add docs for vision models

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
Michele Dolfi 2025-06-02 15:16:23 +02:00
parent 07045386c6
commit 6d279f1c41
4 changed files with 124 additions and 2 deletions

View File

@ -36,7 +36,7 @@ Docling simplifies document processing, parsing diverse formats — including ad
* 🔒 Local execution capabilities for sensitive data and air-gapped environments
* 🤖 Plug-and-play [integrations][integrations] incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
* 🔍 Extensive OCR support for scanned PDFs and images
* 🥚 Support of Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview)) 🆕
* 🥚 Support of several Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview))
* 💻 Simple and convenient CLI
### Coming soon

2
docs/index.md vendored
View File

@ -27,7 +27,7 @@ Docling simplifies document processing, parsing diverse formats — including ad
* 🔒 Local execution capabilities for sensitive data and air-gapped environments
* 🤖 Plug-and-play [integrations][integrations] incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
* 🔍 Extensive OCR support for scanned PDFs and images
* 🥚 Support of Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview)) 🆕🔥
* 🥚 Support of several Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview)) 🔥
* 💻 Simple and convenient CLI
### Coming soon

121
docs/usage/vision_models.md vendored Normal file
View File

@ -0,0 +1,121 @@
The `VlmPipeline` in Docling allows to convert documents end-to-end using a vision-language model.
Docling supports vision-language models which output:
- DocTags (e.g. [SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview)), the preferred choice
- Markdown
- HTML
For running Docling using local models with the `VlmPipeline`:
=== "CLI"
```bash
docling --pipeline vlm FILE
```
=== "Python"
See also the example [minimal_vlm_pipeline.py](./../examples/minimal_vlm_pipeline.py).
```python
from docling.datamodel.base_models import InputFormat
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=VlmPipeline,
),
}
)
doc = converter.convert(source="FILE").document
```
## Available local models
By default, the vision-language models are running locally.
Docling allows to choose between the Hugging Face [Transformers](https://github.com/huggingface/transformers) framweork and the [MLX](https://github.com/Blaizzy/mlx-vlm) (for Apple devices with MPS acceleration) one.
The following table reports the models currently available out-of-the-box.
| Model instance | Model | Framework | Device | Num pages | Inference time (sec) |
| ---------------|------ | --------- | ------ | --------- | ---------------------|
| `vlm_model_specs.SMOLDOCLING_TRANSFORMERS` | [ds4sd/SmolDocling-256M-preview](https://huggingface.co/ds4sd/SmolDocling-256M-preview) | `Transformers/AutoModelForVision2Seq` | MPS | 1 | 102.212 |
| `vlm_model_specs.SMOLDOCLING_MLX` | [ds4sd/SmolDocling-256M-preview-mlx-bf16](https://huggingface.co/ds4sd/SmolDocling-256M-preview-mlx-bf16) | `MLX`| MPS | 1 | 6.15453 |
| `vlm_model_specs.QWEN25_VL_3B_MLX` | [mlx-community/Qwen2.5-VL-3B-Instruct-bf16](https://huggingface.co/mlx-community/Qwen2.5-VL-3B-Instruct-bf16) | `MLX`| MPS | 1 | 23.4951 |
| `vlm_model_specs.PIXTRAL_12B_MLX` | [mlx-community/pixtral-12b-bf16](https://huggingface.co/mlx-community/pixtral-12b-bf16) | `MLX` | MPS | 1 | 308.856 |
| `vlm_model_specs.GEMMA3_12B_MLX` | [mlx-community/gemma-3-12b-it-bf16](https://huggingface.co/mlx-community/gemma-3-12b-it-bf16) | `MLX` | MPS | 1 | 378.486 |
| `vlm_model_specs.GRANITE_VISION_TRANSFORMERS` | [ibm-granite/granite-vision-3.2-2b](https://huggingface.co/ibm-granite/granite-vision-3.2-2b) | `Transformers/AutoModelForVision2Seq` | MPS | 1 | 104.75 |
| `vlm_model_specs.PHI4_TRANSFORMERS` | [microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) | `Transformers/AutoModelForCasualLM` | CPU | 1 | 1175.67 |
| `vlm_model_specs.PIXTRAL_12B_TRANSFORMERS` | [mistral-community/pixtral-12b](https://huggingface.co/mistral-community/pixtral-12b) | `Transformers/AutoModelForVision2Seq` | CPU | 1 | 1828.21 |
_Inference time is computed on a Macbook M3 Max using the example page `tests/data/pdf/2305.03393v1-pg9.pdf`. The comparision is done with the example [compare_vlm_models.py](./../examples/compare_vlm_models.py)._
For choosing the model, the code snippet above can be extended as follow
```python
from docling.datamodel.base_models import InputFormat
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
from docling.datamodel.pipeline_options import (
VlmPipelineOptions,
)
from docling.datamodel import vlm_model_specs
pipeline_options = VlmPipelineOptions(
vlm_options=vlm_model_specs.SMOLDOCLING_MLX, # <-- change the model here
)
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=VlmPipeline,
pipeline_options=pipeline_options,
),
}
)
doc = converter.convert(source="FILE").document
```
### Other models
Other models can be configured by directly providing the Hugging Face `repo_id`, the prompt and a few more options.
For example:
```python
from docling.datamodel.pipeline_options_vlm_model import InlineVlmOptions, InferenceFramework, TransformersModelType
pipeline_options = VlmPipelineOptions(
vlm_options=InlineVlmOptions(
repo_id="ibm-granite/granite-vision-3.2-2b",
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.TRANSFORMERS,
transformers_model_type=TransformersModelType.AUTOMODEL_VISION2SEQ,
supported_devices=[
AcceleratorDevice.CPU,
AcceleratorDevice.CUDA,
AcceleratorDevice.MPS,
],
scale=2.0,
temperature=0.0,
)
)
```
## Remote models
Additionally to local models, the `VlmPipeline` allows to offload the inference to a remote service hosting the models.
Many remote inference services are provided, the key requirement is to offer an OpenAI-compatible API. This includes vLLM, Ollama, etc.
More examples on how to connect with the remote inference services can be found in the following examples:
- [vlm_pipeline_api_model.py](./../examples/vlm_pipeline_api_model.py)

View File

@ -60,6 +60,7 @@ nav:
- Usage: usage/index.md
- Supported formats: usage/supported_formats.md
- Enrichment features: usage/enrichments.md
- Vision models: usage/vision_models.md
- FAQ:
- FAQ: faq/index.md
- Concepts: