mirror of
https://github.com/DS4SD/docling.git
synced 2025-12-15 16:18:22 +00:00
feat: Expose equation exports (#869)
* pin new docling-core and exploit it via assembler changes Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * update test results Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * update with docling-core release Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> --------- Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
# Risk factors associated with failing pre-transmission assessment surveys (pre-TAS) in lymphatic filariasis elimination programs: Results of a multi-country analysis
|
||||
|
||||
Burgert-Brucker Clara R.; 1: Global Health Division, RTI International, Washington, DC, United States of America; Zoerhoff Kathryn L.; 1: Global Health Division, RTI International, Washington, DC, United States of America; Headland Maureen; 1: Global Health Division, RTI International, Washington, DC, United States of America, 2: Global Health, Population, and Nutrition, FHI 360, Washington, DC, United States of America; Shoemaker Erica A.; 1: Global Health Division, RTI International, Washington, DC, United States of America; Stelmach Rachel; 1: Global Health Division, RTI International, Washington, DC, United States of America; Karim Mohammad Jahirul; 3: Department of Disease Control, Ministry of Health and Family Welfare, Dhaka, Bangladesh; Batcho Wilfrid; 4: National Control Program of Communicable Diseases, Ministry of Health, Cotonou, Benin; Bougouma Clarisse; 5: Lymphatic Filariasis Elimination Program, Ministère de la Santé, Ouagadougou, Burkina Faso; Bougma Roland; 5: Lymphatic Filariasis Elimination Program, Ministère de la Santé, Ouagadougou, Burkina Faso; Benjamin Didier Biholong; 6: National Onchocerciasis and Lymphatic Filariasis Control Program, Ministry of Health, Yaounde, Cameroon; Georges Nko'Ayissi; 6: National Onchocerciasis and Lymphatic Filariasis Control Program, Ministry of Health, Yaounde, Cameroon; Marfo Benjamin; 7: Neglected Tropical Diseases Programme, Ghana Health Service, Accra, Ghana; Lemoine Jean Frantz; 8: Ministry of Health, Port-au-Prince, Haiti; Pangaribuan Helena Ullyartha; 9: National Institute Health Research & Development, Ministry of Health, Jakarta, Indonesia; Wijayanti Eksi; 9: National Institute Health Research & Development, Ministry of Health, Jakarta, Indonesia; Coulibaly Yaya Ibrahim; 10: Filariasis Unit, International Center of Excellence in Research, Faculty of Medicine and Odontostomatology, Bamako, Mali; Doumbia Salif Seriba; 10: Filariasis Unit, International Center of Excellence in Research, Faculty of Medicine and Odontostomatology, Bamako, Mali; Rimal Pradip; 11: Epidemiology and Disease Control Division, Department of Health Service, Kathmandu, Nepal; Salissou Adamou Bacthiri; 12: Programme Onchocercose et Filariose Lymphatique, Ministère de la Santé, Niamey, Niger; Bah Yukaba; 13: National Neglected Tropical Disease Program, Ministry of Health and Sanitation, Freetown, Sierra Leone; Mwingira Upendo; 14: Neglected Tropical Disease Control Programme, National Institute for Medical Research, Dar es Salaam, Tanzania; Nshala Andreas; 15: IMA World Health/Tanzania NTD Control Programme, Uppsala University, & TIBA Fellow, Dar es Salaam, Tanzania; Muheki Edridah; 16: Programme to Eliminate Lymphatic Filariasis, Ministry of Health, Kampala, Uganda; Shott Joseph; 17: Division of Neglected Tropical Diseases, Office of Infectious Diseases, Bureau for Global Health, USAID, Washington, DC, United States of America; Yevstigneyeva Violetta; 17: Division of Neglected Tropical Diseases, Office of Infectious Diseases, Bureau for Global Health, USAID, Washington, DC, United States of America; Ndayishimye Egide; 2: Global Health, Population, and Nutrition, FHI 360, Washington, DC, United States of America; Baker Margaret; 1: Global Health Division, RTI International, Washington, DC, United States of America; Kraemer John; 1: Global Health Division, RTI International, Washington, DC, United States of America, 18: Georgetown University, Washington, DC, United States of America; Brady Molly; 1: Global Health Division, RTI International, Washington, DC, United States of America
|
||||
Burgert-Brucker Clara R.; 1: Global Health Division, RTI International, Washington, DC, United States of America; Zoerhoff Kathryn L.; 1: Global Health Division, RTI International, Washington, DC, United States of America; Headland Maureen; 1: Global Health Division, RTI International, Washington, DC, United States of America, 2: Global Health, Population, and Nutrition, FHI 360, Washington, DC, United States of America; Shoemaker Erica A.; 1: Global Health Division, RTI International, Washington, DC, United States of America; Stelmach Rachel; 1: Global Health Division, RTI International, Washington, DC, United States of America; Karim Mohammad Jahirul; 3: Department of Disease Control, Ministry of Health and Family Welfare, Dhaka, Bangladesh; Batcho Wilfrid; 4: National Control Program of Communicable Diseases, Ministry of Health, Cotonou, Benin; Bougouma Clarisse; 5: Lymphatic Filariasis Elimination Program, Ministère de la Santé, Ouagadougou, Burkina Faso; Bougma Roland; 5: Lymphatic Filariasis Elimination Program, Ministère de la Santé, Ouagadougou, Burkina Faso; Benjamin Didier Biholong; 6: National Onchocerciasis and Lymphatic Filariasis Control Program, Ministry of Health, Yaounde, Cameroon; Georges Nko'Ayissi; 6: National Onchocerciasis and Lymphatic Filariasis Control Program, Ministry of Health, Yaounde, Cameroon; Marfo Benjamin; 7: Neglected Tropical Diseases Programme, Ghana Health Service, Accra, Ghana; Lemoine Jean Frantz; 8: Ministry of Health, Port-au-Prince, Haiti; Pangaribuan Helena Ullyartha; 9: National Institute Health Research & Development, Ministry of Health, Jakarta, Indonesia; Wijayanti Eksi; 9: National Institute Health Research & Development, Ministry of Health, Jakarta, Indonesia; Coulibaly Yaya Ibrahim; 10: Filariasis Unit, International Center of Excellence in Research, Faculty of Medicine and Odontostomatology, Bamako, Mali; Doumbia Salif Seriba; 10: Filariasis Unit, International Center of Excellence in Research, Faculty of Medicine and Odontostomatology, Bamako, Mali; Rimal Pradip; 11: Epidemiology and Disease Control Division, Department of Health Service, Kathmandu, Nepal; Salissou Adamou Bacthiri; 12: Programme Onchocercose et Filariose Lymphatique, Ministère de la Santé, Niamey, Niger; Bah Yukaba; 13: National Neglected Tropical Disease Program, Ministry of Health and Sanitation, Freetown, Sierra Leone; Mwingira Upendo; 14: Neglected Tropical Disease Control Programme, National Institute for Medical Research, Dar es Salaam, Tanzania; Nshala Andreas; 15: IMA World Health/Tanzania NTD Control Programme, Uppsala University, & TIBA Fellow, Dar es Salaam, Tanzania; Muheki Edridah; 16: Programme to Eliminate Lymphatic Filariasis, Ministry of Health, Kampala, Uganda; Shott Joseph; 17: Division of Neglected Tropical Diseases, Office of Infectious Diseases, Bureau for Global Health, USAID, Washington, DC, United States of America; Yevstigneyeva Violetta; 17: Division of Neglected Tropical Diseases, Office of Infectious Diseases, Bureau for Global Health, USAID, Washington, DC, United States of America; Ndayishimye Egide; 2: Global Health, Population, and Nutrition, FHI 360, Washington, DC, United States of America; Baker Margaret; 1: Global Health Division, RTI International, Washington, DC, United States of America; Kraemer John; 1: Global Health Division, RTI International, Washington, DC, United States of America, 18: Georgetown University, Washington, DC, United States of America; Brady Molly; 1: Global Health Division, RTI International, Washington, DC, United States of America
|
||||
|
||||
## Abstract
|
||||
|
||||
@@ -36,7 +36,7 @@ Potential covariates were derived from the available data for each factor in the
|
||||
|
||||
#### Baseline prevalence
|
||||
|
||||
Baseline prevalence can be assumed as a proxy for local transmission conditions [14] and correlates with prevalence after MDA [14–20]. Baseline prevalence for each district was measured by either blood smears to measure Mf or rapid diagnostic tests to measure Ag. Other studies have modeled Mf and Ag prevalence separately, due to lack of a standardized correlation between the two, especially at pre-MDA levels [21,22]. However, because WHO mapping guidance states that MDA is required if either Mf or Ag is ≥1% and there were not enough data to model each separately, we combined baseline prevalence values regardless of diagnostic test used. We created two variables for use in the analysis (1) using the cut-off of <5% or ≥5% (dataset median value of 5%) and (2) using the cut-off of <10% or ≥10%.
|
||||
Baseline prevalence can be assumed as a proxy for local transmission conditions [14] and correlates with prevalence after MDA [14–20]. Baseline prevalence for each district was measured by either blood smears to measure Mf or rapid diagnostic tests to measure Ag. Other studies have modeled Mf and Ag prevalence separately, due to lack of a standardized correlation between the two, especially at pre-MDA levels [21,22]. However, because WHO mapping guidance states that MDA is required if either Mf or Ag is ≥1% and there were not enough data to model each separately, we combined baseline prevalence values regardless of diagnostic test used. We created two variables for use in the analysis (1) using the cut-off of <5% or ≥5% (dataset median value of 5%) and (2) using the cut-off of <10% or ≥10%.
|
||||
|
||||
#### Agent
|
||||
|
||||
@@ -90,9 +90,9 @@ This paper reports for the first time factors associated with pre-TAS results fr
|
||||
|
||||
Though diagnostic test used was selected for the final log-binomial model, neither category (FTS or ICT) were significant after interaction with high baseline. FTS alone is significant in the bivariate analysis compared to ICT or Mf. This result is not surprising given previous research which found that FTS was more sensitive than ICT [45].
|
||||
|
||||
Elevation was the only environmental domain variable selected for the final log-binomial model during the model selection process, with areas of lower elevation (<350m) found to be at 3.07 times higher risk to fail pre-TAS compared to districts with a higher elevation. Similar results related to elevation were found in previous studies [8,31], including Goldberg et al. [7], who used a cutoff of 200 meters. Elevation likely also encompasses some related environmental concepts, such as vector habitat, greenness (EVI), or rainfall, which impact vector chances of survival.
|
||||
Elevation was the only environmental domain variable selected for the final log-binomial model during the model selection process, with areas of lower elevation (<350m) found to be at 3.07 times higher risk to fail pre-TAS compared to districts with a higher elevation. Similar results related to elevation were found in previous studies [8,31], including Goldberg et al. [7], who used a cutoff of 200 meters. Elevation likely also encompasses some related environmental concepts, such as vector habitat, greenness (EVI), or rainfall, which impact vector chances of survival.
|
||||
|
||||
The small number of failures overall prevented the inclusion of a large number of variables in the final log-binomial model. However, other variables that are associated with failure as identified in the bivariate analyses, such as Culex vector, higher population density, higher EVI, higher rainfall and more rounds of MDA, should not be discounted when making programmatic decisions. Other models have shown that Culex as the predominant vector in a district, compared to Anopheles, results in more intense interventions needed to reach elimination [24,41]. Higher population density, which was also found to predict TAS failure [7], could be related to different vector species’ transmission dynamics in urban areas, as well as the fact that MDAs are harder to conduct and to accurately measure in urban areas [46,47]. Both higher enhanced vegetation index (>0.3) and higher rainfall (>700 mm per year) contribute to expansion of vector habitats and population. Additionally, having more than five rounds of MDA before pre-TAS was also statistically significantly associated with higher failure in the bivariate analysis. It is unclear why higher number of rounds is associated with first pre-TAS failure given that other research has shown the opposite [15,16].
|
||||
The small number of failures overall prevented the inclusion of a large number of variables in the final log-binomial model. However, other variables that are associated with failure as identified in the bivariate analyses, such as Culex vector, higher population density, higher EVI, higher rainfall and more rounds of MDA, should not be discounted when making programmatic decisions. Other models have shown that Culex as the predominant vector in a district, compared to Anopheles, results in more intense interventions needed to reach elimination [24,41]. Higher population density, which was also found to predict TAS failure [7], could be related to different vector species’ transmission dynamics in urban areas, as well as the fact that MDAs are harder to conduct and to accurately measure in urban areas [46,47]. Both higher enhanced vegetation index (>0.3) and higher rainfall (>700 mm per year) contribute to expansion of vector habitats and population. Additionally, having more than five rounds of MDA before pre-TAS was also statistically significantly associated with higher failure in the bivariate analysis. It is unclear why higher number of rounds is associated with first pre-TAS failure given that other research has shown the opposite [15,16].
|
||||
|
||||
All other variables included in this analysis were not significantly associated with pre-TAS failure in our analysis. Goldberg et al. found Brugia spp. to be significantly associated with failure, but our results did not. This is likely due in part to the small number of districts with Brugia spp. in our dataset (6%) compared to 46% in the Goldberg et al. article [7]. MDA coverage levels were not significantly associated with pre-TAS failure, likely due to the lack of variance in the coverage data since WHO guidance dictates a minimum of five rounds of MDA with ≥65% epidemiological coverage to be eligible to implement pre-TAS. It should not be interpreted as evidence that high MDA coverage levels are not necessary to lower prevalence.
|
||||
|
||||
@@ -110,16 +110,16 @@ Table 1: Categorization of potential factors influencing pre-TAS results.
|
||||
|
||||
| Domain | Factor | Covariate | Description | Reference Group | Summary statistic | Temporal Resolution | Source |
|
||||
|------------------------|-----------------------|-------------------------------|-----------------------------------------------------------------|----------------------|---------------------|-----------------------|--------------------|
|
||||
| Prevalence | Baseline prevalence | 5% cut off | Maximum reported mapping or baseline sentinel site prevalence | <5% | Maximum | Varies | Programmatic data |
|
||||
| Prevalence | Baseline prevalence | 10% cut off | Maximum reported mapping or baseline sentinel site prevalence | <10% | Maximum | Varies | Programmatic data |
|
||||
| Agent | Parasite | Parasite | Predominate parasite in district | W. bancrofti & mixed | Binary value | 2018 | Programmatic data |
|
||||
| Environment | Vector | Vector | Predominate vector in district | Anopheles & Mansonia | Binary value | 2018 | Country expert |
|
||||
| Environment | Geography | Elevation | Elevation measured in meters | >350 | Mean | 2000 | CGIAR-CSI SRTM [9] |
|
||||
| Environment | Geography | District area | Area measured in km2 | >2,500 | Maximum sum | Static | Programmatic data |
|
||||
| Environment | Climate | EVI | Enhanced vegetation index | > 0.3 | Mean | 2015 | MODIS [10] |
|
||||
| Prevalence | Baseline prevalence | 5% cut off | Maximum reported mapping or baseline sentinel site prevalence | <5% | Maximum | Varies | Programmatic data |
|
||||
| Prevalence | Baseline prevalence | 10% cut off | Maximum reported mapping or baseline sentinel site prevalence | <10% | Maximum | Varies | Programmatic data |
|
||||
| Agent | Parasite | Parasite | Predominate parasite in district | W. bancrofti & mixed | Binary value | 2018 | Programmatic data |
|
||||
| Environment | Vector | Vector | Predominate vector in district | Anopheles & Mansonia | Binary value | 2018 | Country expert |
|
||||
| Environment | Geography | Elevation | Elevation measured in meters | >350 | Mean | 2000 | CGIAR-CSI SRTM [9] |
|
||||
| Environment | Geography | District area | Area measured in km2 | >2,500 | Maximum sum | Static | Programmatic data |
|
||||
| Environment | Climate | EVI | Enhanced vegetation index | > 0.3 | Mean | 2015 | MODIS [10] |
|
||||
| Environment | Climate | Rainfall | Annual rainfall measured in mm | ≤ 700 | Mean | 2015 | CHIRPS [11] |
|
||||
| Environment | Socio-economic | Population density | Number of people per km2 | ≤ 100 | Mean | 2015 | WorldPop [12] |
|
||||
| Environment | Socio-economic | Nighttime lights | Nighttime light index from 0 to 63 | >1.5 | Mean | 2015 | VIIRS [13] |
|
||||
| Environment | Socio-economic | Nighttime lights | Nighttime light index from 0 to 63 | >1.5 | Mean | 2015 | VIIRS [13] |
|
||||
| Environment | Co-endemicity | Co-endemic for onchocerciasis | Part or all of district is also endemic for onchocerciases | Non-endemic | Binary value | 2018 | Programmatic data |
|
||||
| MDA | Drug efficacy | Drug package | DEC-ALB or IVM-ALB | DEC-ALB | Binary value | 2018 | Programmatic data |
|
||||
| MDA | Implementation of MDA | Coverage | Median MDA coverage for last 5 rounds | ≥ 65% | Median | Varies | Programmatic data |
|
||||
@@ -136,12 +136,12 @@ Table 2: Adjusted risk ratios for pre-TAS failure from log-binomial model sensit
|
||||
| Number of Failures | 74 | 74 | 44 | 72 | 46 |
|
||||
| Number of total districts | (N = 554) | (N = 420) | (N = 407) | (N = 518) | (N = 414) |
|
||||
| Covariate | RR (95% CI) | RR (95% CI) | RR (95% CI) | RR (95% CI) | RR (95% CI) |
|
||||
| Baseline prevalence > = 10% & used FTS test | 2.38 (0.96–5.90) | 1.23 (0.52–2.92) | 14.52 (1.79–117.82) | 2.61 (1.03–6.61) | 15.80 (1.95–127.67) |
|
||||
| Baseline prevalence > = 10% & used ICT test | 0.80 (0.20–3.24) | 0.42 (0.11–1.68) | 1.00 (0.00–0.00) | 0.88 (0.21–3.60) | 1.00 (0.00–0.00) |
|
||||
| Baseline prevalence > = 10% & used FTS test | 2.38 (0.96–5.90) | 1.23 (0.52–2.92) | 14.52 (1.79–117.82) | 2.61 (1.03–6.61) | 15.80 (1.95–127.67) |
|
||||
| Baseline prevalence > = 10% & used ICT test | 0.80 (0.20–3.24) | 0.42 (0.11–1.68) | 1.00 (0.00–0.00) | 0.88 (0.21–3.60) | 1.00 (0.00–0.00) |
|
||||
| +Used FTS test | 1.16 (0.52–2.59) | 2.40 (1.12–5.11) | 0.15 (0.02–1.11) | 1.03 (0.45–2.36) | 0.13 (0.02–0.96) |
|
||||
| +Used ICT test | 0.92 (0.32–2.67) | 1.47 (0.51–4.21) | 0.33 (0.04–2.54) | 0.82 (0.28–2.43) | 0.27 (0.03–2.04) |
|
||||
| +Baseline prevalence > = 10% | 2.52 (1.37–4.64) | 2.42 (1.31–4.47) | 2.03 (1.06–3.90) | 2.30 (1.21–4.36) | 2.01 (1.07–3.77) |
|
||||
| Elevation < 350m | 3.07 (1.95–4.83) | 2.21 (1.42–3.43) | 4.68 (2.22–9.87) | 3.04 (1.93–4.79) | 3.76 (1.92–7.37) |
|
||||
| +Baseline prevalence > = 10% | 2.52 (1.37–4.64) | 2.42 (1.31–4.47) | 2.03 (1.06–3.90) | 2.30 (1.21–4.36) | 2.01 (1.07–3.77) |
|
||||
| Elevation < 350m | 3.07 (1.95–4.83) | 2.21 (1.42–3.43) | 4.68 (2.22–9.87) | 3.04 (1.93–4.79) | 3.76 (1.92–7.37) |
|
||||
|
||||
## Figures
|
||||
|
||||
|
||||
Reference in New Issue
Block a user