mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-27 04:24:45 +00:00
chore(OCR): Rename class names to use Tesseract for the tesserocr and TesseractCLI for the tesseract process
Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com>
This commit is contained in:
parent
074acd703c
commit
70a8a2cc82
@ -17,8 +17,8 @@ from docling.datamodel.document import ConversionResult, DocumentConversionInput
|
||||
from docling.datamodel.pipeline_options import (
|
||||
EasyOcrOptions,
|
||||
PipelineOptions,
|
||||
TesseractOcrOptions,
|
||||
TesserOcrOptions,
|
||||
TesseractCLIOptions,
|
||||
TesseractOptions,
|
||||
)
|
||||
from docling.document_converter import DocumentConverter
|
||||
|
||||
@ -61,8 +61,8 @@ class Backend(str, Enum):
|
||||
# Define an enum for the ocr engines
|
||||
class OcrEngine(str, Enum):
|
||||
EASYOCR = "easyocr"
|
||||
TESSERACT_CLI = "tesseract_cli"
|
||||
TESSERACT = "tesseract"
|
||||
TESSEROCR = "tesserocr"
|
||||
|
||||
|
||||
def export_documents(
|
||||
@ -209,10 +209,10 @@ def convert(
|
||||
match ocr_engine:
|
||||
case OcrEngine.EASYOCR:
|
||||
ocr_options = EasyOcrOptions()
|
||||
case OcrEngine.TESSERACT_CLI:
|
||||
ocr_options = TesseractCLIOptions()
|
||||
case OcrEngine.TESSERACT:
|
||||
ocr_options = TesseractOcrOptions()
|
||||
case OcrEngine.TESSEROCR:
|
||||
ocr_options = TesserOcrOptions()
|
||||
ocr_options = TesseractOptions()
|
||||
case _:
|
||||
raise RuntimeError(f"Unexpected backend type {backend}")
|
||||
|
||||
|
@ -36,7 +36,7 @@ class EasyOcrOptions(OcrOptions):
|
||||
)
|
||||
|
||||
|
||||
class TesseractOcrOptions(OcrOptions):
|
||||
class TesseractCLIOptions(OcrOptions):
|
||||
kind: Literal["tesseract"] = "tesseract"
|
||||
lang: List[str] = ["fra", "deu", "spa", "eng"]
|
||||
tesseract_cmd: str = "tesseract"
|
||||
@ -47,7 +47,7 @@ class TesseractOcrOptions(OcrOptions):
|
||||
)
|
||||
|
||||
|
||||
class TesserOcrOptions(OcrOptions):
|
||||
class TesseractOptions(OcrOptions):
|
||||
kind: Literal["tesserocr"] = "tesserocr"
|
||||
lang: List[str] = ["fra", "deu", "spa", "eng"]
|
||||
path: Optional[str] = None
|
||||
@ -62,6 +62,6 @@ class PipelineOptions(BaseModel):
|
||||
do_ocr: bool = True # True: perform OCR, replace programmatic PDF text
|
||||
|
||||
table_structure_options: TableStructureOptions = TableStructureOptions()
|
||||
ocr_options: Union[EasyOcrOptions, TesseractOcrOptions, TesserOcrOptions] = Field(
|
||||
ocr_options: Union[EasyOcrOptions, TesseractCLIOptions, TesseractOptions] = Field(
|
||||
EasyOcrOptions(), discriminator="kind"
|
||||
)
|
||||
|
167
docling/models/tesseract_cli_model.py
Normal file
167
docling/models/tesseract_cli_model.py
Normal file
@ -0,0 +1,167 @@
|
||||
import io
|
||||
import logging
|
||||
import tempfile
|
||||
from subprocess import PIPE, Popen
|
||||
from typing import Iterable, Tuple
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from docling.datamodel.base_models import BoundingBox, CoordOrigin, OcrCell, Page
|
||||
from docling.datamodel.pipeline_options import TesseractCLIOptions
|
||||
from docling.models.base_ocr_model import BaseOcrModel
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class TesseractCLIModel(BaseOcrModel):
|
||||
|
||||
def __init__(self, enabled: bool, options: TesseractCLIOptions):
|
||||
super().__init__(enabled=enabled, options=options)
|
||||
self.options: TesseractCLIOptions
|
||||
|
||||
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
|
||||
|
||||
self._name = None
|
||||
self._version = None
|
||||
|
||||
if self.enabled:
|
||||
try:
|
||||
self._get_name_and_version()
|
||||
|
||||
except Exception as exc:
|
||||
raise RuntimeError(
|
||||
f"Tesseract is not available, aborting: {exc} "
|
||||
"Install tesseract on your system and the tesseract binary is discoverable. "
|
||||
"The actual command for Tesseract can be specified in `pipeline_options.ocr_options.tesseract_cmd='tesseract'`. "
|
||||
"Alternatively, Docling has support for other OCR engines. See the documentation."
|
||||
)
|
||||
|
||||
def _get_name_and_version(self) -> Tuple[str, str]:
|
||||
|
||||
if self._name != None and self._version != None:
|
||||
return self._name, self._version
|
||||
|
||||
cmd = [self.options.tesseract_cmd, "--version"]
|
||||
|
||||
proc = Popen(cmd, stdout=PIPE, stderr=PIPE)
|
||||
stdout, stderr = proc.communicate()
|
||||
|
||||
proc.wait()
|
||||
|
||||
# HACK: Windows versions of Tesseract output the version to stdout, Linux versions
|
||||
# to stderr, so check both.
|
||||
version_line = (
|
||||
(stdout.decode("utf8").strip() or stderr.decode("utf8").strip())
|
||||
.split("\n")[0]
|
||||
.strip()
|
||||
)
|
||||
|
||||
# If everything else fails...
|
||||
if not version_line:
|
||||
version_line = "tesseract XXX"
|
||||
|
||||
name, version = version_line.split(" ")
|
||||
|
||||
self._name = name
|
||||
self._version = version
|
||||
|
||||
return name, version
|
||||
|
||||
def _run_tesseract(self, ifilename: str):
|
||||
|
||||
cmd = [self.options.tesseract_cmd]
|
||||
|
||||
if self.options.lang is not None and len(self.options.lang) > 0:
|
||||
cmd.append("-l")
|
||||
cmd.append("+".join(self.options.lang))
|
||||
if self.options.path is not None:
|
||||
cmd.append("--tessdata-dir")
|
||||
cmd.append(self.options.path)
|
||||
|
||||
cmd += [ifilename, "stdout", "tsv"]
|
||||
_log.info("command: {}".format(" ".join(cmd)))
|
||||
|
||||
proc = Popen(cmd, stdout=PIPE)
|
||||
output, _ = proc.communicate()
|
||||
|
||||
# _log.info(output)
|
||||
|
||||
# Decode the byte string to a regular string
|
||||
decoded_data = output.decode("utf-8")
|
||||
# _log.info(decoded_data)
|
||||
|
||||
# Read the TSV file generated by Tesseract
|
||||
df = pd.read_csv(io.StringIO(decoded_data), sep="\t")
|
||||
|
||||
# Display the dataframe (optional)
|
||||
# _log.info("df: ", df.head())
|
||||
|
||||
# Filter rows that contain actual text (ignore header or empty rows)
|
||||
df_filtered = df[df["text"].notnull() & (df["text"].str.strip() != "")]
|
||||
|
||||
return df_filtered
|
||||
|
||||
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||
|
||||
if not self.enabled:
|
||||
yield from page_batch
|
||||
return
|
||||
|
||||
for page in page_batch:
|
||||
ocr_rects = self.get_ocr_rects(page)
|
||||
|
||||
all_ocr_cells = []
|
||||
for ocr_rect in ocr_rects:
|
||||
# Skip zero area boxes
|
||||
if ocr_rect.area() == 0:
|
||||
continue
|
||||
high_res_image = page._backend.get_page_image(
|
||||
scale=self.scale, cropbox=ocr_rect
|
||||
)
|
||||
|
||||
with tempfile.NamedTemporaryFile(suffix=".png", mode="w") as image_file:
|
||||
fname = image_file.name
|
||||
high_res_image.save(fname)
|
||||
|
||||
df = self._run_tesseract(fname)
|
||||
|
||||
# _log.info(df)
|
||||
|
||||
# Print relevant columns (bounding box and text)
|
||||
for ix, row in df.iterrows():
|
||||
text = row["text"]
|
||||
conf = row["conf"]
|
||||
|
||||
l = float(row["left"])
|
||||
b = float(row["top"])
|
||||
w = float(row["width"])
|
||||
h = float(row["height"])
|
||||
|
||||
t = b + h
|
||||
r = l + w
|
||||
|
||||
cell = OcrCell(
|
||||
id=ix,
|
||||
text=text,
|
||||
confidence=conf / 100.0,
|
||||
bbox=BoundingBox.from_tuple(
|
||||
coord=(
|
||||
(l / self.scale) + ocr_rect.l,
|
||||
(b / self.scale) + ocr_rect.t,
|
||||
(r / self.scale) + ocr_rect.l,
|
||||
(t / self.scale) + ocr_rect.t,
|
||||
),
|
||||
origin=CoordOrigin.TOPLEFT,
|
||||
),
|
||||
)
|
||||
all_ocr_cells.append(cell)
|
||||
|
||||
## Remove OCR cells which overlap with programmatic cells.
|
||||
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
|
||||
|
||||
page.cells.extend(filtered_ocr_cells)
|
||||
|
||||
# DEBUG code:
|
||||
# self.draw_ocr_rects_and_cells(page, ocr_rects)
|
||||
|
||||
yield page
|
@ -1,105 +1,65 @@
|
||||
import io
|
||||
import logging
|
||||
import tempfile
|
||||
from subprocess import PIPE, Popen
|
||||
from typing import Iterable, Tuple
|
||||
from typing import Iterable
|
||||
|
||||
import pandas as pd
|
||||
import numpy
|
||||
|
||||
from docling.datamodel.base_models import BoundingBox, CoordOrigin, OcrCell, Page
|
||||
from docling.datamodel.pipeline_options import TesseractOcrOptions
|
||||
from docling.datamodel.pipeline_options import TesseractCLIOptions
|
||||
from docling.models.base_ocr_model import BaseOcrModel
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class TesseractOcrModel(BaseOcrModel):
|
||||
|
||||
def __init__(self, enabled: bool, options: TesseractOcrOptions):
|
||||
class TesseractModel(BaseOcrModel):
|
||||
def __init__(self, enabled: bool, options: TesseractCLIOptions):
|
||||
super().__init__(enabled=enabled, options=options)
|
||||
self.options: TesseractOcrOptions
|
||||
self.options: TesseractCLIOptions
|
||||
|
||||
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
|
||||
|
||||
self._name = None
|
||||
self._version = None
|
||||
self.reader = None
|
||||
|
||||
if self.enabled:
|
||||
setup_errmsg = (
|
||||
"tesserocr is not correctly installed. "
|
||||
"Please install it via `pip install tesserocr` to use this OCR engine. "
|
||||
"Note that tesserocr might have to be manually compiled for working with"
|
||||
"your Tesseract installation. The Docling documentation provides examples for it. "
|
||||
"Alternatively, Docling has support for other OCR engines. See the documentation."
|
||||
)
|
||||
try:
|
||||
self._get_name_and_version()
|
||||
import tesserocr
|
||||
except ImportError:
|
||||
raise ImportError(setup_errmsg)
|
||||
|
||||
except Exception as exc:
|
||||
raise RuntimeError(
|
||||
f"Tesseract is not available, aborting: {exc} "
|
||||
"Install tesseract on your system and the tesseract binary is discoverable. "
|
||||
"The actual command for Tesseract can be specified in `pipeline_options.ocr_options.tesseract_cmd='tesseract'`. "
|
||||
"Alternatively, Docling has support for other OCR engines. See the documentation."
|
||||
try:
|
||||
tesseract_version = tesserocr.tesseract_version()
|
||||
_log.debug("Initializing TesserOCR: %s", tesseract_version)
|
||||
except:
|
||||
raise ImportError(setup_errmsg)
|
||||
|
||||
# Initialize the tesseractAPI
|
||||
lang = "+".join(self.options.lang)
|
||||
if self.options.path is not None:
|
||||
self.reader = tesserocr.PyTessBaseAPI(
|
||||
path=self.options.path,
|
||||
lang=lang,
|
||||
psm=tesserocr.PSM.AUTO,
|
||||
init=True,
|
||||
oem=tesserocr.OEM.DEFAULT,
|
||||
)
|
||||
else:
|
||||
self.reader = tesserocr.PyTessBaseAPI(
|
||||
lang=lang,
|
||||
psm=tesserocr.PSM.AUTO,
|
||||
init=True,
|
||||
oem=tesserocr.OEM.DEFAULT,
|
||||
)
|
||||
self.reader_RIL = tesserocr.RIL
|
||||
|
||||
def _get_name_and_version(self) -> Tuple[str, str]:
|
||||
|
||||
if self._name != None and self._version != None:
|
||||
return self._name, self._version
|
||||
|
||||
cmd = [self.options.tesseract_cmd, "--version"]
|
||||
|
||||
proc = Popen(cmd, stdout=PIPE, stderr=PIPE)
|
||||
stdout, stderr = proc.communicate()
|
||||
|
||||
proc.wait()
|
||||
|
||||
# HACK: Windows versions of Tesseract output the version to stdout, Linux versions
|
||||
# to stderr, so check both.
|
||||
version_line = (
|
||||
(stdout.decode("utf8").strip() or stderr.decode("utf8").strip())
|
||||
.split("\n")[0]
|
||||
.strip()
|
||||
)
|
||||
|
||||
# If everything else fails...
|
||||
if not version_line:
|
||||
version_line = "tesseract XXX"
|
||||
|
||||
name, version = version_line.split(" ")
|
||||
|
||||
self._name = name
|
||||
self._version = version
|
||||
|
||||
return name, version
|
||||
|
||||
def _run_tesseract(self, ifilename: str):
|
||||
|
||||
cmd = [self.options.tesseract_cmd]
|
||||
|
||||
if self.options.lang is not None and len(self.options.lang) > 0:
|
||||
cmd.append("-l")
|
||||
cmd.append("+".join(self.options.lang))
|
||||
if self.options.path is not None:
|
||||
cmd.append("--tessdata-dir")
|
||||
cmd.append(self.options.path)
|
||||
|
||||
cmd += [ifilename, "stdout", "tsv"]
|
||||
_log.info("command: {}".format(" ".join(cmd)))
|
||||
|
||||
proc = Popen(cmd, stdout=PIPE)
|
||||
output, _ = proc.communicate()
|
||||
|
||||
# _log.info(output)
|
||||
|
||||
# Decode the byte string to a regular string
|
||||
decoded_data = output.decode("utf-8")
|
||||
# _log.info(decoded_data)
|
||||
|
||||
# Read the TSV file generated by Tesseract
|
||||
df = pd.read_csv(io.StringIO(decoded_data), sep="\t")
|
||||
|
||||
# Display the dataframe (optional)
|
||||
# _log.info("df: ", df.head())
|
||||
|
||||
# Filter rows that contain actual text (ignore header or empty rows)
|
||||
df_filtered = df[df["text"].notnull() & (df["text"].str.strip() != "")]
|
||||
|
||||
return df_filtered
|
||||
def __del__(self):
|
||||
if self.reader is not None:
|
||||
# Finalize the tesseractAPI
|
||||
self.reader.End()
|
||||
|
||||
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||
|
||||
@ -119,42 +79,37 @@ class TesseractOcrModel(BaseOcrModel):
|
||||
scale=self.scale, cropbox=ocr_rect
|
||||
)
|
||||
|
||||
with tempfile.NamedTemporaryFile(suffix=".png", mode="w") as image_file:
|
||||
fname = image_file.name
|
||||
high_res_image.save(fname)
|
||||
# Retrieve text snippets with their bounding boxes
|
||||
self.reader.SetImage(high_res_image)
|
||||
boxes = self.reader.GetComponentImages(self.reader_RIL.TEXTLINE, True)
|
||||
|
||||
df = self._run_tesseract(fname)
|
||||
cells = []
|
||||
for ix, (im, box, _, _) in enumerate(boxes):
|
||||
# Set the area of interest. Tesseract uses Bottom-Left for the origin
|
||||
self.reader.SetRectangle(box["x"], box["y"], box["w"], box["h"])
|
||||
|
||||
# _log.info(df)
|
||||
# Extract text within the bounding box
|
||||
text = self.reader.GetUTF8Text().strip()
|
||||
confidence = self.reader.MeanTextConf()
|
||||
left = box["x"] / self.scale
|
||||
bottom = box["y"] / self.scale
|
||||
right = (box["x"] + box["w"]) / self.scale
|
||||
top = (box["y"] + box["h"]) / self.scale
|
||||
|
||||
# Print relevant columns (bounding box and text)
|
||||
for ix, row in df.iterrows():
|
||||
text = row["text"]
|
||||
conf = row["conf"]
|
||||
|
||||
l = float(row["left"])
|
||||
b = float(row["top"])
|
||||
w = float(row["width"])
|
||||
h = float(row["height"])
|
||||
|
||||
t = b + h
|
||||
r = l + w
|
||||
|
||||
cell = OcrCell(
|
||||
id=ix,
|
||||
text=text,
|
||||
confidence=conf / 100.0,
|
||||
bbox=BoundingBox.from_tuple(
|
||||
coord=(
|
||||
(l / self.scale) + ocr_rect.l,
|
||||
(b / self.scale) + ocr_rect.t,
|
||||
(r / self.scale) + ocr_rect.l,
|
||||
(t / self.scale) + ocr_rect.t,
|
||||
cells.append(
|
||||
OcrCell(
|
||||
id=ix,
|
||||
text=text,
|
||||
confidence=confidence,
|
||||
bbox=BoundingBox.from_tuple(
|
||||
coord=(left, top, right, bottom),
|
||||
origin=CoordOrigin.TOPLEFT,
|
||||
),
|
||||
origin=CoordOrigin.TOPLEFT,
|
||||
),
|
||||
)
|
||||
)
|
||||
all_ocr_cells.append(cell)
|
||||
|
||||
# del high_res_image
|
||||
all_ocr_cells.extend(cells)
|
||||
|
||||
## Remove OCR cells which overlap with programmatic cells.
|
||||
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
|
||||
|
@ -1,122 +0,0 @@
|
||||
import logging
|
||||
from typing import Iterable
|
||||
|
||||
import numpy
|
||||
|
||||
from docling.datamodel.base_models import BoundingBox, CoordOrigin, OcrCell, Page
|
||||
from docling.datamodel.pipeline_options import TesseractOcrOptions
|
||||
from docling.models.base_ocr_model import BaseOcrModel
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class TesserOcrModel(BaseOcrModel):
|
||||
def __init__(self, enabled: bool, options: TesseractOcrOptions):
|
||||
super().__init__(enabled=enabled, options=options)
|
||||
self.options: TesseractOcrOptions
|
||||
|
||||
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
|
||||
self.reader = None
|
||||
|
||||
if self.enabled:
|
||||
setup_errmsg = (
|
||||
"tesserocr is not correctly installed. "
|
||||
"Please install it via `pip install tesserocr` to use this OCR engine. "
|
||||
"Note that tesserocr might have to be manually compiled for working with"
|
||||
"your Tesseract installation. The Docling documentation provides examples for it. "
|
||||
"Alternatively, Docling has support for other OCR engines. See the documentation."
|
||||
)
|
||||
try:
|
||||
import tesserocr
|
||||
except ImportError:
|
||||
raise ImportError(setup_errmsg)
|
||||
|
||||
try:
|
||||
tesseract_version = tesserocr.tesseract_version()
|
||||
_log.debug("Initializing TesserOCR: %s", tesseract_version)
|
||||
except:
|
||||
raise ImportError(setup_errmsg)
|
||||
|
||||
# Initialize the tesseractAPI
|
||||
lang = "+".join(self.options.lang)
|
||||
if self.options.path is not None:
|
||||
self.reader = tesserocr.PyTessBaseAPI(
|
||||
path=self.options.path,
|
||||
lang=lang,
|
||||
psm=tesserocr.PSM.AUTO,
|
||||
init=True,
|
||||
oem=tesserocr.OEM.DEFAULT,
|
||||
)
|
||||
else:
|
||||
self.reader = tesserocr.PyTessBaseAPI(
|
||||
lang=lang,
|
||||
psm=tesserocr.PSM.AUTO,
|
||||
init=True,
|
||||
oem=tesserocr.OEM.DEFAULT,
|
||||
)
|
||||
self.reader_RIL = tesserocr.RIL
|
||||
|
||||
def __del__(self):
|
||||
if self.reader is not None:
|
||||
# Finalize the tesseractAPI
|
||||
self.reader.End()
|
||||
|
||||
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||
|
||||
if not self.enabled:
|
||||
yield from page_batch
|
||||
return
|
||||
|
||||
for page in page_batch:
|
||||
ocr_rects = self.get_ocr_rects(page)
|
||||
|
||||
all_ocr_cells = []
|
||||
for ocr_rect in ocr_rects:
|
||||
# Skip zero area boxes
|
||||
if ocr_rect.area() == 0:
|
||||
continue
|
||||
high_res_image = page._backend.get_page_image(
|
||||
scale=self.scale, cropbox=ocr_rect
|
||||
)
|
||||
|
||||
# Retrieve text snippets with their bounding boxes
|
||||
self.reader.SetImage(high_res_image)
|
||||
boxes = self.reader.GetComponentImages(self.reader_RIL.TEXTLINE, True)
|
||||
|
||||
cells = []
|
||||
for ix, (im, box, _, _) in enumerate(boxes):
|
||||
# Set the area of interest. Tesseract uses Bottom-Left for the origin
|
||||
self.reader.SetRectangle(box["x"], box["y"], box["w"], box["h"])
|
||||
|
||||
# Extract text within the bounding box
|
||||
text = self.reader.GetUTF8Text().strip()
|
||||
confidence = self.reader.MeanTextConf()
|
||||
left = box["x"] / self.scale
|
||||
bottom = box["y"] / self.scale
|
||||
right = (box["x"] + box["w"]) / self.scale
|
||||
top = (box["y"] + box["h"]) / self.scale
|
||||
|
||||
cells.append(
|
||||
OcrCell(
|
||||
id=ix,
|
||||
text=text,
|
||||
confidence=confidence,
|
||||
bbox=BoundingBox.from_tuple(
|
||||
coord=(left, top, right, bottom),
|
||||
origin=CoordOrigin.TOPLEFT,
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
# del high_res_image
|
||||
all_ocr_cells.extend(cells)
|
||||
|
||||
## Remove OCR cells which overlap with programmatic cells.
|
||||
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
|
||||
|
||||
page.cells.extend(filtered_ocr_cells)
|
||||
|
||||
# DEBUG code:
|
||||
# self.draw_ocr_rects_and_cells(page, ocr_rects)
|
||||
|
||||
yield page
|
@ -3,15 +3,15 @@ from pathlib import Path
|
||||
from docling.datamodel.pipeline_options import (
|
||||
EasyOcrOptions,
|
||||
PipelineOptions,
|
||||
TesseractOcrOptions,
|
||||
TesserOcrOptions,
|
||||
TesseractCLIOptions,
|
||||
TesseractOptions,
|
||||
)
|
||||
from docling.models.base_ocr_model import BaseOcrModel
|
||||
from docling.models.easyocr_model import EasyOcrModel
|
||||
from docling.models.layout_model import LayoutModel
|
||||
from docling.models.table_structure_model import TableStructureModel
|
||||
from docling.models.tesseract_model import TesseractOcrModel
|
||||
from docling.models.tesserocr_model import TesserOcrModel
|
||||
from docling.models.tesseract_cli_model import TesseractCLIModel
|
||||
from docling.models.tesseract_model import TesseractModel
|
||||
from docling.pipeline.base_model_pipeline import BaseModelPipeline
|
||||
|
||||
|
||||
@ -28,13 +28,13 @@ class StandardModelPipeline(BaseModelPipeline):
|
||||
enabled=pipeline_options.do_ocr,
|
||||
options=pipeline_options.ocr_options,
|
||||
)
|
||||
elif isinstance(pipeline_options.ocr_options, TesseractOcrOptions):
|
||||
ocr_model = TesseractOcrModel(
|
||||
elif isinstance(pipeline_options.ocr_options, TesseractCLIOptions):
|
||||
ocr_model = TesseractCLIModel(
|
||||
enabled=pipeline_options.do_ocr,
|
||||
options=pipeline_options.ocr_options,
|
||||
)
|
||||
elif isinstance(pipeline_options.ocr_options, TesserOcrOptions):
|
||||
ocr_model = TesserOcrModel(
|
||||
elif isinstance(pipeline_options.ocr_options, TesseractOptions):
|
||||
ocr_model = TesseractModel(
|
||||
enabled=pipeline_options.do_ocr,
|
||||
options=pipeline_options.ocr_options,
|
||||
)
|
||||
|
@ -8,7 +8,7 @@ from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
|
||||
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
|
||||
from docling.datamodel.base_models import ConversionStatus, PipelineOptions
|
||||
from docling.datamodel.document import ConversionResult, DocumentConversionInput
|
||||
from docling.datamodel.pipeline_options import TesseractOcrOptions, TesserOcrOptions
|
||||
from docling.datamodel.pipeline_options import TesseractCLIOptions, TesseractOptions
|
||||
from docling.document_converter import DocumentConverter
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
@ -126,7 +126,7 @@ def main():
|
||||
pipeline_options.do_ocr = True
|
||||
pipeline_options.do_table_structure = True
|
||||
pipeline_options.table_structure_options.do_cell_matching = True
|
||||
pipeline_options.ocr_options = TesserOcrOptions()
|
||||
pipeline_options.ocr_options = TesseractOptions()
|
||||
|
||||
# Docling Parse with Tesseract CLI
|
||||
# ----------------------
|
||||
@ -134,7 +134,7 @@ def main():
|
||||
pipeline_options.do_ocr = True
|
||||
pipeline_options.do_table_structure = True
|
||||
pipeline_options.table_structure_options.do_cell_matching = True
|
||||
pipeline_options.ocr_options = TesseractOcrOptions()
|
||||
pipeline_options.ocr_options = TesseractCLIOptions()
|
||||
|
||||
doc_converter = DocumentConverter(
|
||||
pipeline_options=pipeline_options,
|
||||
|
@ -7,8 +7,8 @@ from docling.datamodel.pipeline_options import (
|
||||
EasyOcrOptions,
|
||||
OcrOptions,
|
||||
PipelineOptions,
|
||||
TesseractOcrOptions,
|
||||
TesserOcrOptions,
|
||||
TesseractCLIOptions,
|
||||
TesseractOptions,
|
||||
)
|
||||
from docling.document_converter import DocumentConverter
|
||||
|
||||
@ -74,8 +74,8 @@ def test_e2e_conversions():
|
||||
|
||||
engines: List[OcrOptions] = [
|
||||
EasyOcrOptions(),
|
||||
TesserOcrOptions(),
|
||||
TesseractOcrOptions(),
|
||||
TesseractOptions(),
|
||||
TesseractCLIOptions(),
|
||||
]
|
||||
|
||||
for ocr_options in engines:
|
||||
|
Loading…
Reference in New Issue
Block a user