
if self.device.startswith("cuda")
|
|
||||||
and accelerator_options.cuda_use_flash_attention2
|
|
||||||
else "eager"
|
|
||||||
),
|
|
||||||
trust_remote_code=self.trust_remote_code,
|
|
||||||
) # .to(self.device)
|
|
||||||
|
|
||||||
model_path = artifacts_path
|
|
||||||
|
|
||||||
# Load generation config
|
# Load generation config
|
||||||
self.generation_config = GenerationConfig.from_pretrained(model_path)
|
self.generation_config = GenerationConfig.from_pretrained(artifacts_path)
|
||||||
|
|
||||||
def __call__(
|
def __call__(
|
||||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||||
@ -161,6 +141,7 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
|||||||
def formulate_prompt(self) -> str:
|
def formulate_prompt(self) -> str:
|
||||||
"""Formulate a prompt for the VLM."""
|
"""Formulate a prompt for the VLM."""
|
||||||
if self.vlm_options.repo_id == "microsoft/Phi-4-multimodal-instruct":
|
if self.vlm_options.repo_id == "microsoft/Phi-4-multimodal-instruct":
|
||||||
|
_log.debug("Using specialized prompt for Phi-4")
|
||||||
# more info here: https://huggingface.co/microsoft/Phi-4-multimodal-instruct#loading-the-model-locally
|
# more info here: https://huggingface.co/microsoft/Phi-4-multimodal-instruct#loading-the-model-locally
|
||||||
|
|
||||||
user_prompt = "<|user|>"
|
user_prompt = "<|user|>"
|
||||||
@ -171,7 +152,22 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
|||||||
_log.debug(f"prompt for {self.vlm_options.repo_id}: {prompt}")
|
_log.debug(f"prompt for {self.vlm_options.repo_id}: {prompt}")
|
||||||
|
|
||||||
return prompt
|
return prompt
|
||||||
else:
|
|
||||||
raise ValueError(f"No prompt template for {self.vlm_options.repo_id}")
|
|
||||||
|
|
||||||
return ""
|
_log.debug("Using default prompt for CasualLM using apply_chat_template")
|
||||||
|
messages = [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "text",
|
||||||
|
"text": "This is a page from a document.",
|
||||||
|
},
|
||||||
|
{"type": "image"},
|
||||||
|
{"type": "text", "text": self.vlm_options.prompt},
|
||||||
|
],
|
||||||
|
}
|
||||||
|
]
|
||||||
|
prompt = self.processor.apply_chat_template(
|
||||||
|
messages, add_generation_prompt=False
|
||||||
|
)
|
||||||
|
return prompt
|
||||||
|
@ -9,7 +9,7 @@ from docling.datamodel.document import ConversionResult
|
|||||||
from docling.datamodel.pipeline_options import (
|
from docling.datamodel.pipeline_options import (
|
||||||
AcceleratorOptions,
|
AcceleratorOptions,
|
||||||
)
|
)
|
||||||
from docling.datamodel.pipeline_options_vlm_model import HuggingFaceVlmOptions
|
from docling.datamodel.pipeline_options_vlm_model import InlineVlmOptions
|
||||||
from docling.models.base_model import BasePageModel
|
from docling.models.base_model import BasePageModel
|
||||||
from docling.models.hf_vlm_model import HuggingFaceVlmModel
|
from docling.models.hf_vlm_model import HuggingFaceVlmModel
|
||||||
from docling.utils.accelerator_utils import decide_device
|
from docling.utils.accelerator_utils import decide_device
|
||||||
@ -24,7 +24,7 @@ class HuggingFaceVlmModel_AutoModelForVision2Seq(BasePageModel):
|
|||||||
enabled: bool,
|
enabled: bool,
|
||||||
artifacts_path: Optional[Path],
|
artifacts_path: Optional[Path],
|
||||||
accelerator_options: AcceleratorOptions,
|
accelerator_options: AcceleratorOptions,
|
||||||
vlm_options: HuggingFaceVlmOptions,
|
vlm_options: InlineVlmOptions,
|
||||||
):
|
):
|
||||||
self.enabled = enabled
|
self.enabled = enabled
|
||||||
|
|
||||||
@ -57,18 +57,17 @@ class HuggingFaceVlmModel_AutoModelForVision2Seq(BasePageModel):
|
|||||||
elif (artifacts_path / repo_cache_folder).exists():
|
elif (artifacts_path / repo_cache_folder).exists():
|
||||||
artifacts_path = artifacts_path / repo_cache_folder
|
artifacts_path = artifacts_path / repo_cache_folder
|
||||||
|
|
||||||
# self.param_question = vlm_options.prompt # "Perform Layout Analysis."
|
self.param_quantization_config: Optional[BitsAndBytesConfig] = None
|
||||||
|
if vlm_options.quantized:
|
||||||
self.param_quantization_config = BitsAndBytesConfig(
|
self.param_quantization_config = BitsAndBytesConfig(
|
||||||
load_in_8bit=vlm_options.load_in_8bit, # True,
|
load_in_8bit=vlm_options.load_in_8bit,
|
||||||
llm_int8_threshold=vlm_options.llm_int8_threshold, # 6.0
|
llm_int8_threshold=vlm_options.llm_int8_threshold,
|
||||||
)
|
)
|
||||||
self.param_quantized = vlm_options.quantized # False
|
|
||||||
|
|
||||||
self.processor = AutoProcessor.from_pretrained(
|
self.processor = AutoProcessor.from_pretrained(
|
||||||
artifacts_path,
|
artifacts_path,
|
||||||
# trust_remote_code=True,
|
trust_remote_code=vlm_options.trust_remote_code,
|
||||||
)
|
)
|
||||||
if not self.param_quantized:
|
|
||||||
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
|
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
|
||||||
artifacts_path,
|
artifacts_path,
|
||||||
device_map=self.device,
|
device_map=self.device,
|
||||||
@ -79,23 +78,8 @@ class HuggingFaceVlmModel_AutoModelForVision2Seq(BasePageModel):
|
|||||||
and accelerator_options.cuda_use_flash_attention2
|
and accelerator_options.cuda_use_flash_attention2
|
||||||
else "eager"
|
else "eager"
|
||||||
),
|
),
|
||||||
# trust_remote_code=True,
|
trust_remote_code=vlm_options.trust_remote_code,
|
||||||
) # .to(self.device)
|
)
|
||||||
|
|
||||||
else:
|
|
||||||
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
|
|
||||||
artifacts_path,
|
|
||||||
device_map=self.device,
|
|
||||||
torch_dtype="auto",
|
|
||||||
quantization_config=self.param_quantization_config,
|
|
||||||
_attn_implementation=(
|
|
||||||
"flash_attention_2"
|
|
||||||
if self.device.startswith("cuda")
|
|
||||||
and accelerator_options.cuda_use_flash_attention2
|
|
||||||
else "eager"
|
|
||||||
),
|
|
||||||
# trust_remote_code=True,
|
|
||||||
) # .to(self.device)
|
|
||||||
|
|
||||||
def __call__(
|
def __call__(
|
||||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||||
|
@ -9,7 +9,7 @@ from docling.datamodel.document import ConversionResult
|
|||||||
from docling.datamodel.pipeline_options import (
|
from docling.datamodel.pipeline_options import (
|
||||||
AcceleratorOptions,
|
AcceleratorOptions,
|
||||||
)
|
)
|
||||||
from docling.datamodel.pipeline_options_vlm_model import HuggingFaceVlmOptions
|
from docling.datamodel.pipeline_options_vlm_model import InlineVlmOptions
|
||||||
from docling.models.base_model import BasePageModel
|
from docling.models.base_model import BasePageModel
|
||||||
from docling.models.hf_vlm_model import HuggingFaceVlmModel
|
from docling.models.hf_vlm_model import HuggingFaceVlmModel
|
||||||
from docling.utils.profiling import TimeRecorder
|
from docling.utils.profiling import TimeRecorder
|
||||||
@ -23,7 +23,7 @@ class HuggingFaceMlxModel(BasePageModel):
|
|||||||
enabled: bool,
|
enabled: bool,
|
||||||
artifacts_path: Optional[Path],
|
artifacts_path: Optional[Path],
|
||||||
accelerator_options: AcceleratorOptions,
|
accelerator_options: AcceleratorOptions,
|
||||||
vlm_options: HuggingFaceVlmOptions,
|
vlm_options: InlineVlmOptions,
|
||||||
):
|
):
|
||||||
self.enabled = enabled
|
self.enabled = enabled
|
||||||
|
|
||||||
|
@ -31,8 +31,8 @@ from docling.datamodel.pipeline_options import (
|
|||||||
)
|
)
|
||||||
from docling.datamodel.pipeline_options_vlm_model import (
|
from docling.datamodel.pipeline_options_vlm_model import (
|
||||||
ApiVlmOptions,
|
ApiVlmOptions,
|
||||||
HuggingFaceVlmOptions,
|
|
||||||
InferenceFramework,
|
InferenceFramework,
|
||||||
|
InlineVlmOptions,
|
||||||
ResponseFormat,
|
ResponseFormat,
|
||||||
)
|
)
|
||||||
from docling.datamodel.settings import settings
|
from docling.datamodel.settings import settings
|
||||||
@ -86,8 +86,8 @@ class VlmPipeline(PaginatedPipeline):
|
|||||||
vlm_options=cast(ApiVlmOptions, self.pipeline_options.vlm_options),
|
vlm_options=cast(ApiVlmOptions, self.pipeline_options.vlm_options),
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
elif isinstance(self.pipeline_options.vlm_options, HuggingFaceVlmOptions):
|
elif isinstance(self.pipeline_options.vlm_options, InlineVlmOptions):
|
||||||
vlm_options = cast(HuggingFaceVlmOptions, self.pipeline_options.vlm_options)
|
vlm_options = cast(InlineVlmOptions, self.pipeline_options.vlm_options)
|
||||||
if vlm_options.inference_framework == InferenceFramework.MLX:
|
if vlm_options.inference_framework == InferenceFramework.MLX:
|
||||||
self.build_pipe = [
|
self.build_pipe = [
|
||||||
HuggingFaceMlxModel(
|
HuggingFaceMlxModel(
|
||||||
@ -100,6 +100,7 @@ class VlmPipeline(PaginatedPipeline):
|
|||||||
elif (
|
elif (
|
||||||
vlm_options.inference_framework
|
vlm_options.inference_framework
|
||||||
== InferenceFramework.TRANSFORMERS_VISION2SEQ
|
== InferenceFramework.TRANSFORMERS_VISION2SEQ
|
||||||
|
or vlm_options.inference_framework == InferenceFramework.TRANSFORMERS
|
||||||
):
|
):
|
||||||
self.build_pipe = [
|
self.build_pipe = [
|
||||||
HuggingFaceVlmModel_AutoModelForVision2Seq(
|
HuggingFaceVlmModel_AutoModelForVision2Seq(
|
||||||
|
Loading…
Reference in New Issue
Block a user