mirror of
https://github.com/DS4SD/docling.git
synced 2025-08-01 15:02:21 +00:00
Merge branch 'main' into nli/performance_main
Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com>
This commit is contained in:
commit
6209cf3bc5
27
CHANGELOG.md
27
CHANGELOG.md
@ -1,3 +1,30 @@
|
||||
## [v2.11.0](https://github.com/DS4SD/docling/releases/tag/v2.11.0) - 2024-12-12
|
||||
|
||||
### Feature
|
||||
|
||||
* Add timeout limit to document parsing job. DS4SD#270 ([#552](https://github.com/DS4SD/docling/issues/552)) ([`3da166e`](https://github.com/DS4SD/docling/commit/3da166eafa3c119de961510341cb92397652c222))
|
||||
|
||||
### Fix
|
||||
|
||||
* Do not import python modules from deepsearch-glm ([#569](https://github.com/DS4SD/docling/issues/569)) ([`aee9c0b`](https://github.com/DS4SD/docling/commit/aee9c0b324a07190ad03ad3a6266e76c465d4cdf))
|
||||
* Handle no result from RapidOcr reader ([#558](https://github.com/DS4SD/docling/issues/558)) ([`f45499c`](https://github.com/DS4SD/docling/commit/f45499ce9349fe55538dfb36d74c395e9193d9b1))
|
||||
* Make enum serializable with human-readable value ([#555](https://github.com/DS4SD/docling/issues/555)) ([`a7df337`](https://github.com/DS4SD/docling/commit/a7df337654fa5fa7633af8740fb5e4cc4a06f250))
|
||||
|
||||
### Documentation
|
||||
|
||||
* Update chunking usage docs, minor reorg ([#550](https://github.com/DS4SD/docling/issues/550)) ([`d0c9e8e`](https://github.com/DS4SD/docling/commit/d0c9e8e508d7edef5e733be6cdea2cea0a9a0695))
|
||||
|
||||
## [v2.10.0](https://github.com/DS4SD/docling/releases/tag/v2.10.0) - 2024-12-09
|
||||
|
||||
### Feature
|
||||
|
||||
* Docling-parse v2 as default PDF backend ([#549](https://github.com/DS4SD/docling/issues/549)) ([`aca57f0`](https://github.com/DS4SD/docling/commit/aca57f0527dddcc027dc1ee840e2e492ab997170))
|
||||
|
||||
### Fix
|
||||
|
||||
* Call into docling-core for legacy document transform ([#551](https://github.com/DS4SD/docling/issues/551)) ([`7972d47`](https://github.com/DS4SD/docling/commit/7972d47f88604f02d6a32527116c4d78eb1005e2))
|
||||
* Introduce Image format options in CLI. Silence the tqdm downloading messages. ([#544](https://github.com/DS4SD/docling/issues/544)) ([`78f61a8`](https://github.com/DS4SD/docling/commit/78f61a8522d3a19ecc1d605e8441fb543ca0fa96))
|
||||
|
||||
## [v2.9.0](https://github.com/DS4SD/docling/releases/tag/v2.9.0) - 2024-12-09
|
||||
|
||||
### Feature
|
||||
|
@ -29,8 +29,10 @@ from docling.datamodel.pipeline_options import (
|
||||
AcceleratorDevice,
|
||||
AcceleratorOptions,
|
||||
EasyOcrOptions,
|
||||
OcrEngine,
|
||||
OcrMacOptions,
|
||||
OcrOptions,
|
||||
PdfBackend,
|
||||
PdfPipelineOptions,
|
||||
RapidOcrOptions,
|
||||
TableFormerMode,
|
||||
@ -70,22 +72,6 @@ def version_callback(value: bool):
|
||||
raise typer.Exit()
|
||||
|
||||
|
||||
# Define an enum for the backend options
|
||||
class PdfBackend(str, Enum):
|
||||
PYPDFIUM2 = "pypdfium2"
|
||||
DLPARSE_V1 = "dlparse_v1"
|
||||
DLPARSE_V2 = "dlparse_v2"
|
||||
|
||||
|
||||
# Define an enum for the ocr engines
|
||||
class OcrEngine(str, Enum):
|
||||
EASYOCR = "easyocr"
|
||||
TESSERACT_CLI = "tesseract_cli"
|
||||
TESSERACT = "tesseract"
|
||||
OCRMAC = "ocrmac"
|
||||
RAPIDOCR = "rapidocr"
|
||||
|
||||
|
||||
def export_documents(
|
||||
conv_results: Iterable[ConversionResult],
|
||||
output_dir: Path,
|
||||
@ -266,6 +252,13 @@ def convert(
|
||||
help="Show version information.",
|
||||
),
|
||||
] = None,
|
||||
document_timeout: Annotated[
|
||||
Optional[float],
|
||||
typer.Option(
|
||||
...,
|
||||
help="The timeout for processing each document, in seconds.",
|
||||
),
|
||||
] = None,
|
||||
num_threads: Annotated[int, typer.Option(..., help="Number of threads")] = 4,
|
||||
device: Annotated[
|
||||
AcceleratorDevice, typer.Option(..., help="Accelerator device")
|
||||
@ -355,6 +348,7 @@ def convert(
|
||||
do_ocr=ocr,
|
||||
ocr_options=ocr_options,
|
||||
do_table_structure=True,
|
||||
document_timeout=document_timeout,
|
||||
)
|
||||
pipeline_options.table_structure_options.do_cell_matching = (
|
||||
True # do_cell_matching
|
||||
|
@ -19,12 +19,12 @@ if TYPE_CHECKING:
|
||||
|
||||
|
||||
class ConversionStatus(str, Enum):
|
||||
PENDING = auto()
|
||||
STARTED = auto()
|
||||
FAILURE = auto()
|
||||
SUCCESS = auto()
|
||||
PARTIAL_SUCCESS = auto()
|
||||
SKIPPED = auto()
|
||||
PENDING = "pending"
|
||||
STARTED = "started"
|
||||
FAILURE = "failure"
|
||||
SUCCESS = "success"
|
||||
PARTIAL_SUCCESS = "partial_success"
|
||||
SKIPPED = "skipped"
|
||||
|
||||
|
||||
class InputFormat(str, Enum):
|
||||
@ -89,15 +89,15 @@ MimeTypeToFormat = {
|
||||
|
||||
|
||||
class DocInputType(str, Enum):
|
||||
PATH = auto()
|
||||
STREAM = auto()
|
||||
PATH = "path"
|
||||
STREAM = "stream"
|
||||
|
||||
|
||||
class DoclingComponentType(str, Enum):
|
||||
DOCUMENT_BACKEND = auto()
|
||||
MODEL = auto()
|
||||
DOC_ASSEMBLER = auto()
|
||||
USER_INPUT = auto()
|
||||
DOCUMENT_BACKEND = "document_backend"
|
||||
MODEL = "model"
|
||||
DOC_ASSEMBLER = "doc_assembler"
|
||||
USER_INPUT = "user_input"
|
||||
|
||||
|
||||
class ErrorItem(BaseModel):
|
||||
|
@ -33,6 +33,7 @@ from docling_core.types.legacy_doc.document import (
|
||||
from docling_core.types.legacy_doc.document import CCSFileInfoObject as DsFileInfoObject
|
||||
from docling_core.types.legacy_doc.document import ExportedCCSDocument as DsDocument
|
||||
from docling_core.utils.file import resolve_source_to_stream
|
||||
from docling_core.utils.legacy import docling_document_to_legacy
|
||||
from pydantic import BaseModel
|
||||
from typing_extensions import deprecated
|
||||
|
||||
@ -191,259 +192,7 @@ class ConversionResult(BaseModel):
|
||||
@property
|
||||
@deprecated("Use document instead.")
|
||||
def legacy_document(self):
|
||||
reverse_label_mapping = {
|
||||
DocItemLabel.CAPTION.value: "Caption",
|
||||
DocItemLabel.FOOTNOTE.value: "Footnote",
|
||||
DocItemLabel.FORMULA.value: "Formula",
|
||||
DocItemLabel.LIST_ITEM.value: "List-item",
|
||||
DocItemLabel.PAGE_FOOTER.value: "Page-footer",
|
||||
DocItemLabel.PAGE_HEADER.value: "Page-header",
|
||||
DocItemLabel.PICTURE.value: "Picture", # low threshold adjust to capture chemical structures for examples.
|
||||
DocItemLabel.SECTION_HEADER.value: "Section-header",
|
||||
DocItemLabel.TABLE.value: "Table",
|
||||
DocItemLabel.TEXT.value: "Text",
|
||||
DocItemLabel.TITLE.value: "Title",
|
||||
DocItemLabel.DOCUMENT_INDEX.value: "Document Index",
|
||||
DocItemLabel.CODE.value: "Code",
|
||||
DocItemLabel.CHECKBOX_SELECTED.value: "Checkbox-Selected",
|
||||
DocItemLabel.CHECKBOX_UNSELECTED.value: "Checkbox-Unselected",
|
||||
DocItemLabel.FORM.value: "Form",
|
||||
DocItemLabel.KEY_VALUE_REGION.value: "Key-Value Region",
|
||||
DocItemLabel.PARAGRAPH.value: "paragraph",
|
||||
}
|
||||
|
||||
title = ""
|
||||
desc = DsDocumentDescription(logs=[])
|
||||
|
||||
page_hashes = [
|
||||
PageReference(
|
||||
hash=create_hash(self.input.document_hash + ":" + str(p.page_no - 1)),
|
||||
page=p.page_no,
|
||||
model="default",
|
||||
)
|
||||
for p in self.document.pages.values()
|
||||
]
|
||||
|
||||
file_info = DsFileInfoObject(
|
||||
filename=self.input.file.name,
|
||||
document_hash=self.input.document_hash,
|
||||
num_pages=self.input.page_count,
|
||||
page_hashes=page_hashes,
|
||||
)
|
||||
|
||||
main_text = []
|
||||
tables = []
|
||||
figures = []
|
||||
equations = []
|
||||
footnotes = []
|
||||
page_headers = []
|
||||
page_footers = []
|
||||
|
||||
embedded_captions = set()
|
||||
for ix, (item, level) in enumerate(
|
||||
self.document.iterate_items(self.document.body)
|
||||
):
|
||||
|
||||
if isinstance(item, (TableItem, PictureItem)) and len(item.captions) > 0:
|
||||
caption = item.caption_text(self.document)
|
||||
if caption:
|
||||
embedded_captions.add(caption)
|
||||
|
||||
for item, level in self.document.iterate_items():
|
||||
if isinstance(item, DocItem):
|
||||
item_type = item.label
|
||||
|
||||
if isinstance(item, (TextItem, ListItem, SectionHeaderItem)):
|
||||
|
||||
if isinstance(item, ListItem) and item.marker:
|
||||
text = f"{item.marker} {item.text}"
|
||||
else:
|
||||
text = item.text
|
||||
|
||||
# Can be empty.
|
||||
prov = [
|
||||
Prov(
|
||||
bbox=p.bbox.as_tuple(),
|
||||
page=p.page_no,
|
||||
span=[0, len(item.text)],
|
||||
)
|
||||
for p in item.prov
|
||||
]
|
||||
main_text.append(
|
||||
BaseText(
|
||||
text=text,
|
||||
obj_type=layout_label_to_ds_type.get(item.label),
|
||||
name=reverse_label_mapping[item.label],
|
||||
prov=prov,
|
||||
)
|
||||
)
|
||||
|
||||
# skip captions of they are embedded in the actual
|
||||
# floating object
|
||||
if item_type == DocItemLabel.CAPTION and text in embedded_captions:
|
||||
continue
|
||||
|
||||
elif isinstance(item, TableItem) and item.data:
|
||||
index = len(tables)
|
||||
ref_str = f"#/tables/{index}"
|
||||
main_text.append(
|
||||
Ref(
|
||||
name=reverse_label_mapping[item.label],
|
||||
obj_type=layout_label_to_ds_type.get(item.label),
|
||||
ref=ref_str,
|
||||
),
|
||||
)
|
||||
|
||||
# Initialise empty table data grid (only empty cells)
|
||||
table_data = [
|
||||
[
|
||||
TableCell(
|
||||
text="",
|
||||
# bbox=[0,0,0,0],
|
||||
spans=[[i, j]],
|
||||
obj_type="body",
|
||||
)
|
||||
for j in range(item.data.num_cols)
|
||||
]
|
||||
for i in range(item.data.num_rows)
|
||||
]
|
||||
|
||||
# Overwrite cells in table data for which there is actual cell content.
|
||||
for cell in item.data.table_cells:
|
||||
for i in range(
|
||||
min(cell.start_row_offset_idx, item.data.num_rows),
|
||||
min(cell.end_row_offset_idx, item.data.num_rows),
|
||||
):
|
||||
for j in range(
|
||||
min(cell.start_col_offset_idx, item.data.num_cols),
|
||||
min(cell.end_col_offset_idx, item.data.num_cols),
|
||||
):
|
||||
celltype = "body"
|
||||
if cell.column_header:
|
||||
celltype = "col_header"
|
||||
elif cell.row_header:
|
||||
celltype = "row_header"
|
||||
elif cell.row_section:
|
||||
celltype = "row_section"
|
||||
|
||||
def make_spans(cell):
|
||||
for rspan in range(
|
||||
min(
|
||||
cell.start_row_offset_idx,
|
||||
item.data.num_rows,
|
||||
),
|
||||
min(
|
||||
cell.end_row_offset_idx, item.data.num_rows
|
||||
),
|
||||
):
|
||||
for cspan in range(
|
||||
min(
|
||||
cell.start_col_offset_idx,
|
||||
item.data.num_cols,
|
||||
),
|
||||
min(
|
||||
cell.end_col_offset_idx,
|
||||
item.data.num_cols,
|
||||
),
|
||||
):
|
||||
yield [rspan, cspan]
|
||||
|
||||
spans = list(make_spans(cell))
|
||||
table_data[i][j] = GlmTableCell(
|
||||
text=cell.text,
|
||||
bbox=(
|
||||
cell.bbox.as_tuple()
|
||||
if cell.bbox is not None
|
||||
else None
|
||||
), # check if this is bottom-left
|
||||
spans=spans,
|
||||
obj_type=celltype,
|
||||
col=j,
|
||||
row=i,
|
||||
row_header=cell.row_header,
|
||||
row_section=cell.row_section,
|
||||
col_header=cell.column_header,
|
||||
row_span=[
|
||||
cell.start_row_offset_idx,
|
||||
cell.end_row_offset_idx,
|
||||
],
|
||||
col_span=[
|
||||
cell.start_col_offset_idx,
|
||||
cell.end_col_offset_idx,
|
||||
],
|
||||
)
|
||||
|
||||
# Compute the caption
|
||||
caption = item.caption_text(self.document)
|
||||
|
||||
tables.append(
|
||||
DsSchemaTable(
|
||||
text=caption,
|
||||
num_cols=item.data.num_cols,
|
||||
num_rows=item.data.num_rows,
|
||||
obj_type=layout_label_to_ds_type.get(item.label),
|
||||
data=table_data,
|
||||
prov=[
|
||||
Prov(
|
||||
bbox=p.bbox.as_tuple(),
|
||||
page=p.page_no,
|
||||
span=[0, 0],
|
||||
)
|
||||
for p in item.prov
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
elif isinstance(item, PictureItem):
|
||||
index = len(figures)
|
||||
ref_str = f"#/figures/{index}"
|
||||
main_text.append(
|
||||
Ref(
|
||||
name=reverse_label_mapping[item.label],
|
||||
obj_type=layout_label_to_ds_type.get(item.label),
|
||||
ref=ref_str,
|
||||
),
|
||||
)
|
||||
|
||||
# Compute the caption
|
||||
caption = item.caption_text(self.document)
|
||||
|
||||
figures.append(
|
||||
Figure(
|
||||
prov=[
|
||||
Prov(
|
||||
bbox=p.bbox.as_tuple(),
|
||||
page=p.page_no,
|
||||
span=[0, len(caption)],
|
||||
)
|
||||
for p in item.prov
|
||||
],
|
||||
obj_type=layout_label_to_ds_type.get(item.label),
|
||||
text=caption,
|
||||
# data=[[]],
|
||||
)
|
||||
)
|
||||
|
||||
page_dimensions = [
|
||||
PageDimensions(page=p.page_no, height=p.size.height, width=p.size.width)
|
||||
for p in self.document.pages.values()
|
||||
]
|
||||
|
||||
ds_doc = DsDocument(
|
||||
name=title,
|
||||
description=desc,
|
||||
file_info=file_info,
|
||||
main_text=main_text,
|
||||
equations=equations,
|
||||
footnotes=footnotes,
|
||||
page_headers=page_headers,
|
||||
page_footers=page_footers,
|
||||
tables=tables,
|
||||
figures=figures,
|
||||
page_dimensions=page_dimensions,
|
||||
)
|
||||
|
||||
return ds_doc
|
||||
return docling_document_to_legacy(self.document)
|
||||
|
||||
|
||||
class _DummyBackend(AbstractDocumentBackend):
|
||||
|
@ -190,12 +190,33 @@ class OcrMacOptions(OcrOptions):
|
||||
)
|
||||
|
||||
|
||||
# Define an enum for the backend options
|
||||
class PdfBackend(str, Enum):
|
||||
"""Enum of valid PDF backends."""
|
||||
|
||||
PYPDFIUM2 = "pypdfium2"
|
||||
DLPARSE_V1 = "dlparse_v1"
|
||||
DLPARSE_V2 = "dlparse_v2"
|
||||
|
||||
|
||||
# Define an enum for the ocr engines
|
||||
class OcrEngine(str, Enum):
|
||||
"""Enum of valid OCR engines."""
|
||||
|
||||
EASYOCR = "easyocr"
|
||||
TESSERACT_CLI = "tesseract_cli"
|
||||
TESSERACT = "tesseract"
|
||||
OCRMAC = "ocrmac"
|
||||
RAPIDOCR = "rapidocr"
|
||||
|
||||
|
||||
class PipelineOptions(BaseModel):
|
||||
"""Base pipeline options."""
|
||||
|
||||
create_legacy_output: bool = (
|
||||
True # This defautl will be set to False on a future version of docling
|
||||
True # This default will be set to False on a future version of docling
|
||||
)
|
||||
document_timeout: Optional[float] = None
|
||||
accelerator_options: AcceleratorOptions = AcceleratorOptions()
|
||||
|
||||
|
||||
|
@ -3,8 +3,7 @@ import random
|
||||
from pathlib import Path
|
||||
from typing import List, Union
|
||||
|
||||
from deepsearch_glm.nlp_utils import init_nlp_model
|
||||
from deepsearch_glm.utils.load_pretrained_models import load_pretrained_nlp_models
|
||||
from deepsearch_glm.andromeda_nlp import nlp_model
|
||||
from docling_core.types.doc import BoundingBox, CoordOrigin, DoclingDocument
|
||||
from docling_core.types.legacy_doc.base import BoundingBox as DsBoundingBox
|
||||
from docling_core.types.legacy_doc.base import (
|
||||
@ -49,11 +48,7 @@ class GlmModel:
|
||||
def __init__(self, options: GlmOptions):
|
||||
self.options = options
|
||||
|
||||
if self.options.model_names != "":
|
||||
load_pretrained_nlp_models()
|
||||
self.model = init_nlp_model(
|
||||
model_names=self.options.model_names, loglevel="ERROR"
|
||||
)
|
||||
self.model = nlp_model(loglevel="error", text_ordering=True)
|
||||
|
||||
def _to_legacy_document(self, conv_res) -> DsDocument:
|
||||
title = ""
|
||||
|
@ -97,24 +97,25 @@ class RapidOcrModel(BaseOcrModel):
|
||||
del high_res_image
|
||||
del im
|
||||
|
||||
cells = [
|
||||
OcrCell(
|
||||
id=ix,
|
||||
text=line[1],
|
||||
confidence=line[2],
|
||||
bbox=BoundingBox.from_tuple(
|
||||
coord=(
|
||||
(line[0][0][0] / self.scale) + ocr_rect.l,
|
||||
(line[0][0][1] / self.scale) + ocr_rect.t,
|
||||
(line[0][2][0] / self.scale) + ocr_rect.l,
|
||||
(line[0][2][1] / self.scale) + ocr_rect.t,
|
||||
if result is not None:
|
||||
cells = [
|
||||
OcrCell(
|
||||
id=ix,
|
||||
text=line[1],
|
||||
confidence=line[2],
|
||||
bbox=BoundingBox.from_tuple(
|
||||
coord=(
|
||||
(line[0][0][0] / self.scale) + ocr_rect.l,
|
||||
(line[0][0][1] / self.scale) + ocr_rect.t,
|
||||
(line[0][2][0] / self.scale) + ocr_rect.l,
|
||||
(line[0][2][1] / self.scale) + ocr_rect.t,
|
||||
),
|
||||
origin=CoordOrigin.TOPLEFT,
|
||||
),
|
||||
origin=CoordOrigin.TOPLEFT,
|
||||
),
|
||||
)
|
||||
for ix, line in enumerate(result)
|
||||
]
|
||||
all_ocr_cells.extend(cells)
|
||||
)
|
||||
for ix, line in enumerate(result)
|
||||
]
|
||||
all_ocr_cells.extend(cells)
|
||||
|
||||
# Post-process the cells
|
||||
page.cells = self.post_process_cells(all_ocr_cells, page.cells)
|
||||
|
@ -126,6 +126,7 @@ class PaginatedPipeline(BasePipeline): # TODO this is a bad name.
|
||||
# conv_res.status = ConversionStatus.FAILURE
|
||||
# return conv_res
|
||||
|
||||
total_elapsed_time = 0.0
|
||||
with TimeRecorder(conv_res, "doc_build", scope=ProfilingScope.DOCUMENT):
|
||||
|
||||
for i in range(0, conv_res.input.page_count):
|
||||
@ -136,7 +137,7 @@ class PaginatedPipeline(BasePipeline): # TODO this is a bad name.
|
||||
for page_batch in chunkify(
|
||||
conv_res.pages, settings.perf.page_batch_size
|
||||
):
|
||||
start_pb_time = time.time()
|
||||
start_batch_time = time.monotonic()
|
||||
|
||||
# 1. Initialise the page resources
|
||||
init_pages = map(
|
||||
@ -149,8 +150,21 @@ class PaginatedPipeline(BasePipeline): # TODO this is a bad name.
|
||||
for p in pipeline_pages: # Must exhaust!
|
||||
pass
|
||||
|
||||
end_pb_time = time.time() - start_pb_time
|
||||
_log.debug(f"Finished converting page batch time={end_pb_time:.3f}")
|
||||
end_batch_time = time.monotonic()
|
||||
total_elapsed_time += end_batch_time - start_batch_time
|
||||
if (
|
||||
self.pipeline_options.document_timeout is not None
|
||||
and total_elapsed_time > self.pipeline_options.document_timeout
|
||||
):
|
||||
_log.warning(
|
||||
f"Document processing time ({total_elapsed_time:.3f} seconds) exceeded the specified timeout of {self.pipeline_options.document_timeout:.3f} seconds"
|
||||
)
|
||||
conv_res.status = ConversionStatus.PARTIAL_SUCCESS
|
||||
break
|
||||
|
||||
_log.debug(
|
||||
f"Finished converting page batch time={end_batch_time:.3f}"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
conv_res.status = ConversionStatus.FAILURE
|
||||
|
@ -10,7 +10,7 @@ For each document format, the *document converter* knows which format-specific *
|
||||
|
||||
The *conversion result* contains the [*Docling document*](./docling_document.md), Docling's fundamental document representation.
|
||||
|
||||
Some typical scenarios for using a Docling document include directly calling its *export methods*, such as for markdown, dictionary etc., or having it chunked by a *chunker*.
|
||||
Some typical scenarios for using a Docling document include directly calling its *export methods*, such as for markdown, dictionary etc., or having it chunked by a [*chunker*](./chunking.md).
|
||||
|
||||
For more details on Docling's architecture, check out the [Docling Technical Report](https://arxiv.org/abs/2408.09869).
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
# CLI Reference
|
||||
# CLI reference
|
||||
|
||||
This page provides documentation for our command line tools.
|
||||
|
||||
@ -6,4 +6,4 @@ This page provides documentation for our command line tools.
|
||||
:module: docling.cli.main
|
||||
:command: click_app
|
||||
:prog_name: docling
|
||||
:style: table
|
||||
:style: table
|
@ -22,9 +22,7 @@ A simple example would look like this:
|
||||
docling https://arxiv.org/pdf/2206.01062
|
||||
```
|
||||
|
||||
To see all available options (export formats etc.) run `docling --help`. More details in the [CLI reference page](./cli.md).
|
||||
|
||||
|
||||
To see all available options (export formats etc.) run `docling --help`. More details in the [CLI reference page](./reference/cli.md).
|
||||
|
||||
### Advanced options
|
||||
|
||||
@ -130,29 +128,37 @@ You can limit the CPU threads used by Docling by setting the environment variabl
|
||||
|
||||
## Chunking
|
||||
|
||||
You can perform a hierarchy-aware chunking of a Docling document as follows:
|
||||
You can chunk a Docling document using a [chunker](concepts/chunking.md), such as a
|
||||
`HybridChunker`, as shown below (for more details check out
|
||||
[this example](examples/hybrid_chunking.ipynb)):
|
||||
|
||||
```python
|
||||
from docling.document_converter import DocumentConverter
|
||||
from docling_core.transforms.chunker import HierarchicalChunker
|
||||
from docling.chunking import HybridChunker
|
||||
|
||||
conv_res = DocumentConverter().convert("https://arxiv.org/pdf/2206.01062")
|
||||
doc = conv_res.document
|
||||
chunks = list(HierarchicalChunker().chunk(doc))
|
||||
|
||||
print(chunks[30])
|
||||
chunker = HybridChunker(tokenizer="BAAI/bge-small-en-v1.5") # set tokenizer as needed
|
||||
chunk_iter = chunker.chunk(doc)
|
||||
```
|
||||
|
||||
An example chunk would look like this:
|
||||
|
||||
```python
|
||||
print(list(chunk_iter)[11])
|
||||
# {
|
||||
# "text": "Lately, new types of ML models for document-layout analysis have emerged [...]",
|
||||
# "text": "In this paper, we present the DocLayNet dataset. [...]",
|
||||
# "meta": {
|
||||
# "doc_items": [{
|
||||
# "self_ref": "#/texts/40",
|
||||
# "self_ref": "#/texts/28",
|
||||
# "label": "text",
|
||||
# "prov": [{
|
||||
# "page_no": 2,
|
||||
# "bbox": {"l": 317.06, "t": 325.81, "r": 559.18, "b": 239.97, ...},
|
||||
# }]
|
||||
# }],
|
||||
# "headings": ["2 RELATED WORK"],
|
||||
# "bbox": {"l": 53.29, "t": 287.14, "r": 295.56, "b": 212.37, ...},
|
||||
# }], ...,
|
||||
# }, ...],
|
||||
# "headings": ["1 INTRODUCTION"],
|
||||
# }
|
||||
# }
|
||||
```
|
||||
|
19
mkdocs.yml
19
mkdocs.yml
@ -56,7 +56,6 @@ nav:
|
||||
- "Docling": index.md
|
||||
- Installation: installation.md
|
||||
- Usage: usage.md
|
||||
- CLI: cli.md
|
||||
- FAQ: faq.md
|
||||
- Docling v2: v2.md
|
||||
- Concepts:
|
||||
@ -77,15 +76,12 @@ nav:
|
||||
- "Multimodal export": examples/export_multimodal.py
|
||||
- "Force full page OCR": examples/full_page_ocr.py
|
||||
- "Accelerator options": examples/run_with_acclerators.py
|
||||
- Chunking:
|
||||
- "Hybrid chunking": examples/hybrid_chunking.ipynb
|
||||
- RAG / QA:
|
||||
- "RAG with LlamaIndex 🦙": examples/rag_llamaindex.ipynb
|
||||
- "RAG with LangChain 🦜🔗": examples/rag_langchain.ipynb
|
||||
- "Hybrid RAG with Qdrant": examples/hybrid_rag_qdrant.ipynb
|
||||
- Chunking:
|
||||
- "Hybrid chunking": examples/hybrid_chunking.ipynb
|
||||
# - Chunking: examples/chunking.md
|
||||
# - CLI:
|
||||
# - CLI: examples/cli.md
|
||||
- Integrations:
|
||||
- Integrations: integrations/index.md
|
||||
- "🐝 Bee": integrations/bee.md
|
||||
@ -100,10 +96,13 @@ nav:
|
||||
- "spaCy": integrations/spacy.md
|
||||
- "txtai": integrations/txtai.md
|
||||
# - "LangChain 🦜🔗": integrations/langchain.md
|
||||
- API reference:
|
||||
- Document Converter: api_reference/document_converter.md
|
||||
- Pipeline options: api_reference/pipeline_options.md
|
||||
- Docling Document: api_reference/docling_document.md
|
||||
- Reference:
|
||||
- Python API:
|
||||
- Document Converter: reference/document_converter.md
|
||||
- Pipeline options: reference/pipeline_options.md
|
||||
- Docling Document: reference/docling_document.md
|
||||
- CLI:
|
||||
- CLI reference: reference/cli.md
|
||||
|
||||
markdown_extensions:
|
||||
- pymdownx.superfences
|
||||
|
975
poetry.lock
generated
975
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "docling"
|
||||
version = "2.9.0" # DO NOT EDIT, updated automatically
|
||||
version = "2.11.0" # DO NOT EDIT, updated automatically
|
||||
description = "SDK and CLI for parsing PDF, DOCX, HTML, and more, to a unified document representation for powering downstream workflows such as gen AI applications."
|
||||
authors = ["Christoph Auer <cau@zurich.ibm.com>", "Michele Dolfi <dol@zurich.ibm.com>", "Maxim Lysak <mly@zurich.ibm.com>", "Nikos Livathinos <nli@zurich.ibm.com>", "Ahmed Nassar <ahn@zurich.ibm.com>", "Panos Vagenas <pva@zurich.ibm.com>", "Peter Staar <taa@zurich.ibm.com>"]
|
||||
license = "MIT"
|
||||
@ -25,11 +25,11 @@ packages = [{include = "docling"}]
|
||||
# actual dependencies:
|
||||
######################
|
||||
python = "^3.9"
|
||||
docling-ibm-models = { git = "ssh://git@github.com/DS4SD/docling-ibm-models.git", branch = "nli/performance" }
|
||||
deepsearch-glm = "^1.0.0"
|
||||
docling-parse = "^3.0.0"
|
||||
docling-core = { version = "^2.9.0", extras = ["chunking"] }
|
||||
pydantic = "^2.0.0"
|
||||
docling-ibm-models = "^3.0.0"
|
||||
deepsearch-glm = "^1.0.0"
|
||||
docling-parse = "^3.0.0"
|
||||
filetype = "^1.2.0"
|
||||
pypdfium2 = "^4.30.0"
|
||||
pydantic-settings = "^2.3.0"
|
||||
|
Loading…
Reference in New Issue
Block a user