Merge branch 'cau/input-format-abstraction' of github.com:DS4SD/docling into cau/input-format-abstraction

This commit is contained in:
Michele Dolfi 2024-10-15 17:10:30 +02:00
commit 75feef259d
43 changed files with 1009 additions and 1241 deletions

View File

@ -26,7 +26,7 @@ jobs:
poetry run pytest -v tests poetry run pytest -v tests
- name: Run examples - name: Run examples
run: | run: |
for file in examples/*.py; do for file in docs/examples/*.py; do
# Skip batch_convert.py # Skip batch_convert.py
if [[ "$(basename "$file")" == "batch_convert.py" ]]; then if [[ "$(basename "$file")" == "batch_convert.py" ]]; then
echo "Skipping $file" echo "Skipping $file"

View File

@ -20,12 +20,12 @@ repos:
# pass_filenames: false # pass_filenames: false
# language: system # language: system
# files: '\.py$' # files: '\.py$'
# - id: mypy - id: mypy
# name: MyPy name: MyPy
# entry: poetry run mypy docling entry: poetry run mypy docling
# pass_filenames: false pass_filenames: false
# language: system language: system
# files: '\.py$' files: '\.py$'
- id: nbqa_black - id: nbqa_black
name: nbQA Black name: nbQA Black
entry: poetry run nbqa black examples entry: poetry run nbqa black examples

View File

@ -2,7 +2,7 @@ import logging
import random import random
from io import BytesIO from io import BytesIO
from pathlib import Path from pathlib import Path
from typing import Iterable, List, Optional, Union from typing import TYPE_CHECKING, Iterable, List, Optional, Union
import pypdfium2 as pdfium import pypdfium2 as pdfium
from docling_core.types.doc import BoundingBox, CoordOrigin from docling_core.types.doc import BoundingBox, CoordOrigin
@ -13,6 +13,9 @@ from pypdfium2 import PdfPage
from docling.backend.pdf_backend import PdfDocumentBackend, PdfPageBackend from docling.backend.pdf_backend import PdfDocumentBackend, PdfPageBackend
from docling.datamodel.base_models import Cell, Size from docling.datamodel.base_models import Cell, Size
if TYPE_CHECKING:
from docling.datamodel.document import InputDocument
_log = logging.getLogger(__name__) _log = logging.getLogger(__name__)

View File

@ -30,10 +30,10 @@ class HTMLDocumentBackend(DeclarativeDocumentBackend):
# Initialise the parents for the hierarchy # Initialise the parents for the hierarchy
self.max_levels = 10 self.max_levels = 10
self.level = 0 self.level = 0
self.parents = {} self.parents = {} # type: ignore
for i in range(0, self.max_levels): for i in range(0, self.max_levels):
self.parents[i] = None self.parents[i] = None
self.labels = {} self.labels = {} # type: ignore
try: try:
if isinstance(self.path_or_stream, BytesIO): if isinstance(self.path_or_stream, BytesIO):
@ -49,8 +49,9 @@ class HTMLDocumentBackend(DeclarativeDocumentBackend):
) from e ) from e
def is_valid(self) -> bool: def is_valid(self) -> bool:
return True return self.soup is not None
@classmethod
def supports_pagination(cls) -> bool: def supports_pagination(cls) -> bool:
return False return False
@ -68,11 +69,17 @@ class HTMLDocumentBackend(DeclarativeDocumentBackend):
# access self.path_or_stream to load stuff # access self.path_or_stream to load stuff
doc = DoclingDocument(description=DescriptionItem(), name="dummy") doc = DoclingDocument(description=DescriptionItem(), name="dummy")
_log.debug("Trying to convert HTML...") _log.debug("Trying to convert HTML...")
if self.is_valid():
assert self.soup is not None
# Replace <br> tags with newline characters # Replace <br> tags with newline characters
for br in self.soup.body.find_all("br"): for br in self.soup.body.find_all("br"):
br.replace_with("\n") br.replace_with("\n")
doc = self.walk(self.soup.body, doc) doc = self.walk(self.soup.body, doc)
else:
raise RuntimeError(
f"Cannot convert doc with {self.document_hash} because the backend failed to init."
)
return doc return doc
def walk(self, element, doc): def walk(self, element, doc):
@ -386,7 +393,7 @@ class HTMLDocumentBackend(DeclarativeDocumentBackend):
if contains_lists is None: if contains_lists is None:
return cell.text return cell.text
else: else:
_log.warn( _log.debug(
"should extract the content correctly for table-cells with lists ..." "should extract the content correctly for table-cells with lists ..."
) )
return cell.text return cell.text

View File

@ -42,7 +42,11 @@ class MsPowerpointDocumentBackend(DeclarativeDocumentBackend, PaginatedDocumentB
self.pptx_obj = None self.pptx_obj = None
self.valid = False self.valid = False
try: try:
if isinstance(self.path_or_stream, BytesIO):
self.pptx_obj = Presentation(self.path_or_stream) self.pptx_obj = Presentation(self.path_or_stream)
elif isinstance(self.path_or_stream, Path):
self.pptx_obj = Presentation(str(self.path_or_stream))
self.valid = True self.valid = True
except Exception as e: except Exception as e:
raise RuntimeError( raise RuntimeError(
@ -53,6 +57,7 @@ class MsPowerpointDocumentBackend(DeclarativeDocumentBackend, PaginatedDocumentB
def page_count(self) -> int: def page_count(self) -> int:
if self.is_valid(): if self.is_valid():
assert self.pptx_obj is not None
return len(self.pptx_obj.slides) return len(self.pptx_obj.slides)
else: else:
return 0 return 0
@ -60,6 +65,7 @@ class MsPowerpointDocumentBackend(DeclarativeDocumentBackend, PaginatedDocumentB
def is_valid(self) -> bool: def is_valid(self) -> bool:
return self.valid return self.valid
@classmethod
def supports_pagination(cls) -> bool: def supports_pagination(cls) -> bool:
return True # True? if so, how to handle pages... return True # True? if so, how to handle pages...
@ -151,9 +157,9 @@ class MsPowerpointDocumentBackend(DeclarativeDocumentBackend, PaginatedDocumentB
new_list = None new_list = None
if is_a_list: if is_a_list:
_log.info("LIST DETECTED!") _log.debug("LIST DETECTED!")
else: else:
_log.info("No List") _log.debug("No List")
# for e in p.iter(): # for e in p.iter():
for e in p.iterfind(".//a:r", namespaces={"a": self.namespaces["a"]}): for e in p.iterfind(".//a:r", namespaces={"a": self.namespaces["a"]}):
@ -311,10 +317,10 @@ class MsPowerpointDocumentBackend(DeclarativeDocumentBackend, PaginatedDocumentB
slide_width = pptx_obj.slide_width slide_width = pptx_obj.slide_width
slide_height = pptx_obj.slide_height slide_height = pptx_obj.slide_height
text_content = [] text_content = [] # type: ignore
max_levels = 10 max_levels = 10
parents = {} parents = {} # type: ignore
for i in range(0, max_levels): for i in range(0, max_levels):
parents[i] = None parents[i] = None

View File

@ -39,7 +39,7 @@ class MsWordDocumentBackend(DeclarativeDocumentBackend):
# Initialise the parents for the hierarchy # Initialise the parents for the hierarchy
self.max_levels = 10 self.max_levels = 10
self.level_at_new_list = None self.level_at_new_list = None
self.parents = {} self.parents = {} # type: ignore
for i in range(-1, self.max_levels): for i in range(-1, self.max_levels):
self.parents[i] = None self.parents[i] = None
@ -55,16 +55,21 @@ class MsWordDocumentBackend(DeclarativeDocumentBackend):
self.docx_obj = None self.docx_obj = None
try: try:
if isinstance(self.path_or_stream, BytesIO):
self.docx_obj = docx.Document(self.path_or_stream) self.docx_obj = docx.Document(self.path_or_stream)
elif isinstance(self.path_or_stream, Path):
self.docx_obj = docx.Document(str(self.path_or_stream))
self.valid = True self.valid = True
except Exception as e: except Exception as e:
raise RuntimeError( raise RuntimeError(
f"MsPowerpointDocumentBackend could not load document with hash {document_hash}" f"MsPowerpointDocumentBackend could not load document with hash {self.document_hash}"
) from e ) from e
def is_valid(self) -> bool: def is_valid(self) -> bool:
return True return self.valid
@classmethod
def supports_pagination(cls) -> bool: def supports_pagination(cls) -> bool:
return False return False
@ -81,10 +86,14 @@ class MsWordDocumentBackend(DeclarativeDocumentBackend):
def convert(self) -> DoclingDocument: def convert(self) -> DoclingDocument:
# Parses the DOCX into a structured document model. # Parses the DOCX into a structured document model.
doc = DoclingDocument(description=DescriptionItem(), name="dummy") doc = DoclingDocument(description=DescriptionItem(), name="dummy")
if self.is_valid():
# self.initialise() assert self.docx_obj is not None
doc = self.walk_linear(self.docx_obj.element.body, self.docx_obj, doc) doc = self.walk_linear(self.docx_obj.element.body, self.docx_obj, doc)
return doc return doc
else:
raise RuntimeError(
f"Cannot convert doc with {self.document_hash} because the backend failed to init."
)
def update_history(self, name, level, numid, ilevel): def update_history(self, name, level, numid, ilevel):
self.history["names"].append(name) self.history["names"].append(name)
@ -129,7 +138,7 @@ class MsWordDocumentBackend(DeclarativeDocumentBackend):
try: try:
self.handle_tables(element, docx_obj, doc) self.handle_tables(element, docx_obj, doc)
except Exception: except Exception:
_log.error("could not parse a table, broken docx table") _log.debug("could not parse a table, broken docx table")
elif found_drawing or found_pict: elif found_drawing or found_pict:
self.handle_pictures(element, docx_obj, doc) self.handle_pictures(element, docx_obj, doc)
@ -137,7 +146,7 @@ class MsWordDocumentBackend(DeclarativeDocumentBackend):
elif tag_name in ["p"]: elif tag_name in ["p"]:
self.handle_text_elements(element, docx_obj, doc) self.handle_text_elements(element, docx_obj, doc)
else: else:
_log.warn(f"Ignoring element in DOCX with tag: {tag_name}") _log.debug(f"Ignoring element in DOCX with tag: {tag_name}")
return doc return doc
def str_to_int(self, s, default=0): def str_to_int(self, s, default=0):
@ -333,7 +342,7 @@ class MsWordDocumentBackend(DeclarativeDocumentBackend):
level = self.get_level() level = self.get_level()
if self.prev_numid() is None: # Open new list if self.prev_numid() is None: # Open new list
self.level_at_new_list = level self.level_at_new_list = level # type: ignore
self.parents[level] = doc.add_group( self.parents[level] = doc.add_group(
label=GroupLabel.LIST, name="list", parent=self.parents[level - 1] label=GroupLabel.LIST, name="list", parent=self.parents[level - 1]

View File

@ -1,9 +1,9 @@
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from io import BytesIO from io import BytesIO
from pathlib import Path
from typing import Iterable, Optional, Set, Union from typing import Iterable, Optional, Set, Union
from docling_core.types.doc import BoundingBox, Size from docling_core.types.doc import BoundingBox, Size
from docling_core.types.legacy_doc.doc_ocr import Path
from PIL import Image from PIL import Image
from docling.backend.abstract_backend import PaginatedDocumentBackend from docling.backend.abstract_backend import PaginatedDocumentBackend

View File

@ -2,7 +2,7 @@ import logging
import random import random
from io import BytesIO from io import BytesIO
from pathlib import Path from pathlib import Path
from typing import Iterable, List, Optional, Union from typing import TYPE_CHECKING, Iterable, List, Optional, Union
import pypdfium2 as pdfium import pypdfium2 as pdfium
import pypdfium2.raw as pdfium_c import pypdfium2.raw as pdfium_c
@ -14,6 +14,9 @@ from pypdfium2._helpers.misc import PdfiumError
from docling.backend.pdf_backend import PdfDocumentBackend, PdfPageBackend from docling.backend.pdf_backend import PdfDocumentBackend, PdfPageBackend
from docling.datamodel.base_models import Cell from docling.datamodel.base_models import Cell
if TYPE_CHECKING:
from docling.datamodel.document import InputDocument
_log = logging.getLogger(__name__) _log = logging.getLogger(__name__)

View File

@ -5,13 +5,12 @@ import time
import warnings import warnings
from enum import Enum from enum import Enum
from pathlib import Path from pathlib import Path
from typing import Annotated, Iterable, List, Optional from typing import Annotated, Dict, Iterable, List, Optional
import typer import typer
from docling_core.utils.file import resolve_file_source from docling_core.utils.file import resolve_file_source
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.base_models import ( from docling.datamodel.base_models import (
ConversionStatus, ConversionStatus,
FormatToExtensions, FormatToExtensions,
@ -21,11 +20,12 @@ from docling.datamodel.base_models import (
from docling.datamodel.document import ConversionResult from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import ( from docling.datamodel.pipeline_options import (
EasyOcrOptions, EasyOcrOptions,
OcrOptions,
PdfPipelineOptions, PdfPipelineOptions,
TesseractCliOcrOptions, TesseractCliOcrOptions,
TesseractOcrOptions, TesseractOcrOptions,
) )
from docling.document_converter import DocumentConverter, PdfFormatOption from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption
warnings.filterwarnings(action="ignore", category=UserWarning, module="pydantic|torch") warnings.filterwarnings(action="ignore", category=UserWarning, module="pydantic|torch")
warnings.filterwarnings(action="ignore", category=FutureWarning, module="easyocr") warnings.filterwarnings(action="ignore", category=FutureWarning, module="easyocr")
@ -151,6 +151,14 @@ def convert(
ocr_engine: Annotated[ ocr_engine: Annotated[
OcrEngine, typer.Option(..., help="The OCR engine to use.") OcrEngine, typer.Option(..., help="The OCR engine to use.")
] = OcrEngine.EASYOCR, ] = OcrEngine.EASYOCR,
abort_on_error: Annotated[
bool,
typer.Option(
...,
"--abort-on-error/--no-abort-on-error",
help="If enabled, the bitmap content will be processed using OCR.",
),
] = False,
output: Annotated[ output: Annotated[
Path, typer.Option(..., help="Output directory where results are saved.") Path, typer.Option(..., help="Output directory where results are saved.")
] = Path("."), ] = Path("."),
@ -179,7 +187,7 @@ def convert(
raise typer.Abort() raise typer.Abort()
elif source.is_dir(): elif source.is_dir():
for fmt in from_formats: for fmt in from_formats:
for ext in FormatToExtensions.get(fmt): for ext in FormatToExtensions[fmt]:
input_doc_paths.extend(list(source.glob(f"**/*.{ext}"))) input_doc_paths.extend(list(source.glob(f"**/*.{ext}")))
input_doc_paths.extend(list(source.glob(f"**/*.{ext.upper()}"))) input_doc_paths.extend(list(source.glob(f"**/*.{ext.upper()}")))
else: else:
@ -195,7 +203,7 @@ def convert(
match ocr_engine: match ocr_engine:
case OcrEngine.EASYOCR: case OcrEngine.EASYOCR:
ocr_options = EasyOcrOptions() ocr_options: OcrOptions = EasyOcrOptions()
case OcrEngine.TESSERACT_CLI: case OcrEngine.TESSERACT_CLI:
ocr_options = TesseractCliOcrOptions() ocr_options = TesseractCliOcrOptions()
case OcrEngine.TESSERACT: case OcrEngine.TESSERACT:
@ -210,18 +218,22 @@ def convert(
) )
pipeline_options.table_structure_options.do_cell_matching = True # do_cell_matching pipeline_options.table_structure_options.do_cell_matching = True # do_cell_matching
doc_converter = DocumentConverter( format_options: Dict[InputFormat, FormatOption] = {
format_options={
InputFormat.PDF: PdfFormatOption( InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options, pipeline_options=pipeline_options,
backend=DoclingParseDocumentBackend, # pdf_backend backend=DoclingParseDocumentBackend, # pdf_backend
) )
} }
doc_converter = DocumentConverter(
allowed_formats=from_formats,
format_options=format_options,
) )
start_time = time.time() start_time = time.time()
conv_results = doc_converter.convert_all(input_doc_paths) conv_results = doc_converter.convert_all(
input_doc_paths, raises_on_error=abort_on_error
)
output.mkdir(parents=True, exist_ok=True) output.mkdir(parents=True, exist_ok=True)
export_documents( export_documents(

View File

@ -126,7 +126,8 @@ class TableStructurePrediction(BaseModel):
table_map: Dict[int, Table] = {} table_map: Dict[int, Table] = {}
class TextElement(BasePageElement): ... class TextElement(BasePageElement):
text: str
class FigureElement(BasePageElement): class FigureElement(BasePageElement):

View File

@ -3,7 +3,7 @@ import re
from enum import Enum from enum import Enum
from io import BytesIO from io import BytesIO
from pathlib import Path, PurePath from pathlib import Path, PurePath
from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple, Union from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple, Type, Union
import filetype import filetype
from docling_core.types import BaseText from docling_core.types import BaseText
@ -23,13 +23,15 @@ from docling_core.types.doc import (
TextItem, TextItem,
) )
from docling_core.types.doc.document import ListItem from docling_core.types.doc.document import ListItem
from docling_core.types.legacy_doc.base import BoundingBox as DsBoundingBox
from docling_core.types.legacy_doc.base import Figure, GlmTableCell, TableCell from docling_core.types.legacy_doc.base import Figure, GlmTableCell, TableCell
from docling_core.utils.file import resolve_file_source from docling_core.utils.file import resolve_file_source
from pydantic import BaseModel from pydantic import BaseModel
from typing_extensions import deprecated from typing_extensions import deprecated
from docling.backend.abstract_backend import AbstractDocumentBackend from docling.backend.abstract_backend import (
AbstractDocumentBackend,
PaginatedDocumentBackend,
)
from docling.datamodel.base_models import ( from docling.datamodel.base_models import (
AssembledUnit, AssembledUnit,
ConversionStatus, ConversionStatus,
@ -40,8 +42,6 @@ from docling.datamodel.base_models import (
MimeTypeToFormat, MimeTypeToFormat,
Page, Page,
PageElement, PageElement,
Table,
TextElement,
) )
from docling.datamodel.settings import DocumentLimits from docling.datamodel.settings import DocumentLimits
from docling.utils.utils import create_file_hash, create_hash from docling.utils.utils import create_file_hash, create_hash
@ -70,41 +70,34 @@ layout_label_to_ds_type = {
DocItemLabel.PARAGRAPH: "paragraph", DocItemLabel.PARAGRAPH: "paragraph",
} }
_EMPTY_LEGACY_DOC = DsDocument(
_name="",
description=DsDocumentDescription(logs=[]),
file_info=DsFileInfoObject(
filename="",
document_hash="",
),
)
_EMPTY_DOCLING_DOC = DoclingDocument( _EMPTY_DOCLING_DOC = DoclingDocument(
description=DescriptionItem(), name="dummy" description=DescriptionItem(), name="dummy"
) # TODO: Stub ) # TODO: Stub
class InputDocument(BaseModel): class InputDocument(BaseModel):
file: PurePath = None file: PurePath
document_hash: Optional[str] = None document_hash: str # = None
valid: bool = True valid: bool = True
limits: DocumentLimits = DocumentLimits() limits: DocumentLimits = DocumentLimits()
format: Optional[InputFormat] = None format: InputFormat # = None
filesize: Optional[int] = None filesize: Optional[int] = None
page_count: int = 0 page_count: int = 0
_backend: AbstractDocumentBackend = None # Internal PDF backend used _backend: AbstractDocumentBackend # Internal PDF backend used
def __init__( def __init__(
self, self,
path_or_stream: Union[BytesIO, Path], path_or_stream: Union[BytesIO, Path],
format: InputFormat, format: InputFormat,
backend: AbstractDocumentBackend, backend: Type[AbstractDocumentBackend],
filename: Optional[str] = None, filename: Optional[str] = None,
limits: Optional[DocumentLimits] = None, limits: Optional[DocumentLimits] = None,
): ):
super().__init__() super().__init__(
file="", document_hash="", format=InputFormat.PDF
) # initialize with dummy values
self.limits = limits or DocumentLimits() self.limits = limits or DocumentLimits()
self.format = format self.format = format
@ -120,6 +113,9 @@ class InputDocument(BaseModel):
self._init_doc(backend, path_or_stream) self._init_doc(backend, path_or_stream)
elif isinstance(path_or_stream, BytesIO): elif isinstance(path_or_stream, BytesIO):
assert (
filename is not None
), "Can't construct InputDocument from stream without providing filename arg."
self.file = PurePath(filename) self.file = PurePath(filename)
self.filesize = path_or_stream.getbuffer().nbytes self.filesize = path_or_stream.getbuffer().nbytes
@ -128,10 +124,16 @@ class InputDocument(BaseModel):
else: else:
self.document_hash = create_file_hash(path_or_stream) self.document_hash = create_file_hash(path_or_stream)
self._init_doc(backend, path_or_stream) self._init_doc(backend, path_or_stream)
else:
raise RuntimeError(
f"Unexpected type path_or_stream: {type(path_or_stream)}"
)
# For paginated backends, check if the maximum page count is exceeded. # For paginated backends, check if the maximum page count is exceeded.
if self.valid and self._backend.is_valid(): if self.valid and self._backend.is_valid():
if self._backend.supports_pagination(): if self._backend.supports_pagination() and isinstance(
self._backend, PaginatedDocumentBackend
):
self.page_count = self._backend.page_count() self.page_count = self._backend.page_count()
if not self.page_count <= self.limits.max_num_pages: if not self.page_count <= self.limits.max_num_pages:
self.valid = False self.valid = False
@ -150,12 +152,12 @@ class InputDocument(BaseModel):
def _init_doc( def _init_doc(
self, self,
backend: AbstractDocumentBackend, backend: Type[AbstractDocumentBackend],
path_or_stream: Union[BytesIO, Path], path_or_stream: Union[BytesIO, Path],
) -> None: ) -> None:
if backend is None: if backend is None:
raise RuntimeError( raise RuntimeError(
f"No backend configuration provided for file {self.file} with format {self.format}. " f"No backend configuration provided for file {self.file.name} with format {self.format}. "
f"Please check your format configuration on DocumentConverter." f"Please check your format configuration on DocumentConverter."
) )
@ -436,17 +438,22 @@ class ConversionResult(BaseModel):
return ds_doc return ds_doc
def render_element_images( def render_element_images(
self, element_types: Tuple[PageElement] = (FigureElement,) self, element_types: Tuple[Type[PageElement]] = (FigureElement,)
): ):
for element in self.assembled.elements: for element in self.assembled.elements:
if isinstance(element, element_types): if isinstance(element, element_types):
page_ix = element.page_no page_ix = element.page_no
scale = self.pages[page_ix]._default_image_scale page = self.pages[page_ix]
crop_bbox = element.cluster.bbox.scaled(scale=scale).to_top_left_origin(
page_height=self.pages[page_ix].size.height * scale
)
cropped_im = self.pages[page_ix].image.crop(crop_bbox.as_tuple()) assert page.size is not None
scale = page._default_image_scale
crop_bbox = element.cluster.bbox.scaled(scale=scale).to_top_left_origin(
page_height=page.size.height * scale
)
page_img = page.image
if page_img is not None:
cropped_im = page_img.crop(crop_bbox.as_tuple())
yield element, cropped_im yield element, cropped_im
@ -462,12 +469,12 @@ class _DocumentConversionInput(BaseModel):
obj = resolve_file_source(item) if isinstance(item, str) else item obj = resolve_file_source(item) if isinstance(item, str) else item
format = self._guess_format(obj) format = self._guess_format(obj)
if format not in format_options.keys(): if format not in format_options.keys():
_log.debug( _log.info(
f"Skipping input document {obj.name} because its format is not in the whitelist." f"Skipping input document {obj.name} because it isn't matching any of the allowed formats."
) )
continue continue
else: else:
backend = format_options.get(format).backend backend = format_options[format].backend
if isinstance(obj, Path): if isinstance(obj, Path):
yield InputDocument( yield InputDocument(

View File

@ -1,9 +1,8 @@
import warnings
from enum import Enum, auto from enum import Enum, auto
from pathlib import Path from pathlib import Path
from typing import Annotated, List, Literal, Optional, Union from typing import List, Literal, Optional, Union
from pydantic import BaseModel, ConfigDict, Field, model_validator from pydantic import BaseModel, ConfigDict, Field
class TableFormerMode(str, Enum): class TableFormerMode(str, Enum):

View File

@ -111,6 +111,14 @@ class DocumentConverter:
_log.debug(f"Requested format {f} will use default options.") _log.debug(f"Requested format {f} will use default options.")
self.format_to_options[f] = _format_to_default_options[f] self.format_to_options[f] = _format_to_default_options[f]
remove_keys = []
for f in self.format_to_options.keys():
if f not in self.allowed_formats:
remove_keys.append(f)
for f in remove_keys:
self.format_to_options.pop(f)
self.initialized_pipelines: Dict[Type[BasePipeline], BasePipeline] = {} self.initialized_pipelines: Dict[Type[BasePipeline], BasePipeline] = {}
@validate_call(config=ConfigDict(strict=True)) @validate_call(config=ConfigDict(strict=True))
@ -161,6 +169,8 @@ class DocumentConverter:
def _convert( def _convert(
self, conv_input: _DocumentConversionInput, raises_on_error: bool self, conv_input: _DocumentConversionInput, raises_on_error: bool
) -> Iterator[ConversionResult]: ) -> Iterator[ConversionResult]:
assert self.format_to_options is not None
for input_batch in chunkify( for input_batch in chunkify(
conv_input.docs(self.format_to_options), conv_input.docs(self.format_to_options),
settings.perf.doc_batch_size, # pass format_options settings.perf.doc_batch_size, # pass format_options
@ -174,13 +184,15 @@ class DocumentConverter:
# Note: PDF backends are not thread-safe, thread pool usage was disabled. # Note: PDF backends are not thread-safe, thread pool usage was disabled.
for item in map( for item in map(
partial(self.process_document, raises_on_error=raises_on_error), partial(self._process_document, raises_on_error=raises_on_error),
input_batch, input_batch,
): ):
if item is not None: if item is not None:
yield item yield item
def _get_pipeline(self, doc: InputDocument) -> Optional[BasePipeline]: def _get_pipeline(self, doc: InputDocument) -> Optional[BasePipeline]:
assert self.format_to_options is not None
fopt = self.format_to_options.get(doc.format) fopt = self.format_to_options.get(doc.format)
if fopt is None: if fopt is None:
@ -189,6 +201,7 @@ class DocumentConverter:
pipeline_class = fopt.pipeline_cls pipeline_class = fopt.pipeline_cls
pipeline_options = fopt.pipeline_options pipeline_options = fopt.pipeline_options
assert pipeline_options is not None
# TODO this will ignore if different options have been defined for the same pipeline class. # TODO this will ignore if different options have been defined for the same pipeline class.
if ( if (
pipeline_class not in self.initialized_pipelines pipeline_class not in self.initialized_pipelines
@ -200,33 +213,44 @@ class DocumentConverter:
) )
return self.initialized_pipelines[pipeline_class] return self.initialized_pipelines[pipeline_class]
def process_document( def _process_document(
self, in_doc: InputDocument, raises_on_error: bool self, in_doc: InputDocument, raises_on_error: bool
) -> ConversionResult: ) -> Optional[ConversionResult]:
if in_doc.format not in self.allowed_formats: assert self.allowed_formats is not None
return None assert in_doc.format in self.allowed_formats
else:
start_doc_time = time.time() start_doc_time = time.time()
conv_res = self._execute_pipeline(in_doc, raises_on_error=raises_on_error) conv_res = self._execute_pipeline(in_doc, raises_on_error=raises_on_error)
end_doc_time = time.time() - start_doc_time end_doc_time = time.time() - start_doc_time
_log.info(f"Finished converting document in {end_doc_time:.2f} seconds.") _log.info(
f"Finished converting document {in_doc.file.name} in {end_doc_time:.2f} seconds."
)
return conv_res return conv_res
def _execute_pipeline( def _execute_pipeline(
self, in_doc: InputDocument, raises_on_error: bool self, in_doc: InputDocument, raises_on_error: bool
) -> Optional[ConversionResult]: ) -> ConversionResult:
if in_doc.valid: if in_doc.valid:
pipeline = self._get_pipeline(in_doc) pipeline = self._get_pipeline(in_doc)
if pipeline is None: # Can't find a default pipeline. Should this raise? if pipeline is None: # Can't find a default pipeline. Should this raise?
if raises_on_error:
raise RuntimeError(
f"No pipeline could be initialized for {in_doc.file}."
)
else:
conv_res = ConversionResult(input=in_doc) conv_res = ConversionResult(input=in_doc)
conv_res.status = ConversionStatus.FAILURE conv_res.status = ConversionStatus.FAILURE
return conv_res return conv_res
conv_res = pipeline.execute(in_doc, raises_on_error=raises_on_error) conv_res = pipeline.execute(in_doc, raises_on_error=raises_on_error)
else:
if raises_on_error:
raise RuntimeError(f"Input document {in_doc.file} is not valid.")
else: else:
# invalid doc or not of desired format # invalid doc or not of desired format
conv_res = ConversionResult(input=in_doc) conv_res = ConversionResult(input=in_doc)

View File

@ -1,7 +1,7 @@
import copy import copy
import logging import logging
from abc import abstractmethod from abc import abstractmethod
from typing import Iterable, List, Tuple from typing import Iterable, List
import numpy as np import numpy as np
from docling_core.types.doc import BoundingBox, CoordOrigin from docling_core.types.doc import BoundingBox, CoordOrigin
@ -21,8 +21,9 @@ class BaseOcrModel:
self.options = options self.options = options
# Computes the optimum amount and coordinates of rectangles to OCR on a given page # Computes the optimum amount and coordinates of rectangles to OCR on a given page
def get_ocr_rects(self, page: Page) -> Tuple[bool, List[BoundingBox]]: def get_ocr_rects(self, page: Page) -> List[BoundingBox]:
BITMAP_COVERAGE_TRESHOLD = 0.75 BITMAP_COVERAGE_TRESHOLD = 0.75
assert page.size is not None
def find_ocr_rects(size, bitmap_rects): def find_ocr_rects(size, bitmap_rects):
image = Image.new( image = Image.new(
@ -61,7 +62,10 @@ class BaseOcrModel:
return (area_frac, bounding_boxes) # fraction covered # boxes return (area_frac, bounding_boxes) # fraction covered # boxes
if page._backend is not None:
bitmap_rects = page._backend.get_bitmap_rects() bitmap_rects = page._backend.get_bitmap_rects()
else:
bitmap_rects = []
coverage, ocr_rects = find_ocr_rects(page.size, bitmap_rects) coverage, ocr_rects = find_ocr_rects(page.size, bitmap_rects)
# return full-page rectangle if sufficiently covered with bitmaps # return full-page rectangle if sufficiently covered with bitmaps
@ -76,7 +80,7 @@ class BaseOcrModel:
) )
] ]
# return individual rectangles if the bitmap coverage is smaller # return individual rectangles if the bitmap coverage is smaller
elif coverage < BITMAP_COVERAGE_TRESHOLD: else: # coverage <= BITMAP_COVERAGE_TRESHOLD:
return ocr_rects return ocr_rects
# Filters OCR cells by dropping any OCR cell that intersects with an existing programmatic cell. # Filters OCR cells by dropping any OCR cell that intersects with an existing programmatic cell.

View File

@ -1,16 +1,12 @@
import copy import copy
import random import random
from typing import Tuple from typing import List, Union
from deepsearch_glm.nlp_utils import init_nlp_model from deepsearch_glm.nlp_utils import init_nlp_model
from deepsearch_glm.utils.doc_utils import ( from deepsearch_glm.utils.doc_utils import to_docling_document
to_docling_document,
to_legacy_document_format,
)
from deepsearch_glm.utils.load_pretrained_models import load_pretrained_nlp_models from deepsearch_glm.utils.load_pretrained_models import load_pretrained_nlp_models
from docling_core.types import BaseText from docling_core.types import BaseText
from docling_core.types import Document as DsDocument from docling_core.types import Document as DsDocument
from docling_core.types import Document as DsLegacyDocument
from docling_core.types import DocumentDescription as DsDocumentDescription from docling_core.types import DocumentDescription as DsDocumentDescription
from docling_core.types import FileInfoObject as DsFileInfoObject from docling_core.types import FileInfoObject as DsFileInfoObject
from docling_core.types import PageDimensions, PageReference, Prov, Ref from docling_core.types import PageDimensions, PageReference, Prov, Ref
@ -42,7 +38,7 @@ class GlmModel:
def _to_legacy_document(self, conv_res) -> DsDocument: def _to_legacy_document(self, conv_res) -> DsDocument:
title = "" title = ""
desc = DsDocumentDescription(logs=[]) desc: DsDocumentDescription = DsDocumentDescription(logs=[])
page_hashes = [ page_hashes = [
PageReference( PageReference(
@ -60,9 +56,9 @@ class GlmModel:
page_hashes=page_hashes, page_hashes=page_hashes,
) )
main_text = [] main_text: List[Union[Ref, BaseText]] = []
tables = [] tables: List[DsSchemaTable] = []
figures = [] figures: List[Figure] = []
page_no_to_page = {p.page_no: p for p in conv_res.pages} page_no_to_page = {p.page_no: p for p in conv_res.pages}
@ -146,11 +142,16 @@ class GlmModel:
yield [rspan, cspan] yield [rspan, cspan]
spans = list(make_spans(cell)) spans = list(make_spans(cell))
if cell.bbox is not None:
bbox = cell.bbox.to_bottom_left_origin(
page_no_to_page[element.page_no].size.height
).as_tuple()
else:
bbox = None
table_data[i][j] = TableCell( table_data[i][j] = TableCell(
text=cell.text, text=cell.text,
bbox=cell.bbox.to_bottom_left_origin( bbox=bbox,
page_no_to_page[element.page_no].size.height
).as_tuple(),
# col=j, # col=j,
# row=i, # row=i,
spans=spans, spans=spans,
@ -204,7 +205,7 @@ class GlmModel:
for p in conv_res.pages for p in conv_res.pages
] ]
ds_doc = DsDocument( ds_doc: DsDocument = DsDocument(
name=title, name=title,
description=desc, description=desc,
file_info=file_info, file_info=file_info,
@ -216,9 +217,7 @@ class GlmModel:
return ds_doc return ds_doc
def __call__( def __call__(self, conv_res: ConversionResult) -> DoclingDocument:
self, conv_res: ConversionResult
) -> Tuple[DsLegacyDocument, DoclingDocument]:
ds_doc = self._to_legacy_document(conv_res) ds_doc = self._to_legacy_document(conv_res)
ds_doc_dict = ds_doc.model_dump(by_alias=True) ds_doc_dict = ds_doc.model_dump(by_alias=True)

View File

@ -40,6 +40,8 @@ class EasyOcrModel(BaseOcrModel):
return return
for page in page_batch: for page in page_batch:
assert page._backend is not None
ocr_rects = self.get_ocr_rects(page) ocr_rects = self.get_ocr_rects(page)
all_ocr_cells = [] all_ocr_cells = []

View File

@ -47,7 +47,7 @@ class LayoutModel(BasePageModel):
def __init__(self, artifacts_path: Path): def __init__(self, artifacts_path: Path):
self.layout_predictor = LayoutPredictor(artifacts_path) # TODO temporary self.layout_predictor = LayoutPredictor(artifacts_path) # TODO temporary
def postprocess(self, clusters: List[Cluster], cells: List[Cell], page_height): def postprocess(self, clusters_in: List[Cluster], cells: List[Cell], page_height):
MIN_INTERSECTION = 0.2 MIN_INTERSECTION = 0.2
CLASS_THRESHOLDS = { CLASS_THRESHOLDS = {
DocItemLabel.CAPTION: 0.35, DocItemLabel.CAPTION: 0.35,
@ -78,9 +78,9 @@ class LayoutModel(BasePageModel):
start_time = time.time() start_time = time.time()
# Apply Confidence Threshold to cluster predictions # Apply Confidence Threshold to cluster predictions
# confidence = self.conf_threshold # confidence = self.conf_threshold
clusters_out = [] clusters_mod = []
for cluster in clusters: for cluster in clusters_in:
confidence = CLASS_THRESHOLDS[cluster.label] confidence = CLASS_THRESHOLDS[cluster.label]
if cluster.confidence >= confidence: if cluster.confidence >= confidence:
# annotation["created_by"] = "high_conf_pred" # annotation["created_by"] = "high_conf_pred"
@ -88,10 +88,10 @@ class LayoutModel(BasePageModel):
# Remap class labels where needed. # Remap class labels where needed.
if cluster.label in CLASS_REMAPPINGS.keys(): if cluster.label in CLASS_REMAPPINGS.keys():
cluster.label = CLASS_REMAPPINGS[cluster.label] cluster.label = CLASS_REMAPPINGS[cluster.label]
clusters_out.append(cluster) clusters_mod.append(cluster)
# map to dictionary clusters and cells, with bottom left origin # map to dictionary clusters and cells, with bottom left origin
clusters = [ clusters_orig = [
{ {
"id": c.id, "id": c.id,
"bbox": list( "bbox": list(
@ -101,7 +101,7 @@ class LayoutModel(BasePageModel):
"cell_ids": [], "cell_ids": [],
"type": c.label, "type": c.label,
} }
for c in clusters for c in clusters_in
] ]
clusters_out = [ clusters_out = [
@ -115,9 +115,11 @@ class LayoutModel(BasePageModel):
"cell_ids": [], "cell_ids": [],
"type": c.label, "type": c.label,
} }
for c in clusters_out for c in clusters_mod
] ]
del clusters_mod
raw_cells = [ raw_cells = [
{ {
"id": c.id, "id": c.id,
@ -151,7 +153,7 @@ class LayoutModel(BasePageModel):
# Assign orphan cells with lower confidence predictions # Assign orphan cells with lower confidence predictions
clusters_out, orphan_cell_indices = lu.assign_orphans_with_low_conf_pred( clusters_out, orphan_cell_indices = lu.assign_orphans_with_low_conf_pred(
clusters_out, clusters, raw_cells, orphan_cell_indices clusters_out, clusters_orig, raw_cells, orphan_cell_indices
) )
# Refresh the cell_ids assignment, after creating new clusters using low conf predictions # Refresh the cell_ids assignment, after creating new clusters using low conf predictions
@ -180,7 +182,7 @@ class LayoutModel(BasePageModel):
) = lu.cell_id_state_map(clusters_out, cell_count) ) = lu.cell_id_state_map(clusters_out, cell_count)
clusters_out, orphan_cell_indices = lu.set_orphan_as_text( clusters_out, orphan_cell_indices = lu.set_orphan_as_text(
clusters_out, clusters, raw_cells, orphan_cell_indices clusters_out, clusters_orig, raw_cells, orphan_cell_indices
) )
_log.debug("---- 5. Merge Cells & and adapt the bounding boxes") _log.debug("---- 5. Merge Cells & and adapt the bounding boxes")
@ -239,34 +241,41 @@ class LayoutModel(BasePageModel):
end_time = time.time() - start_time end_time = time.time() - start_time
_log.debug(f"Finished post processing in seconds={end_time:.3f}") _log.debug(f"Finished post processing in seconds={end_time:.3f}")
cells_out = [ cells_out_new = [
Cell( Cell(
id=c["id"], id=c["id"], # type: ignore
bbox=BoundingBox.from_tuple( bbox=BoundingBox.from_tuple(
coord=c["bbox"], origin=CoordOrigin.BOTTOMLEFT coord=c["bbox"], origin=CoordOrigin.BOTTOMLEFT # type: ignore
).to_top_left_origin(page_height), ).to_top_left_origin(page_height),
text=c["text"], text=c["text"], # type: ignore
) )
for c in cells_out for c in cells_out
] ]
del cells_out
clusters_out_new = [] clusters_out_new = []
for c in clusters_out: for c in clusters_out:
cluster_cells = [ccell for ccell in cells_out if ccell.id in c["cell_ids"]] cluster_cells = [
ccell for ccell in cells_out_new if ccell.id in c["cell_ids"] # type: ignore
]
c_new = Cluster( c_new = Cluster(
id=c["id"], id=c["id"], # type: ignore
bbox=BoundingBox.from_tuple( bbox=BoundingBox.from_tuple(
coord=c["bbox"], origin=CoordOrigin.BOTTOMLEFT coord=c["bbox"], origin=CoordOrigin.BOTTOMLEFT # type: ignore
).to_top_left_origin(page_height), ).to_top_left_origin(page_height),
confidence=c["confidence"], confidence=c["confidence"], # type: ignore
label=DocItemLabel(c["type"]), label=DocItemLabel(c["type"]),
cells=cluster_cells, cells=cluster_cells,
) )
clusters_out_new.append(c_new) clusters_out_new.append(c_new)
return clusters_out_new, cells_out return clusters_out_new, cells_out_new
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]: def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
for page in page_batch: for page in page_batch:
assert page.size is not None
clusters = [] clusters = []
for ix, pred_item in enumerate( for ix, pred_item in enumerate(
self.layout_predictor.predict(page.get_image(scale=1.0)) self.layout_predictor.predict(page.get_image(scale=1.0))

View File

@ -53,6 +53,8 @@ class PageAssembleModel(BasePageModel):
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]: def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
for page in page_batch: for page in page_batch:
assert page._backend is not None
assert page.predictions.layout is not None
# assembles some JSON output page by page. # assembles some JSON output page by page.
elements: List[PageElement] = [] elements: List[PageElement] = []

View File

@ -40,7 +40,9 @@ class PagePreprocessingModel(BasePageModel):
# Extract and populate the page cells and store it in the page object # Extract and populate the page cells and store it in the page object
def _parse_page_cells(self, page: Page) -> Page: def _parse_page_cells(self, page: Page) -> Page:
page.cells = page._backend.get_text_cells() assert page._backend is not None
page.cells = list(page._backend.get_text_cells())
# DEBUG code: # DEBUG code:
def draw_text_boxes(image, cells): def draw_text_boxes(image, cells):

View File

@ -24,8 +24,6 @@ class TableStructureModel(BasePageModel):
self.enabled = enabled self.enabled = enabled
if self.enabled: if self.enabled:
artifacts_path: Path = artifacts_path
if self.mode == TableFormerMode.ACCURATE: if self.mode == TableFormerMode.ACCURATE:
artifacts_path = artifacts_path / "fat" artifacts_path = artifacts_path / "fat"
@ -40,6 +38,8 @@ class TableStructureModel(BasePageModel):
self.scale = 2.0 # Scale up table input images to 144 dpi self.scale = 2.0 # Scale up table input images to 144 dpi
def draw_table_and_cells(self, page: Page, tbl_list: List[Table]): def draw_table_and_cells(self, page: Page, tbl_list: List[Table]):
assert page._backend is not None
image = ( image = (
page._backend.get_page_image() page._backend.get_page_image()
) # make new image to avoid drawing on the saved ones ) # make new image to avoid drawing on the saved ones
@ -50,6 +50,7 @@ class TableStructureModel(BasePageModel):
draw.rectangle([(x0, y0), (x1, y1)], outline="red") draw.rectangle([(x0, y0), (x1, y1)], outline="red")
for tc in table_element.table_cells: for tc in table_element.table_cells:
if tc.bbox is not None:
x0, y0, x1, y1 = tc.bbox.as_tuple() x0, y0, x1, y1 = tc.bbox.as_tuple()
if tc.column_header: if tc.column_header:
width = 3 width = 3
@ -71,6 +72,9 @@ class TableStructureModel(BasePageModel):
return return
for page in page_batch: for page in page_batch:
assert page._backend is not None
assert page.predictions.layout is not None
assert page.size is not None
page.predictions.tablestructure = TableStructurePrediction() # dummy page.predictions.tablestructure = TableStructurePrediction() # dummy
@ -132,7 +136,7 @@ class TableStructureModel(BasePageModel):
element["bbox"]["token"] = text_piece element["bbox"]["token"] = text_piece
tc = TableCell.model_validate(element) tc = TableCell.model_validate(element)
if self.do_cell_matching: if self.do_cell_matching and tc.bbox is not None:
tc.bbox = tc.bbox.scaled(1 / self.scale) tc.bbox = tc.bbox.scaled(1 / self.scale)
table_cells.append(tc) table_cells.append(tc)

View File

@ -2,7 +2,7 @@ import io
import logging import logging
import tempfile import tempfile
from subprocess import DEVNULL, PIPE, Popen from subprocess import DEVNULL, PIPE, Popen
from typing import Iterable, Tuple from typing import Iterable, Optional, Tuple
import pandas as pd import pandas as pd
from docling_core.types.doc import BoundingBox, CoordOrigin from docling_core.types.doc import BoundingBox, CoordOrigin
@ -22,8 +22,8 @@ class TesseractOcrCliModel(BaseOcrModel):
self.scale = 3 # multiplier for 72 dpi == 216 dpi. self.scale = 3 # multiplier for 72 dpi == 216 dpi.
self._name = None self._name: Optional[str] = None
self._version = None self._version: Optional[str] = None
if self.enabled: if self.enabled:
try: try:
@ -40,7 +40,7 @@ class TesseractOcrCliModel(BaseOcrModel):
def _get_name_and_version(self) -> Tuple[str, str]: def _get_name_and_version(self) -> Tuple[str, str]:
if self._name != None and self._version != None: if self._name != None and self._version != None:
return self._name, self._version return self._name, self._version # type: ignore
cmd = [self.options.tesseract_cmd, "--version"] cmd = [self.options.tesseract_cmd, "--version"]
@ -109,6 +109,8 @@ class TesseractOcrCliModel(BaseOcrModel):
return return
for page in page_batch: for page in page_batch:
assert page._backend is not None
ocr_rects = self.get_ocr_rects(page) ocr_rects = self.get_ocr_rects(page)
all_ocr_cells = [] all_ocr_cells = []

View File

@ -1,7 +1,6 @@
import logging import logging
from typing import Iterable from typing import Iterable
import numpy
from docling_core.types.doc import BoundingBox, CoordOrigin from docling_core.types.doc import BoundingBox, CoordOrigin
from docling.datamodel.base_models import OcrCell, Page from docling.datamodel.base_models import OcrCell, Page
@ -69,6 +68,9 @@ class TesseractOcrModel(BaseOcrModel):
return return
for page in page_batch: for page in page_batch:
assert page._backend is not None
assert self.reader is not None
ocr_rects = self.get_ocr_rects(page) ocr_rects = self.get_ocr_rects(page)
all_ocr_cells = [] all_ocr_cells = []

View File

@ -34,12 +34,6 @@ class BasePipeline(ABC):
conv_res = ConversionResult(input=in_doc) conv_res = ConversionResult(input=in_doc)
_log.info(f"Processing document {in_doc.file.name}") _log.info(f"Processing document {in_doc.file.name}")
if not in_doc.valid:
conv_res.status = ConversionStatus.FAILURE
return conv_res
# TODO: propagate option for raises_on_error?
try: try:
# These steps are building and assembling the structure of the # These steps are building and assembling the structure of the
# output DoclingDocument # output DoclingDocument
@ -155,7 +149,7 @@ class PaginatedPipeline(BasePipeline): # TODO this is a bad name.
pass pass
end_pb_time = time.time() - start_pb_time end_pb_time = time.time() - start_pb_time
_log.info(f"Finished converting page batch time={end_pb_time:.3f}") _log.debug(f"Finished converting page batch time={end_pb_time:.3f}")
except Exception as e: except Exception as e:
conv_res.status = ConversionStatus.FAILURE conv_res.status = ConversionStatus.FAILURE
@ -178,7 +172,7 @@ class PaginatedPipeline(BasePipeline): # TODO this is a bad name.
) -> ConversionStatus: ) -> ConversionStatus:
status = ConversionStatus.SUCCESS status = ConversionStatus.SUCCESS
for page in conv_res.pages: for page in conv_res.pages:
if not page._backend.is_valid(): if page._backend is None or not page._backend.is_valid():
conv_res.errors.append( conv_res.errors.append(
ErrorItem( ErrorItem(
component_type=DoclingComponentType.DOCUMENT_BACKEND, component_type=DoclingComponentType.DOCUMENT_BACKEND,

View File

@ -120,7 +120,8 @@ class StandardPdfPipeline(PaginatedPipeline):
return None return None
def initialize_page(self, doc: InputDocument, page: Page) -> Page: def initialize_page(self, doc: InputDocument, page: Page) -> Page:
page._backend = doc._backend.load_page(page.page_no) page._backend = doc._backend.load_page(page.page_no) # type: ignore
if page._backend is not None and page._backend.is_valid():
page.size = page._backend.get_size() page.size = page._backend.get_size()
return page return page
@ -133,7 +134,7 @@ class StandardPdfPipeline(PaginatedPipeline):
all_body = [] all_body = []
for p in conv_res.pages: for p in conv_res.pages:
assert p.assembled is not None
for el in p.assembled.body: for el in p.assembled.body:
all_body.append(el) all_body.append(el)
for el in p.assembled.headers: for el in p.assembled.headers:

View File

@ -1,9 +1,9 @@
import json import json
import logging import logging
import time
from pathlib import Path from pathlib import Path
from typing import Iterable from typing import Iterable
import time
import yaml import yaml
from docling.datamodel.base_models import ConversionStatus from docling.datamodel.base_models import ConversionStatus
@ -122,7 +122,7 @@ def main():
raises_on_error=False, # to let conversion run through all and examine results at the end raises_on_error=False, # to let conversion run through all and examine results at the end
) )
success_count, partial_success_count, failure_count = export_documents( success_count, partial_success_count, failure_count = export_documents(
conv_results, output_dir=Path("../../examples/scratch") conv_results, output_dir=Path("scratch")
) )
end_time = time.time() - start_time end_time = time.time() - start_time

View File

@ -1,18 +1,14 @@
import json import json
import logging import logging
import time
from pathlib import Path from pathlib import Path
from typing import Iterable
from docling.datamodel.base_models import ConversionStatus, InputFormat import time
from docling.datamodel.document import ConversionResult
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import ( from docling.datamodel.pipeline_options import (
PdfPipelineOptions, PdfPipelineOptions,
TesseractCliOcrOptions,
TesseractOcrOptions,
) )
from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline
_log = logging.getLogger(__name__) _log = logging.getLogger(__name__)
@ -112,7 +108,7 @@ def main():
_log.info(f"Document converted in {end_time:.2f} seconds.") _log.info(f"Document converted in {end_time:.2f} seconds.")
## Export results ## Export results
output_dir = Path("../../examples/scratch") output_dir = Path("scratch")
output_dir.mkdir(parents=True, exist_ok=True) output_dir.mkdir(parents=True, exist_ok=True)
doc_filename = conv_result.input.file.stem doc_filename = conv_result.input.file.stem

View File

@ -1,7 +1,8 @@
import logging import logging
import time
from pathlib import Path from pathlib import Path
import time
from docling.datamodel.base_models import FigureElement, InputFormat, Table from docling.datamodel.base_models import FigureElement, InputFormat, Table
from docling.datamodel.pipeline_options import PdfPipelineOptions from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption from docling.document_converter import DocumentConverter, PdfFormatOption
@ -15,7 +16,7 @@ def main():
logging.basicConfig(level=logging.INFO) logging.basicConfig(level=logging.INFO)
input_doc_path = Path("./tests/data/2206.01062.pdf") input_doc_path = Path("./tests/data/2206.01062.pdf")
output_dir = Path("../../examples/scratch") output_dir = Path("scratch")
# Important: For operating with page images, we must keep them, otherwise the DocumentConverter # Important: For operating with page images, we must keep them, otherwise the DocumentConverter
# will destroy them for cleaning up memory. # will destroy them for cleaning up memory.

View File

@ -1,9 +1,9 @@
import datetime import datetime
import logging import logging
import time
from pathlib import Path from pathlib import Path
import pandas as pd import pandas as pd
import time
from docling.datamodel.base_models import InputFormat from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions from docling.datamodel.pipeline_options import PdfPipelineOptions
@ -20,7 +20,7 @@ def main():
logging.basicConfig(level=logging.INFO) logging.basicConfig(level=logging.INFO)
input_doc_path = Path("./tests/data/2206.01062.pdf") input_doc_path = Path("./tests/data/2206.01062.pdf")
output_dir = Path("../../examples/scratch") output_dir = Path("scratch")
# Important: For operating with page images, we must keep them, otherwise the DocumentConverter # Important: For operating with page images, we must keep them, otherwise the DocumentConverter
# will destroy them for cleaning up memory. # will destroy them for cleaning up memory.

View File

@ -1,8 +1,8 @@
import logging import logging
import time
from pathlib import Path from pathlib import Path
import pandas as pd import pandas as pd
import time
from docling.document_converter import DocumentConverter from docling.document_converter import DocumentConverter
@ -13,7 +13,7 @@ def main():
logging.basicConfig(level=logging.INFO) logging.basicConfig(level=logging.INFO)
input_doc_path = Path("./tests/data/2206.01062.pdf") input_doc_path = Path("./tests/data/2206.01062.pdf")
output_dir = Path("../../examples/scratch") output_dir = Path("scratch")
doc_converter = DocumentConverter() doc_converter = DocumentConverter()

View File

@ -7,4 +7,4 @@ print(
result.document.export_to_markdown() result.document.export_to_markdown()
) # output: ## Docling Technical Report [...]" ) # output: ## Docling Technical Report [...]"
# if the legacy output is needed, use this version # if the legacy output is needed, use this version
# print(result.legacy_output.export_to_markdown()) # output: ## Docling Technical Report [...]" # print(result.legacy_document.export_to_markdown()) # output: ## Docling Technical Report [...]"

View File

@ -4,7 +4,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"<a href=\"https://colab.research.google.com/github/DS4SD/docling/blob/main/examples/rag_llamaindex.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" "<a href=\"https://colab.research.google.com/github/DS4SD/docling/blob/main/docs/examples/rag_llamaindex.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
] ]
}, },
{ {

View File

@ -53,7 +53,7 @@ doc_converter = (
conv_results = doc_converter.convert_all(input_paths) conv_results = doc_converter.convert_all(input_paths)
for res in conv_results: for res in conv_results:
out_path = Path("../../examples/scratch") out_path = Path("scratch")
print( print(
f"Document {res.input.file.name} converted." f"Document {res.input.file.name} converted."
f"\nSaved markdown output to: {str(out_path)}" f"\nSaved markdown output to: {str(out_path)}"

View File

@ -1,7 +1,5 @@
{% extends "base.html" %} {% extends "base.html" %}
{#
{% block announce %} {% block announce %}
<p>🎉 Docling is now officially supported in LlamaIndex! <a href="{{ 'integrations/llamaindex/' | url }}">Check it out</a>!</p> <p>🎉 Docling is going v2, <a href="{{ 'v2' | url }}">check out</a> what's new and how to get started!</p>
{% endblock %} {% endblock %}
#}

107
docs/v2.md Normal file
View File

@ -0,0 +1,107 @@
## What's new
Docling v2 introduces several new features:
- Understands and converts PDF, MS Word, MS Powerpoint, HTML and several image formats
- Produces a new, universal document representation which can encapsulate document hierarchy
- Comes with a fresh new API and CLI
## Migration from v1
### Setting up a `DocumentConverter`
To accomodate many input formats, we changed the way you need to set up your `DocumentConverter` object.
You can now define a list of allowed formats on the `DocumentConverter` initialization, and specify custom options
per-format if desired. By default, all supported formats are allowed. If you don't provide `format_options`, defaults
will be used for all `allowed_formats`.
Format options can include the pipeline class to use, the options to provide to the pipeline, and the document backend.
They are provided as format-specific types, such as `PdfFormatOption` or `WordFormatOption`, as seen below.
```python
from docling.document_converter import DocumentConverter
from docling.datamodel.base_models import InputFormat
from docling.document_converter import (
DocumentConverter,
PdfFormatOption,
WordFormatOption,
)
from docling.pipeline.simple_pipeline import SimplePipeline
from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
## Default initialization still works as before:
# doc_converter = DocumentConverter()
## Custom options are now defined per format.
doc_converter = (
DocumentConverter( # all of the below is optional, has internal defaults.
allowed_formats=[
InputFormat.PDF,
InputFormat.IMAGE,
InputFormat.DOCX,
InputFormat.HTML,
InputFormat.PPTX,
], # whitelist formats, non-matching files are ignored.
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_cls=StandardPdfPipeline, backend=PyPdfiumDocumentBackend
),
InputFormat.DOCX: WordFormatOption(
pipeline_cls=SimplePipeline # , backend=MsWordDocumentBackend
),
},
)
)
```
Note: If you work only with defaults, all remains the same as in Docling v1.
### Converting documents
We have simplified the way you can feed input to the `DocumentConverter` and renamed the conversion methods for
better semantics. You can now call the conversion directly with a single file, or a list of input files,
or `DocumentStream` objects, without constructing a `DocumentConversionInput` object first.
* `DocumentConverter.convert` now converts a single file input (previously `DocumentConverter.convert_single`).
* `DocumentConverter.convert_all` now converts many files at once (previously `DocumentConverter.convert`).
```python
...
## Convert a single file (from URL or local path)
conv_result = doc_converter.convert("https://arxiv.org/pdf/2408.09869") # previously `convert_single`
## Convert several files at once:
input_files = [
"tests/data/wiki_duck.html",
"tests/data/word_sample.docx",
"tests/data/lorem_ipsum.docx",
"tests/data/powerpoint_sample.pptx",
"tests/data/2305.03393v1-pg9-img.png",
"tests/data/2206.01062.pdf",
]
conv_results_iter = doc_converter.convert_all(input_files) # previously `convert_batch`
```
Through the `raises_on_error` argument, you can also control if the conversion should raise exceptions when first
encountering a problem, or resiliently convert all files first and reflect errors in each file's conversion status.
By default, any error is immediately raised and the conversion aborts (previously, exceptions were swallowed).
```python
...
conv_results_iter = doc_converter.convert_all(input_files, raises_on_error=False) # previously `convert_batch`
```
### Exporting documents into JSON, Markdown, Doctags
We have simplified how you can access and export the converted document data, too.
TBD.
### CLI
TBD.

View File

@ -1,369 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# RAG with Docling and 🦜🔗 LangChain"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"# requirements for this example:\n",
"%pip install -qq docling docling-core python-dotenv langchain-text-splitters langchain-huggingface langchain-milvus"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import os\n",
"\n",
"from dotenv import load_dotenv\n",
"\n",
"load_dotenv()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import warnings\n",
"\n",
"warnings.filterwarnings(action=\"ignore\", category=UserWarning, module=\"pydantic|torch\")\n",
"warnings.filterwarnings(action=\"ignore\", category=FutureWarning, module=\"easyocr\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Loader and splitter"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below we set up:\n",
"- a `Loader` which will be used to create LangChain documents, and\n",
"- a splitter, which will be used to split these documents"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from enum import Enum\n",
"from typing import Iterator\n",
"\n",
"from langchain_core.document_loaders import BaseLoader\n",
"from langchain_core.documents import Document as LCDocument\n",
"from pydantic import BaseModel\n",
"\n",
"from docling.document_converter import DocumentConverter\n",
"\n",
"\n",
"class DocumentMetadata(BaseModel):\n",
" dl_doc_hash: str\n",
" # source: str\n",
"\n",
"\n",
"class DoclingPDFLoader(BaseLoader):\n",
" class ParseType(str, Enum):\n",
" MARKDOWN = \"markdown\"\n",
" # JSON = \"json\"\n",
"\n",
" def __init__(self, file_path: str | list[str], parse_type: ParseType) -> None:\n",
" self._file_paths = file_path if isinstance(file_path, list) else [file_path]\n",
" self._parse_type = parse_type\n",
" self._converter = DocumentConverter()\n",
"\n",
" def lazy_load(self) -> Iterator[LCDocument]:\n",
" for source in self._file_paths:\n",
" dl_doc = self._converter.convert_single(source).output\n",
" match self._parse_type:\n",
" case self.ParseType.MARKDOWN:\n",
" text = dl_doc.export_to_markdown()\n",
" # case self.ParseType.JSON:\n",
" # text = dl_doc.model_dump_json()\n",
" case _:\n",
" raise RuntimeError(\n",
" f\"Unexpected parse type encountered: {self._parse_type}\"\n",
" )\n",
" lc_doc = LCDocument(\n",
" page_content=text,\n",
" metadata=DocumentMetadata(\n",
" dl_doc_hash=dl_doc.file_info.document_hash,\n",
" ).model_dump(),\n",
" )\n",
" yield lc_doc"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"FILE_PATH = \"https://arxiv.org/pdf/2206.01062\" # DocLayNet paper"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1b38d07d5fed4618a44ecf261e1e5c44",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Fetching 7 files: 0%| | 0/7 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
"\n",
"loader = DoclingPDFLoader(\n",
" file_path=FILE_PATH,\n",
" parse_type=DoclingPDFLoader.ParseType.MARKDOWN,\n",
")\n",
"text_splitter = RecursiveCharacterTextSplitter(\n",
" chunk_size=1000,\n",
" chunk_overlap=200,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now used the above-defined objects to get the document splits:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"docs = loader.load()\n",
"splits = text_splitter.split_documents(docs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Embeddings"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"from langchain_huggingface.embeddings import HuggingFaceEmbeddings\n",
"\n",
"HF_EMBED_MODEL_ID = \"BAAI/bge-small-en-v1.5\"\n",
"embeddings = HuggingFaceEmbeddings(model_name=HF_EMBED_MODEL_ID)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Vector store"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"from tempfile import TemporaryDirectory\n",
"\n",
"from langchain_milvus import Milvus\n",
"\n",
"MILVUS_URI = os.environ.get(\n",
" \"MILVUS_URL\", f\"{(tmp_dir := TemporaryDirectory()).name}/milvus_demo.db\"\n",
")\n",
"\n",
"vectorstore = Milvus.from_documents(\n",
" splits,\n",
" embeddings,\n",
" connection_args={\"uri\": MILVUS_URI},\n",
" drop_old=True,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### LLM"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n",
"Token is valid (permission: write).\n",
"Your token has been saved to /Users/pva/.cache/huggingface/token\n",
"Login successful\n"
]
}
],
"source": [
"from langchain_huggingface import HuggingFaceEndpoint\n",
"\n",
"HF_API_KEY = os.environ.get(\"HF_API_KEY\")\n",
"HF_LLM_MODEL_ID = \"mistralai/Mistral-7B-Instruct-v0.3\"\n",
"\n",
"llm = HuggingFaceEndpoint(\n",
" repo_id=HF_LLM_MODEL_ID,\n",
" huggingfacehub_api_token=HF_API_KEY,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## RAG"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"from typing import Iterable\n",
"\n",
"from langchain_core.documents import Document as LCDocument\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import PromptTemplate\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",
"\n",
"def format_docs(docs: Iterable[LCDocument]):\n",
" return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
"\n",
"\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"prompt = PromptTemplate.from_template(\n",
" \"Context information is below.\\n---------------------\\n{context}\\n---------------------\\nGiven the context information and not prior knowledge, answer the query.\\nQuery: {question}\\nAnswer:\\n\"\n",
")\n",
"\n",
"rag_chain = (\n",
" {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n",
" | prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The human annotation of DocLayNet was performed on 80863 pages.\\n\\nExplanation:\\nThe information is found in the paragraph \"DocLayNet contains 80863 PDF pages\" in the context.'"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rag_chain.invoke(\"How many pages were human annotated for DocLayNet?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -1,434 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a href=\"https://colab.research.google.com/github/DS4SD/docling/blob/main/examples/rag_llamaindex.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# RAG with Docling and 🦙 LlamaIndex"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Overview"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"LlamaIndex extensions `DoclingReader` and `DoclingNodeParser` presented in this notebook seamlessly integrate Docling into LlamaIndex, enabling you to:\n",
"- use PDF documents in your LLM applications with ease and speed, and\n",
"- leverage Docling's rich format for advanced, document-native grounding."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- 👉 For best conversion speed, use GPU acceleration whenever available; e.g. if running on Colab, use GPU-enabled runtime.\n",
"- Notebook uses HuggingFace's Inference API; for increased LLM quota, token can be provided via env var `HF_TOKEN`.\n",
"- Requirements can be installed as shown below (`--no-warn-conflicts` meant for Colab's pre-populated Python env; feel free to remove for stricter usage):"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install -q --progress-bar off --no-warn-conflicts llama-index-core llama-index-readers-docling llama-index-node-parser-docling llama-index-embeddings-huggingface llama-index-llms-huggingface-api llama-index-readers-file python-dotenv"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from pathlib import Path\n",
"from tempfile import mkdtemp\n",
"from warnings import filterwarnings\n",
"\n",
"from dotenv import load_dotenv\n",
"\n",
"\n",
"def _get_env_from_colab_or_os(key):\n",
" try:\n",
" from google.colab import userdata\n",
"\n",
" try:\n",
" return userdata.get(key)\n",
" except userdata.SecretNotFoundError:\n",
" pass\n",
" except ImportError:\n",
" pass\n",
" return os.getenv(key)\n",
"\n",
"\n",
"load_dotenv()\n",
"\n",
"filterwarnings(action=\"ignore\", category=UserWarning, module=\"pydantic\")\n",
"filterwarnings(action=\"ignore\", category=FutureWarning, module=\"easyocr\")\n",
"# https://github.com/huggingface/transformers/issues/5486:\n",
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now define the main parameters:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.embeddings.huggingface import HuggingFaceEmbedding\n",
"from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI\n",
"\n",
"EMBED_MODEL = HuggingFaceEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")\n",
"MILVUS_URI = str(Path(mkdtemp()) / \"docling.db\")\n",
"GEN_MODEL = HuggingFaceInferenceAPI(\n",
" token=_get_env_from_colab_or_os(\"HF_TOKEN\"),\n",
" model_name=\"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n",
")\n",
"SOURCE = \"https://arxiv.org/pdf/2408.09869\" # Docling Technical Report\n",
"QUERY = \"Which are the main AI models in Docling?\"\n",
"\n",
"embed_dim = len(EMBED_MODEL.get_text_embedding(\"hi\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using Markdown export"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To create a simple RAG pipeline, we can:\n",
"- define a `DoclingReader`, which by default exports to Markdown, and\n",
"- use a standard node parser for these Markdown-based docs, e.g. a `MarkdownNodeParser`"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Q: Which are the main AI models in Docling?\n",
"A: 1. A layout analysis model, an accurate object-detector for page elements. 2. TableFormer, a state-of-the-art table structure recognition model.\n",
"\n",
"Sources:\n"
]
},
{
"data": {
"text/plain": [
"[('3.2 AI models\\n\\nAs part of Docling, we initially release two highly capable AI models to the open-source community, which have been developed and published recently by our team. The first model is a layout analysis model, an accurate object-detector for page elements [13]. The second model is TableFormer [12, 9], a state-of-the-art table structure recognition model. We provide the pre-trained weights (hosted on huggingface) and a separate package for the inference code as docling-ibm-models . Both models are also powering the open-access deepsearch-experience, our cloud-native service for knowledge exploration tasks.',\n",
" {'dl_doc_hash': '556ad9e23b6d2245e36b3208758cf0c8a709382bb4c859eacfe8e73b14e635aa',\n",
" 'Header_2': '3.2 AI models'}),\n",
" (\"5 Applications\\n\\nThanks to the high-quality, richly structured document conversion achieved by Docling, its output qualifies for numerous downstream applications. For example, Docling can provide a base for detailed enterprise document search, passage retrieval or classification use-cases, or support knowledge extraction pipelines, allowing specific treatment of different structures in the document, such as tables, figures, section structure or references. For popular generative AI application patterns, such as retrieval-augmented generation (RAG), we provide quackling , an open-source package which capitalizes on Docling's feature-rich document output to enable document-native optimized vector embedding and chunking. It plugs in seamlessly with LLM frameworks such as LlamaIndex [8]. Since Docling is fast, stable and cheap to run, it also makes for an excellent choice to build document-derived datasets. With its powerful table structure recognition, it provides significant benefit to automated knowledge-base construction [11, 10]. Docling is also integrated within the open IBM data prep kit [6], which implements scalable data transforms to build large-scale multi-modal training datasets.\",\n",
" {'dl_doc_hash': '556ad9e23b6d2245e36b3208758cf0c8a709382bb4c859eacfe8e73b14e635aa',\n",
" 'Header_2': '5 Applications'})]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from llama_index.core import StorageContext, VectorStoreIndex\n",
"from llama_index.core.node_parser import MarkdownNodeParser\n",
"from llama_index.readers.docling import DoclingReader\n",
"from llama_index.vector_stores.milvus import MilvusVectorStore\n",
"\n",
"reader = DoclingReader()\n",
"node_parser = MarkdownNodeParser()\n",
"\n",
"vector_store = MilvusVectorStore(\n",
" uri=str(Path(mkdtemp()) / \"docling.db\"), # or set as needed\n",
" dim=embed_dim,\n",
" overwrite=True,\n",
")\n",
"index = VectorStoreIndex.from_documents(\n",
" documents=reader.load_data(SOURCE),\n",
" transformations=[node_parser],\n",
" storage_context=StorageContext.from_defaults(vector_store=vector_store),\n",
" embed_model=EMBED_MODEL,\n",
")\n",
"result = index.as_query_engine(llm=GEN_MODEL).query(QUERY)\n",
"print(f\"Q: {QUERY}\\nA: {result.response.strip()}\\n\\nSources:\")\n",
"display([(n.text, n.metadata) for n in result.source_nodes])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using Docling format"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To leverage Docling's rich native format, we:\n",
"- create a `DoclingReader` with JSON export type, and\n",
"- employ a `DoclingNodeParser` in order to appropriately parse that Docling format.\n",
"\n",
"Notice how the sources now also contain document-level grounding (e.g. page number or bounding box information):"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Q: Which are the main AI models in Docling?\n",
"A: The main AI models in Docling are a layout analysis model and TableFormer. The layout analysis model is an accurate object-detector for page elements, and TableFormer is a state-of-the-art table structure recognition model.\n",
"\n",
"Sources:\n"
]
},
{
"data": {
"text/plain": [
"[('As part of Docling, we initially release two highly capable AI models to the open-source community, which have been developed and published recently by our team. The first model is a layout analysis model, an accurate object-detector for page elements [13]. The second model is TableFormer [12, 9], a state-of-the-art table structure recognition model. We provide the pre-trained weights (hosted on huggingface) and a separate package for the inference code as docling-ibm-models . Both models are also powering the open-access deepsearch-experience, our cloud-native service for knowledge exploration tasks.',\n",
" {'dl_doc_hash': '556ad9e23b6d2245e36b3208758cf0c8a709382bb4c859eacfe8e73b14e635aa',\n",
" 'path': '#/main-text/37',\n",
" 'heading': '3.2 AI models',\n",
" 'page': 3,\n",
" 'bbox': [107.36903381347656,\n",
" 330.07513427734375,\n",
" 506.29705810546875,\n",
" 407.3725280761719]}),\n",
" ('With Docling , we open-source a very capable and efficient document conversion tool which builds on the powerful, specialized AI models and datasets for layout analysis and table structure recognition we developed and presented in the recent past [12, 13, 9]. Docling is designed as a simple, self-contained python library with permissive license, running entirely locally on commodity hardware. Its code architecture allows for easy extensibility and addition of new features and models.',\n",
" {'dl_doc_hash': '556ad9e23b6d2245e36b3208758cf0c8a709382bb4c859eacfe8e73b14e635aa',\n",
" 'path': '#/main-text/10',\n",
" 'heading': '1 Introduction',\n",
" 'page': 1,\n",
" 'bbox': [107.33261108398438,\n",
" 83.3067626953125,\n",
" 504.0033874511719,\n",
" 136.45367431640625]})]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from llama_index.node_parser.docling import DoclingNodeParser\n",
"\n",
"reader = DoclingReader(export_type=DoclingReader.ExportType.JSON)\n",
"node_parser = DoclingNodeParser()\n",
"\n",
"vector_store = MilvusVectorStore(\n",
" uri=str(Path(mkdtemp()) / \"docling.db\"), # or set as needed\n",
" dim=embed_dim,\n",
" overwrite=True,\n",
")\n",
"index = VectorStoreIndex.from_documents(\n",
" documents=reader.load_data(SOURCE),\n",
" transformations=[node_parser],\n",
" storage_context=StorageContext.from_defaults(vector_store=vector_store),\n",
" embed_model=EMBED_MODEL,\n",
")\n",
"result = index.as_query_engine(llm=GEN_MODEL).query(QUERY)\n",
"print(f\"Q: {QUERY}\\nA: {result.response.strip()}\\n\\nSources:\")\n",
"display([(n.text, n.metadata) for n in result.source_nodes])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## With Simple Directory Reader"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To demonstrate this usage pattern, we first set up a test document directory."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"from tempfile import mkdtemp\n",
"\n",
"import requests\n",
"\n",
"tmp_dir_path = Path(mkdtemp())\n",
"r = requests.get(SOURCE)\n",
"with open(tmp_dir_path / f\"{Path(SOURCE).name}.pdf\", \"wb\") as out_file:\n",
" out_file.write(r.content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Using the `reader` and `node_parser` definitions from any of the above variants, usage with `SimpleDirectoryReader` then looks as follows:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loading files: 100%|██████████| 1/1 [00:11<00:00, 11.15s/file]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Q: Which are the main AI models in Docling?\n",
"A: The main AI models in Docling are a layout analysis model and TableFormer. The layout analysis model is an accurate object-detector for page elements, and TableFormer is a state-of-the-art table structure recognition model.\n",
"\n",
"Sources:\n"
]
},
{
"data": {
"text/plain": [
"[('As part of Docling, we initially release two highly capable AI models to the open-source community, which have been developed and published recently by our team. The first model is a layout analysis model, an accurate object-detector for page elements [13]. The second model is TableFormer [12, 9], a state-of-the-art table structure recognition model. We provide the pre-trained weights (hosted on huggingface) and a separate package for the inference code as docling-ibm-models . Both models are also powering the open-access deepsearch-experience, our cloud-native service for knowledge exploration tasks.',\n",
" {'file_path': '/var/folders/76/4wwfs06x6835kcwj4186c0nc0000gn/T/tmp4vsev3_r/2408.09869.pdf',\n",
" 'file_name': '2408.09869.pdf',\n",
" 'file_type': 'application/pdf',\n",
" 'file_size': 5566574,\n",
" 'creation_date': '2024-10-09',\n",
" 'last_modified_date': '2024-10-09',\n",
" 'dl_doc_hash': '556ad9e23b6d2245e36b3208758cf0c8a709382bb4c859eacfe8e73b14e635aa',\n",
" 'path': '#/main-text/37',\n",
" 'heading': '3.2 AI models',\n",
" 'page': 3,\n",
" 'bbox': [107.36903381347656,\n",
" 330.07513427734375,\n",
" 506.29705810546875,\n",
" 407.3725280761719]}),\n",
" ('With Docling , we open-source a very capable and efficient document conversion tool which builds on the powerful, specialized AI models and datasets for layout analysis and table structure recognition we developed and presented in the recent past [12, 13, 9]. Docling is designed as a simple, self-contained python library with permissive license, running entirely locally on commodity hardware. Its code architecture allows for easy extensibility and addition of new features and models.',\n",
" {'file_path': '/var/folders/76/4wwfs06x6835kcwj4186c0nc0000gn/T/tmp4vsev3_r/2408.09869.pdf',\n",
" 'file_name': '2408.09869.pdf',\n",
" 'file_type': 'application/pdf',\n",
" 'file_size': 5566574,\n",
" 'creation_date': '2024-10-09',\n",
" 'last_modified_date': '2024-10-09',\n",
" 'dl_doc_hash': '556ad9e23b6d2245e36b3208758cf0c8a709382bb4c859eacfe8e73b14e635aa',\n",
" 'path': '#/main-text/10',\n",
" 'heading': '1 Introduction',\n",
" 'page': 1,\n",
" 'bbox': [107.33261108398438,\n",
" 83.3067626953125,\n",
" 504.0033874511719,\n",
" 136.45367431640625]})]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from llama_index.core import SimpleDirectoryReader\n",
"\n",
"dir_reader = SimpleDirectoryReader(\n",
" input_dir=tmp_dir_path,\n",
" file_extractor={\".pdf\": reader},\n",
")\n",
"\n",
"vector_store = MilvusVectorStore(\n",
" uri=str(Path(mkdtemp()) / \"docling.db\"), # or set as needed\n",
" dim=embed_dim,\n",
" overwrite=True,\n",
")\n",
"index = VectorStoreIndex.from_documents(\n",
" documents=dir_reader.load_data(SOURCE),\n",
" transformations=[node_parser],\n",
" storage_context=StorageContext.from_defaults(vector_store=vector_store),\n",
" embed_model=EMBED_MODEL,\n",
")\n",
"result = index.as_query_engine(llm=GEN_MODEL).query(QUERY)\n",
"print(f\"Q: {QUERY}\\nA: {result.response.strip()}\\n\\nSources:\")\n",
"display([(n.text, n.metadata) for n in result.source_nodes])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

BIN
logo.png

Binary file not shown.

Before

Width:  |  Height:  |  Size: 258 KiB

116
logo.svg
View File

@ -1,116 +0,0 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="100%" height="100%" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xml:space="preserve" xmlns:serif="http://www.serif.com/" style="fill-rule:evenodd;clip-rule:evenodd;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:1.5;">
<g id="Docling" transform="matrix(1.07666,0,0,1.07666,-35.9018,-84.1562)">
<g id="Outline" transform="matrix(1,0,0,1,-0.429741,55.0879)">
<path d="M394.709,69.09C417.34,35.077 467.97,30.178 478.031,55.609C486.35,55.043 494.726,54.701 503.158,54.589C533.157,45.238 560.496,47.419 584.65,60.732C800.941,96.66 966.069,284.814 966.069,511.232C966.069,763.284 761.435,967.918 509.383,967.918C433.692,967.918 362.277,949.464 299.385,916.808L242.3,931.993C203.092,943.242 187.715,928.369 208.575,891.871C208.935,891.24 216.518,879.37 223.997,867.677C119.604,783.975 52.698,655.355 52.698,511.232C52.698,298.778 198.086,120.013 394.709,69.09Z" style="fill:white;"/>
</g>
<g id="Color" transform="matrix(1.02317,0,0,1.02317,-11.55,-17.8333)">
<path d="M284.8,894.232L179.735,783.955L130.222,645.203L125.538,504.726L185.211,385.816C209.006,322.738 249.951,278.973 302.281,248.028L406.684,203.333L413.483,175.767L436.637,152.428L451.408,153.312L457.726,183.183L485.164,165.379L526.92,159.699L557.014,177.545L612.652,211.018C679.009,226.066 740.505,264.146 797.138,325.26L862.813,423.477L891.583,560.826L883.273,683.32L814.268,809.924L734.431,894.384L644.495,926.906L497.146,954.121L361.064,940.647L284.8,894.232Z" style="fill:url(#_Linear1);"/>
<path d="M699.932,887.255L634.427,825.291L597.884,782.352L594.906,738.956L610.14,709.396L643.207,699.954L685,710.111L730.425,736.425L765.204,778.79L775.166,849.531L719.381,894.082L699.932,887.255Z" style="fill:url(#_Linear2);"/>
<g transform="matrix(-0.765945,0,0,1,839.727,5.47434)">
<clipPath id="_clip3">
<path d="M699.932,887.255L634.427,825.291L597.884,782.352L594.906,738.956L610.14,709.396L643.207,699.954L685,710.111L730.425,736.425L765.204,778.79L775.166,849.531L719.381,894.082L699.932,887.255Z"/>
</clipPath>
<g clip-path="url(#_clip3)">
<g transform="matrix(-1.18516,0,0,0.907769,1039.04,88.3496)">
<use xlink:href="#_Image4" x="223.969" y="674.21" width="152.098px" height="213.852px" transform="matrix(0.994105,0,0,0.999308,0,0)"/>
</g>
</g>
</g>
<path d="M311.699,713.521C189.178,639.091 164.299,526.77 191.824,394.113L135.136,476.434L122.004,547.53C143.022,614.014 174.522,676.199 225.005,730.598C210.601,754.156 201.894,776.601 197.955,798.114L245.803,841.67C247.274,812.1 254.934,783.047 270.614,754.664L311.699,713.521Z" style="fill-opacity:0.22;"/>
<g transform="matrix(-1,0,0,1,1022.04,2.74442)">
<path d="M311.699,713.521C189.178,639.091 164.299,526.77 191.824,394.113L135.136,476.434L122.004,547.53C143.022,614.014 174.522,676.199 225.005,730.598C210.601,754.156 201.894,776.601 197.955,798.114L245.803,841.67C247.274,812.1 254.934,783.047 270.614,754.664L311.699,713.521Z" style="fill-opacity:0.22;"/>
</g>
<path d="M354.92,650.818L420.009,663.185L493.368,666.379L554.826,665.251L620.19,658.511L658.169,651.428L671.428,644.802L673.265,627.093L659.898,611.845L625.422,609.244L599.275,591.212L568.632,556.79L542.9,534.336L515.052,528.253L480.412,532.71L455.2,552.337L428.514,578.155L405.312,599.359L374.228,612.097L355.342,614.456L340.75,630.308L341.568,645.341L354.92,650.818Z" style="fill:url(#_Linear5);"/>
<path d="M257.168,949.32L317.434,876.747L364.928,810.6L384.1,743.934L378.759,714.719L376.844,685.849L374.836,659.954L448.734,664.2L511.462,667.602L571.339,665.091L632.796,658.836L648.232,656.882L649.937,697.808L608.105,717.702L598.45,738.594L592.286,761.642L604.743,796.309L639.595,825.803L649.872,840.757L558.219,895.152L502.124,907.569L425.781,923.496L333.29,931.298L286.269,936.907L257.168,949.32Z" style="fill:url(#_Linear6);"/>
<g transform="matrix(1,0,0,1.30081,-1.77636e-15,-196.488)">
<path d="M374.165,685.268C463.946,706.599 553.728,707.491 643.51,688.593L641.903,653.199C549.263,671.731 459.645,672.22 373.059,654.611L374.165,685.268Z" style="fill-opacity:0.18;"/>
</g>
<path d="M459.633,571.457C476.7,536.091 530.064,535.913 553.1,568.767C520.703,551.407 489.553,552.374 459.633,571.457Z" style="fill:white;"/>
<g transform="matrix(1,0,0,1,0.223468,-2.61949)">
<path d="M355.3,267.232C500.64,173.156 720.699,241.362 793.691,423.582C766.716,384.84 735.725,357.078 697.53,349.014L717.306,335.248C698.537,321.49 675.794,320.957 651.039,327.119C652.235,315.768 658.995,306.991 674.188,302.115C641.864,287.427 617.356,289.473 596.258,298.818C597.049,286.116 605.827,278.087 620.068,273.254C589.192,267.477 564.13,270.926 544.651,283.232C545.822,271.831 550.709,260.943 560.913,250.79C517.498,257.095 492.995,267.925 482.892,282.202C477.311,269.499 477.274,257.221 487.625,245.739C439.161,252.932 421.555,265.094 410.355,278.286C407.697,269.01 407.705,260.632 410.853,253.316C389.633,254.773 372.178,260.663 355.3,267.232Z" style="fill:rgb(255,213,95);"/>
</g>
<path d="M475.656,209.175C479.639,175.037 503.437,173.299 532.412,180.026C507.242,183.404 486.969,195.251 473.705,219.215L475.656,209.175Z" style="fill:rgb(255,215,101);"/>
<g transform="matrix(0.114323,-0.655229,0.82741,0.144365,224.632,497.317)">
<path d="M475.656,209.175C479.639,175.037 503.437,173.299 532.412,180.026C507.242,183.404 486.969,195.251 473.705,219.215L475.656,209.175Z" style="fill:rgb(255,215,101);"/>
</g>
<g transform="matrix(1.6739,1.15217e-16,-1.15217e-16,-0.733075,-341.46,1039.77)">
<path d="M447.449,560.911C468.179,536.963 546.237,539.305 565.638,560.831C533.166,555.541 477.296,553.494 447.449,560.911Z" style="fill:white;"/>
</g>
<path d="M348.201,622.341C395.549,653.534 622.351,660.854 661.936,616.729L677.568,633.834L667.044,650.308L557.802,667.518L498.074,670.562L446.718,666.416L391.404,658.406L348.154,652.501L340.161,637.119L348.201,622.341Z" style="fill:rgb(199,68,6);"/>
</g>
<g id="Black-outline" serif:id="Black outline" transform="matrix(1.02317,0,0,1.02317,-11.55,-17.8333)">
<path d="M373.389,657.919C376.285,676.334 377.04,695.016 375.326,714.008" style="fill:none;stroke:black;stroke-width:15.73px;"/>
<path d="M645.931,654.961C646.158,669.958 647.22,684.853 648.975,699.661" style="fill:none;stroke:black;stroke-width:15.73px;"/>
<path d="M290.084,534.662C276.554,533.535 264.892,530.024 254.279,525.175C276.732,555.341 305.316,569.76 338.631,572.029L290.084,534.662Z"/>
<g transform="matrix(0.94177,0,0,0.94909,28.8868,3.79501)">
<ellipse cx="338.022" cy="510.34" rx="88.911" ry="89.412"/>
</g>
<g transform="matrix(0.112099,0.0552506,-0.0673118,0.136571,455.367,509.409)">
<ellipse cx="338.022" cy="510.34" rx="88.911" ry="89.412"/>
</g>
<g transform="matrix(-0.112099,0.0552506,0.0673118,0.136571,560.529,509.492)">
<ellipse cx="338.022" cy="510.34" rx="88.911" ry="89.412"/>
</g>
<g transform="matrix(-1,0,0,1,1013.33,-1.15187)">
<path d="M290.084,534.662C276.554,533.535 264.892,530.024 254.279,525.175C276.732,555.341 305.316,569.76 338.631,572.029L290.084,534.662Z"/>
</g>
<g transform="matrix(-0.94177,0,0,0.94909,984.44,2.64314)">
<ellipse cx="338.022" cy="510.34" rx="88.911" ry="89.412"/>
</g>
<g transform="matrix(1,0,0,1,1.9047,-5.57346)">
<path d="M277.021,489.604C279.828,554.545 355.855,583.508 405.306,537.851C354.458,599.537 263.881,560.914 277.021,489.604Z" style="fill:white;"/>
</g>
<g transform="matrix(-1,0,0,1,1011.43,-5.7284)">
<path d="M277.021,489.604C279.828,554.545 355.855,583.508 405.306,537.851C354.458,599.537 263.881,560.914 277.021,489.604Z" style="fill:white;"/>
</g>
<g transform="matrix(0.973815,0,0,1.00246,4.71761,-0.508759)">
<path d="M407.22,206.891C107.655,339.384 134.447,630.03 314.615,708.305" style="fill:none;stroke:black;stroke-width:29.39px;"/>
</g>
<g transform="matrix(-0.973815,0,0,1.00246,1006.67,-1.31695)">
<path d="M461.559,196.756C119.768,256.762 111.059,642.544 320.305,711.486" style="fill:none;stroke:black;stroke-width:29.39px;"/>
</g>
<g id="vector-duck" serif:id="vector duck">
<path d="M240.912,850.71C248.043,740.231 325.609,685.992 371.268,715.193C386.487,724.926 392.506,757.72 358.575,816.753C327.005,871.68 300.465,894.596 288.329,903.447" style="fill:none;stroke:black;stroke-width:21.79px;"/>
<path d="M638.382,843.426C427.991,964.695 389.022,902.942 251.512,947.641L307.759,889.573" style="fill:none;stroke:black;stroke-width:15.73px;"/>
<path d="M770.991,853.754C779.364,764.998 730.67,727.923 666.385,704.966C629.568,691.819 580.483,723.886 595.974,772.596C606.285,805.016 650.54,839.029 707.786,886.778" style="fill:none;stroke:black;stroke-width:21.79px;"/>
<g transform="matrix(1,0,0,1,-1.87208,0.908099)">
<path d="M603.287,772.415C614.237,757.963 627.553,750.285 642.878,748.352C628.356,760.968 617.23,775.676 620.632,799.336C635.815,785.15 650.367,779.457 664.396,780.801C651.715,790.7 639.329,803.279 641.039,818.089C641.247,819.891 647.043,823.996 647.595,825.837C659.897,816.37 672.867,811.065 689.234,809.472C676.577,822.659 668.021,834.011 674.478,848.729L664.333,847.825L625.643,812.604L603.629,786.218L603.287,772.415Z"/>
</g>
<g transform="matrix(-0.969851,0.2437,0.2437,0.969851,773.329,-138.212)">
<path d="M603.287,772.415C614.237,757.963 627.553,750.285 642.878,748.352C628.356,760.968 617.23,775.676 620.632,799.336C635.815,785.15 650.367,779.457 664.396,780.801C651.715,790.7 639.329,803.279 641.039,818.089C641.247,819.891 647.043,823.996 647.595,825.837C659.897,816.37 672.867,811.065 689.234,809.472C676.577,822.659 668.021,834.011 674.478,848.729L664.333,847.825L625.643,812.604L603.629,786.218L603.287,772.415Z"/>
</g>
<path d="M511.787,670.044C461.061,671.835 411.878,662.84 361.322,653.92C329.071,648.229 335.56,616.432 361.693,615.181C391.498,613.754 411.83,601.737 437.593,569.084C459.063,541.872 482.443,528.143 506.834,529.767" style="fill:none;stroke:black;stroke-width:15.73px;"/>
<g transform="matrix(-1,0,0,1,1014.44,-0.213451)">
<path d="M511.787,670.044C461.061,671.835 411.878,662.84 361.322,653.92C329.071,648.229 335.56,616.432 361.693,615.181C391.498,613.754 411.83,601.737 437.593,569.084C459.063,541.872 482.443,528.143 506.834,529.767" style="fill:none;stroke:black;stroke-width:15.73px;"/>
</g>
</g>
<g transform="matrix(2.4586,0,0,2.5497,-444.527,-690.434)">
<ellipse cx="312.566" cy="450.751" rx="10.63" ry="10.48" style="fill:white;"/>
</g>
<g transform="matrix(2.4586,0,0,2.5497,-127.75,-690.991)">
<ellipse cx="312.566" cy="450.751" rx="10.63" ry="10.48" style="fill:white;"/>
</g>
<path d="M505.738,698.061L578.879,713.989" style="fill:none;stroke:black;stroke-width:12.1px;"/>
<path d="M422.781,709.6L568.438,743.041" style="fill:none;stroke:black;stroke-width:12.1px;"/>
<path d="M419.941,738.409L565.688,772.989" style="fill:none;stroke:black;stroke-width:12.1px;"/>
<path d="M408.6,787.08L510.634,810.689" style="fill:none;stroke:black;stroke-width:12.1px;"/>
<path d="M397.571,815.956L500.93,840.219" style="fill:none;stroke:black;stroke-width:12.1px;"/>
<path d="M386.763,844.926L454.065,861.974" style="fill:none;stroke:black;stroke-width:12.1px;"/>
<path d="M459.169,919.169C512.194,898.262 539.171,867.298 535.241,824.402C568.052,818.31 598.499,817.058 625.84,822.165" style="fill:none;stroke:black;stroke-width:16.95px;"/>
<path d="M366.219,241.106C389.605,229.261 413.371,220.601 438.247,217.5C416.795,202.419 418.72,174.582 444.22,162.47C442.086,178.175 447.633,193.354 464.772,207.738C468.721,167.57 530.015,162.087 545.674,184.112C526.45,189.314 513.082,197.344 504.566,207.717C522.403,208.119 540.706,207.86 556.2,210.609L566.935,168.471C536.388,146.208 495.718,142.166 464.65,166.705C467.703,133.264 419.536,128.364 404.624,178.47L366.219,241.106Z"/>
<path d="M392.617,924.576C428.953,936.938 467.84,943.636 508.258,943.636C708.944,943.636 871.876,778.49 871.876,575.076C871.876,382.463 725.788,224.162 539.898,207.895L554.137,173.696L554.485,168.187C757.218,191.602 914.895,366.003 914.895,577.383C914.895,804.698 732.549,989.249 507.949,989.249C435.381,989.249 367.223,969.983 308.199,936.232L392.617,924.576ZM279.206,917.988C171.663,843.819 101.002,718.887 101.002,577.383C101.002,383.006 234.333,219.898 413.398,176.712L424.375,216.389C264.082,254.803 144.64,400.913 144.64,575.076C144.64,703.735 209.822,817.086 308.514,883.023L279.206,917.988Z"/>
<path d="M714.938,895.223L647.287,836.693L616.06,855.308L549.158,889.412L459.845,919.216L390.213,928.828L429.291,950.712L535.832,960.1L586.137,952.591L662.254,931.896L714.938,895.223Z"/>
<path d="M423.538,929.39C509.164,917.593 580.815,890.465 640.827,850.566C635.677,886.828 622.639,918.218 594.006,939.977C530.254,930.953 474.955,928.632 423.538,929.39Z" style="fill:url(#_Linear7);"/>
</g>
</g>
<defs>
<linearGradient id="_Linear1" x1="0" y1="0" x2="1" y2="0" gradientUnits="userSpaceOnUse" gradientTransform="matrix(-52.3962,375.121,-375.121,-52.3962,471.134,384.463)"><stop offset="0" style="stop-color:rgb(255,176,44);stop-opacity:1"/><stop offset="1" style="stop-color:rgb(255,73,2);stop-opacity:1"/></linearGradient>
<linearGradient id="_Linear2" x1="0" y1="0" x2="1" y2="0" gradientUnits="userSpaceOnUse" gradientTransform="matrix(28.6198,-84.8913,84.8913,28.6198,647.831,831.55)"><stop offset="0" style="stop-color:rgb(255,73,2);stop-opacity:1"/><stop offset="1" style="stop-color:rgb(255,176,44);stop-opacity:1"/></linearGradient>
<image id="_Image4" width="153px" height="214px" xlink:href=""/>
<linearGradient id="_Linear5" x1="0" y1="0" x2="1" y2="0" gradientUnits="userSpaceOnUse" gradientTransform="matrix(-39.3403,137.423,-137.423,-39.3403,545.523,573.246)"><stop offset="0" style="stop-color:rgb(255,200,41);stop-opacity:1"/><stop offset="1" style="stop-color:rgb(255,73,2);stop-opacity:1"/></linearGradient>
<linearGradient id="_Linear6" x1="0" y1="0" x2="1" y2="0" gradientUnits="userSpaceOnUse" gradientTransform="matrix(1.01113,-68.2054,68.2054,1.01113,482.996,741.463)"><stop offset="0" style="stop-color:white;stop-opacity:1"/><stop offset="1" style="stop-color:rgb(179,179,179);stop-opacity:1"/></linearGradient>
<linearGradient id="_Linear7" x1="0" y1="0" x2="1" y2="0" gradientUnits="userSpaceOnUse" gradientTransform="matrix(-7.13599,-34.117,34.117,-7.13599,578.793,922.144)"><stop offset="0" style="stop-color:rgb(164,164,164);stop-opacity:1"/><stop offset="1" style="stop-color:rgb(106,106,106);stop-opacity:1"/></linearGradient>
</defs>
</svg>

Before

Width:  |  Height:  |  Size: 18 KiB

View File

@ -54,7 +54,7 @@ nav:
- Get started: - Get started:
- Home: index.md - Home: index.md
- Installation: installation.md - Installation: installation.md
# - Docling v2: v2.md - Docling v2: v2.md
# - Concepts: # - Concepts:
# - Docling Document: concepts/document.md # - Docling Document: concepts/document.md
# - Chunking: concepts/chunking.md # - Chunking: concepts/chunking.md

726
poetry.lock generated
View File

@ -263,6 +263,20 @@ files = [
pycodestyle = ">=2.11.0" pycodestyle = ">=2.11.0"
tomli = {version = "*", markers = "python_version < \"3.11\""} tomli = {version = "*", markers = "python_version < \"3.11\""}
[[package]]
name = "babel"
version = "2.16.0"
description = "Internationalization utilities"
optional = false
python-versions = ">=3.8"
files = [
{file = "babel-2.16.0-py3-none-any.whl", hash = "sha256:368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b"},
{file = "babel-2.16.0.tar.gz", hash = "sha256:d1f3554ca26605fe173f3de0c65f750f5a42f924499bf134de6423582298e316"},
]
[package.extras]
dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"]
[[package]] [[package]]
name = "backports-tarfile" name = "backports-tarfile"
version = "1.2.0" version = "1.2.0"
@ -347,6 +361,24 @@ d = ["aiohttp (>=3.10)"]
jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"] jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"]
uvloop = ["uvloop (>=0.15.2)"] uvloop = ["uvloop (>=0.15.2)"]
[[package]]
name = "bleach"
version = "6.1.0"
description = "An easy safelist-based HTML-sanitizing tool."
optional = false
python-versions = ">=3.8"
files = [
{file = "bleach-6.1.0-py3-none-any.whl", hash = "sha256:3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6"},
{file = "bleach-6.1.0.tar.gz", hash = "sha256:0a31f1837963c41d46bbf1331b8778e1308ea0791db03cc4e7357b97cf42a8fe"},
]
[package.dependencies]
six = ">=1.9.0"
webencodings = "*"
[package.extras]
css = ["tinycss2 (>=1.1.0,<1.3)"]
[[package]] [[package]]
name = "certifi" name = "certifi"
version = "2024.8.30" version = "2024.8.30"
@ -912,6 +944,17 @@ url = "https://github.com/DS4SD/deepsearch-glm.git"
reference = "c185c4f985ccd29a470a1cddd3bec43880b739ee" reference = "c185c4f985ccd29a470a1cddd3bec43880b739ee"
resolved_reference = "c185c4f985ccd29a470a1cddd3bec43880b739ee" resolved_reference = "c185c4f985ccd29a470a1cddd3bec43880b739ee"
[[package]]
name = "defusedxml"
version = "0.7.1"
description = "XML bomb protection for Python stdlib modules"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
files = [
{file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"},
{file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"},
]
[[package]] [[package]]
name = "dill" name = "dill"
version = "0.3.8" version = "0.3.8"
@ -1150,6 +1193,20 @@ files = [
[package.extras] [package.extras]
tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"]
[[package]]
name = "fastjsonschema"
version = "2.20.0"
description = "Fastest Python implementation of JSON schema"
optional = false
python-versions = "*"
files = [
{file = "fastjsonschema-2.20.0-py3-none-any.whl", hash = "sha256:5875f0b0fa7a0043a91e93a9b8f793bcbbba9691e7fd83dca95c28ba26d21f0a"},
{file = "fastjsonschema-2.20.0.tar.gz", hash = "sha256:3d48fc5300ee96f5d116f10fe6f28d938e6008f59a6a025c2649475b87f76a23"},
]
[package.extras]
devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"]
[[package]] [[package]]
name = "filelock" name = "filelock"
version = "3.16.1" version = "3.16.1"
@ -1409,6 +1466,23 @@ test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,
test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"]
tqdm = ["tqdm"] tqdm = ["tqdm"]
[[package]]
name = "ghp-import"
version = "2.1.0"
description = "Copy your docs directly to the gh-pages branch."
optional = false
python-versions = "*"
files = [
{file = "ghp-import-2.1.0.tar.gz", hash = "sha256:9c535c4c61193c2df8871222567d7fd7e5014d835f97dc7b7439069e2413d343"},
{file = "ghp_import-2.1.0-py3-none-any.whl", hash = "sha256:8337dd7b50877f163d4c0289bc1f1c7f127550241988d568c1db512c4324a619"},
]
[package.dependencies]
python-dateutil = ">=2.8.1"
[package.extras]
dev = ["flake8", "markdown", "twine", "wheel"]
[[package]] [[package]]
name = "gitdb" name = "gitdb"
version = "4.0.11" version = "4.0.11"
@ -2091,6 +2165,17 @@ traitlets = ">=5.3"
docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"]
test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"]
[[package]]
name = "jupyterlab-pygments"
version = "0.3.0"
description = "Pygments theme using JupyterLab CSS variables"
optional = false
python-versions = ">=3.8"
files = [
{file = "jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780"},
{file = "jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d"},
]
[[package]] [[package]]
name = "jupyterlab-widgets" name = "jupyterlab-widgets"
version = "3.0.13" version = "3.0.13"
@ -2102,6 +2187,35 @@ files = [
{file = "jupyterlab_widgets-3.0.13.tar.gz", hash = "sha256:a2966d385328c1942b683a8cd96b89b8dd82c8b8f81dda902bb2bc06d46f5bed"}, {file = "jupyterlab_widgets-3.0.13.tar.gz", hash = "sha256:a2966d385328c1942b683a8cd96b89b8dd82c8b8f81dda902bb2bc06d46f5bed"},
] ]
[[package]]
name = "jupytext"
version = "1.16.4"
description = "Jupyter notebooks as Markdown documents, Julia, Python or R scripts"
optional = false
python-versions = ">=3.8"
files = [
{file = "jupytext-1.16.4-py3-none-any.whl", hash = "sha256:76989d2690e65667ea6fb411d8056abe7cd0437c07bd774660b83d62acf9490a"},
{file = "jupytext-1.16.4.tar.gz", hash = "sha256:28e33f46f2ce7a41fb9d677a4a2c95327285579b64ca104437c4b9eb1e4174e9"},
]
[package.dependencies]
markdown-it-py = ">=1.0"
mdit-py-plugins = "*"
nbformat = "*"
packaging = "*"
pyyaml = "*"
tomli = {version = "*", markers = "python_version < \"3.11\""}
[package.extras]
dev = ["autopep8", "black", "flake8", "gitpython", "ipykernel", "isort", "jupyter-fs (>=1.0)", "jupyter-server (!=2.11)", "nbconvert", "pre-commit", "pytest", "pytest-cov (>=2.6.1)", "pytest-randomly", "pytest-xdist", "sphinx-gallery (<0.8)"]
docs = ["myst-parser", "sphinx", "sphinx-copybutton", "sphinx-rtd-theme"]
test = ["pytest", "pytest-randomly", "pytest-xdist"]
test-cov = ["ipykernel", "jupyter-server (!=2.11)", "nbconvert", "pytest", "pytest-cov (>=2.6.1)", "pytest-randomly", "pytest-xdist"]
test-external = ["autopep8", "black", "flake8", "gitpython", "ipykernel", "isort", "jupyter-fs (>=1.0)", "jupyter-server (!=2.11)", "nbconvert", "pre-commit", "pytest", "pytest-randomly", "pytest-xdist", "sphinx-gallery (<0.8)"]
test-functional = ["pytest", "pytest-randomly", "pytest-xdist"]
test-integration = ["ipykernel", "jupyter-server (!=2.11)", "nbconvert", "pytest", "pytest-randomly", "pytest-xdist"]
test-ui = ["calysto-bash"]
[[package]] [[package]]
name = "keyring" name = "keyring"
version = "25.4.1" version = "25.4.1"
@ -2518,6 +2632,21 @@ html5 = ["html5lib"]
htmlsoup = ["BeautifulSoup4"] htmlsoup = ["BeautifulSoup4"]
source = ["Cython (==0.29.37)"] source = ["Cython (==0.29.37)"]
[[package]]
name = "markdown"
version = "3.7"
description = "Python implementation of John Gruber's Markdown."
optional = false
python-versions = ">=3.8"
files = [
{file = "Markdown-3.7-py3-none-any.whl", hash = "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803"},
{file = "markdown-3.7.tar.gz", hash = "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2"},
]
[package.extras]
docs = ["mdx-gh-links (>=0.2)", "mkdocs (>=1.5)", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-nature (>=0.6)", "mkdocs-section-index", "mkdocstrings[python]"]
testing = ["coverage", "pyyaml"]
[[package]] [[package]]
name = "markdown-it-py" name = "markdown-it-py"
version = "3.0.0" version = "3.0.0"
@ -2749,6 +2878,25 @@ files = [
{file = "mccabe-0.7.0.tar.gz", hash = "sha256:348e0240c33b60bbdf4e523192ef919f28cb2c3d7d5c7794f74009290f236325"}, {file = "mccabe-0.7.0.tar.gz", hash = "sha256:348e0240c33b60bbdf4e523192ef919f28cb2c3d7d5c7794f74009290f236325"},
] ]
[[package]]
name = "mdit-py-plugins"
version = "0.4.2"
description = "Collection of plugins for markdown-it-py"
optional = false
python-versions = ">=3.8"
files = [
{file = "mdit_py_plugins-0.4.2-py3-none-any.whl", hash = "sha256:0c673c3f889399a33b95e88d2f0d111b4447bdfea7f237dab2d488f459835636"},
{file = "mdit_py_plugins-0.4.2.tar.gz", hash = "sha256:5f2cd1fdb606ddf152d37ec30e46101a60512bc0e5fa1a7002c36647b09e26b5"},
]
[package.dependencies]
markdown-it-py = ">=1.0.0,<4.0.0"
[package.extras]
code-style = ["pre-commit"]
rtd = ["myst-parser", "sphinx-book-theme"]
testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"]
[[package]] [[package]]
name = "mdurl" name = "mdurl"
version = "0.1.2" version = "0.1.2"
@ -2775,6 +2923,17 @@ files = [
numpy = "*" numpy = "*"
pandas = "*" pandas = "*"
[[package]]
name = "mergedeep"
version = "1.3.4"
description = "A deep merge function for 🐍."
optional = false
python-versions = ">=3.6"
files = [
{file = "mergedeep-1.3.4-py3-none-any.whl", hash = "sha256:70775750742b25c0d8f36c55aed03d24c3384d17c951b3175d898bd778ef0307"},
{file = "mergedeep-1.3.4.tar.gz", hash = "sha256:0096d52e9dad9939c3d975a774666af186eda617e6ca84df4c94dec30004f2a8"},
]
[[package]] [[package]]
name = "milvus-lite" name = "milvus-lite"
version = "2.4.10" version = "2.4.10"
@ -2791,6 +2950,122 @@ files = [
[package.dependencies] [package.dependencies]
tqdm = "*" tqdm = "*"
[[package]]
name = "mistune"
version = "3.0.2"
description = "A sane and fast Markdown parser with useful plugins and renderers"
optional = false
python-versions = ">=3.7"
files = [
{file = "mistune-3.0.2-py3-none-any.whl", hash = "sha256:71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205"},
{file = "mistune-3.0.2.tar.gz", hash = "sha256:fc7f93ded930c92394ef2cb6f04a8aabab4117a91449e72dcc8dfa646a508be8"},
]
[[package]]
name = "mkdocs"
version = "1.6.1"
description = "Project documentation with Markdown."
optional = false
python-versions = ">=3.8"
files = [
{file = "mkdocs-1.6.1-py3-none-any.whl", hash = "sha256:db91759624d1647f3f34aa0c3f327dd2601beae39a366d6e064c03468d35c20e"},
{file = "mkdocs-1.6.1.tar.gz", hash = "sha256:7b432f01d928c084353ab39c57282f29f92136665bdd6abf7c1ec8d822ef86f2"},
]
[package.dependencies]
click = ">=7.0"
colorama = {version = ">=0.4", markers = "platform_system == \"Windows\""}
ghp-import = ">=1.0"
jinja2 = ">=2.11.1"
markdown = ">=3.3.6"
markupsafe = ">=2.0.1"
mergedeep = ">=1.3.4"
mkdocs-get-deps = ">=0.2.0"
packaging = ">=20.5"
pathspec = ">=0.11.1"
pyyaml = ">=5.1"
pyyaml-env-tag = ">=0.1"
watchdog = ">=2.0"
[package.extras]
i18n = ["babel (>=2.9.0)"]
min-versions = ["babel (==2.9.0)", "click (==7.0)", "colorama (==0.4)", "ghp-import (==1.0)", "importlib-metadata (==4.4)", "jinja2 (==2.11.1)", "markdown (==3.3.6)", "markupsafe (==2.0.1)", "mergedeep (==1.3.4)", "mkdocs-get-deps (==0.2.0)", "packaging (==20.5)", "pathspec (==0.11.1)", "pyyaml (==5.1)", "pyyaml-env-tag (==0.1)", "watchdog (==2.0)"]
[[package]]
name = "mkdocs-get-deps"
version = "0.2.0"
description = "MkDocs extension that lists all dependencies according to a mkdocs.yml file"
optional = false
python-versions = ">=3.8"
files = [
{file = "mkdocs_get_deps-0.2.0-py3-none-any.whl", hash = "sha256:2bf11d0b133e77a0dd036abeeb06dec8775e46efa526dc70667d8863eefc6134"},
{file = "mkdocs_get_deps-0.2.0.tar.gz", hash = "sha256:162b3d129c7fad9b19abfdcb9c1458a651628e4b1dea628ac68790fb3061c60c"},
]
[package.dependencies]
mergedeep = ">=1.3.4"
platformdirs = ">=2.2.0"
pyyaml = ">=5.1"
[[package]]
name = "mkdocs-jupyter"
version = "0.25.0"
description = "Use Jupyter in mkdocs websites"
optional = false
python-versions = ">=3.9"
files = [
{file = "mkdocs_jupyter-0.25.0-py3-none-any.whl", hash = "sha256:d83d71deef19f0401505945bf92ec3bd5b40615af89308e72d5112929f8ee00b"},
{file = "mkdocs_jupyter-0.25.0.tar.gz", hash = "sha256:e26c1d341916bc57f96ea3f93d8d0a88fc77c87d4cee222f66d2007798d924f5"},
]
[package.dependencies]
ipykernel = ">6.0.0,<7.0.0"
jupytext = ">1.13.8,<2"
mkdocs = ">=1.4.0,<2"
mkdocs-material = ">9.0.0"
nbconvert = ">=7.2.9,<8"
pygments = ">2.12.0"
[[package]]
name = "mkdocs-material"
version = "9.5.40"
description = "Documentation that simply works"
optional = false
python-versions = ">=3.8"
files = [
{file = "mkdocs_material-9.5.40-py3-none-any.whl", hash = "sha256:8e7a16ada34e79a7b6459ff2602584222f522c738b6a023d1bea853d5049da6f"},
{file = "mkdocs_material-9.5.40.tar.gz", hash = "sha256:b69d70e667ec51fc41f65e006a3184dd00d95b2439d982cb1586e4c018943156"},
]
[package.dependencies]
babel = ">=2.10,<3.0"
colorama = ">=0.4,<1.0"
jinja2 = ">=3.0,<4.0"
markdown = ">=3.2,<4.0"
mkdocs = ">=1.6,<2.0"
mkdocs-material-extensions = ">=1.3,<2.0"
paginate = ">=0.5,<1.0"
pygments = ">=2.16,<3.0"
pymdown-extensions = ">=10.2,<11.0"
regex = ">=2022.4"
requests = ">=2.26,<3.0"
[package.extras]
git = ["mkdocs-git-committers-plugin-2 (>=1.1,<2.0)", "mkdocs-git-revision-date-localized-plugin (>=1.2.4,<2.0)"]
imaging = ["cairosvg (>=2.6,<3.0)", "pillow (>=10.2,<11.0)"]
recommended = ["mkdocs-minify-plugin (>=0.7,<1.0)", "mkdocs-redirects (>=1.2,<2.0)", "mkdocs-rss-plugin (>=1.6,<2.0)"]
[[package]]
name = "mkdocs-material-extensions"
version = "1.3.1"
description = "Extension pack for Python Markdown and MkDocs Material."
optional = false
python-versions = ">=3.8"
files = [
{file = "mkdocs_material_extensions-1.3.1-py3-none-any.whl", hash = "sha256:adff8b62700b25cb77b53358dad940f3ef973dd6db797907c49e3c2ef3ab4e31"},
{file = "mkdocs_material_extensions-1.3.1.tar.gz", hash = "sha256:10c9511cea88f568257f960358a467d12b970e1f7b2c0e5fb2bb48cab1928443"},
]
[[package]] [[package]]
name = "more-itertools" name = "more-itertools"
version = "10.5.0" version = "10.5.0"
@ -3010,6 +3285,86 @@ files = [
{file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"},
] ]
[[package]]
name = "nbclient"
version = "0.10.0"
description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor."
optional = false
python-versions = ">=3.8.0"
files = [
{file = "nbclient-0.10.0-py3-none-any.whl", hash = "sha256:f13e3529332a1f1f81d82a53210322476a168bb7090a0289c795fe9cc11c9d3f"},
{file = "nbclient-0.10.0.tar.gz", hash = "sha256:4b3f1b7dba531e498449c4db4f53da339c91d449dc11e9af3a43b4eb5c5abb09"},
]
[package.dependencies]
jupyter-client = ">=6.1.12"
jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0"
nbformat = ">=5.1"
traitlets = ">=5.4"
[package.extras]
dev = ["pre-commit"]
docs = ["autodoc-traits", "mock", "moto", "myst-parser", "nbclient[test]", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling"]
test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0,<8)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"]
[[package]]
name = "nbconvert"
version = "7.16.4"
description = "Converting Jupyter Notebooks (.ipynb files) to other formats. Output formats include asciidoc, html, latex, markdown, pdf, py, rst, script. nbconvert can be used both as a Python library (`import nbconvert`) or as a command line tool (invoked as `jupyter nbconvert ...`)."
optional = false
python-versions = ">=3.8"
files = [
{file = "nbconvert-7.16.4-py3-none-any.whl", hash = "sha256:05873c620fe520b6322bf8a5ad562692343fe3452abda5765c7a34b7d1aa3eb3"},
{file = "nbconvert-7.16.4.tar.gz", hash = "sha256:86ca91ba266b0a448dc96fa6c5b9d98affabde2867b363258703536807f9f7f4"},
]
[package.dependencies]
beautifulsoup4 = "*"
bleach = "!=5.0.0"
defusedxml = "*"
jinja2 = ">=3.0"
jupyter-core = ">=4.7"
jupyterlab-pygments = "*"
markupsafe = ">=2.0"
mistune = ">=2.0.3,<4"
nbclient = ">=0.5.0"
nbformat = ">=5.7"
packaging = "*"
pandocfilters = ">=1.4.1"
pygments = ">=2.4.1"
tinycss2 = "*"
traitlets = ">=5.1"
[package.extras]
all = ["flaky", "ipykernel", "ipython", "ipywidgets (>=7.5)", "myst-parser", "nbsphinx (>=0.2.12)", "playwright", "pydata-sphinx-theme", "pyqtwebengine (>=5.15)", "pytest (>=7)", "sphinx (==5.0.2)", "sphinxcontrib-spelling", "tornado (>=6.1)"]
docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)", "sphinxcontrib-spelling"]
qtpdf = ["pyqtwebengine (>=5.15)"]
qtpng = ["pyqtwebengine (>=5.15)"]
serve = ["tornado (>=6.1)"]
test = ["flaky", "ipykernel", "ipywidgets (>=7.5)", "pytest (>=7)"]
webpdf = ["playwright"]
[[package]]
name = "nbformat"
version = "5.10.4"
description = "The Jupyter Notebook format"
optional = false
python-versions = ">=3.8"
files = [
{file = "nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b"},
{file = "nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a"},
]
[package.dependencies]
fastjsonschema = ">=2.15"
jsonschema = ">=2.6"
jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0"
traitlets = ">=5.1"
[package.extras]
docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"]
test = ["pep440", "pre-commit", "pytest", "testpath"]
[[package]] [[package]]
name = "nbqa" name = "nbqa"
version = "1.9.0" version = "1.9.0"
@ -3442,9 +3797,9 @@ files = [
[package.dependencies] [package.dependencies]
numpy = [ numpy = [
{version = ">=1.26.0", markers = "python_version >= \"3.12\""}, {version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""},
{version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""}, {version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""},
{version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""}, {version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""},
{version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""},
] ]
[[package]] [[package]]
@ -3524,6 +3879,21 @@ files = [
{file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"},
] ]
[[package]]
name = "paginate"
version = "0.5.7"
description = "Divides large result sets into pages for easier browsing"
optional = false
python-versions = "*"
files = [
{file = "paginate-0.5.7-py2.py3-none-any.whl", hash = "sha256:b885e2af73abcf01d9559fd5216b57ef722f8c42affbb63942377668e35c7591"},
{file = "paginate-0.5.7.tar.gz", hash = "sha256:22bd083ab41e1a8b4f3690544afb2c60c25e5c9a63a30fa2f483f6c60c8e5945"},
]
[package.extras]
dev = ["pytest", "tox"]
lint = ["black"]
[[package]] [[package]]
name = "pandas" name = "pandas"
version = "2.2.3" version = "2.2.3"
@ -3578,8 +3948,8 @@ files = [
[package.dependencies] [package.dependencies]
numpy = [ numpy = [
{version = ">=1.26.0", markers = "python_version >= \"3.12\""}, {version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.22.4", markers = "python_version < \"3.11\""},
{version = ">=1.23.2", markers = "python_version == \"3.11\""}, {version = ">=1.23.2", markers = "python_version == \"3.11\""},
{version = ">=1.22.4", markers = "python_version < \"3.11\""},
] ]
python-dateutil = ">=2.8.2" python-dateutil = ">=2.8.2"
pytz = ">=2020.1" pytz = ">=2020.1"
@ -3625,6 +3995,17 @@ files = [
numpy = ">=1.23.5" numpy = ">=1.23.5"
types-pytz = ">=2022.1.1" types-pytz = ">=2022.1.1"
[[package]]
name = "pandocfilters"
version = "1.5.1"
description = "Utilities for writing pandoc filters in python"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
{file = "pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc"},
{file = "pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e"},
]
[[package]] [[package]]
name = "parso" name = "parso"
version = "0.8.4" version = "0.8.4"
@ -4340,6 +4721,24 @@ tomlkit = ">=0.10.1"
spelling = ["pyenchant (>=3.2,<4.0)"] spelling = ["pyenchant (>=3.2,<4.0)"]
testutils = ["gitpython (>3)"] testutils = ["gitpython (>3)"]
[[package]]
name = "pymdown-extensions"
version = "10.11.2"
description = "Extension pack for Python Markdown."
optional = false
python-versions = ">=3.8"
files = [
{file = "pymdown_extensions-10.11.2-py3-none-any.whl", hash = "sha256:41cdde0a77290e480cf53892f5c5e50921a7ee3e5cd60ba91bf19837b33badcf"},
{file = "pymdown_extensions-10.11.2.tar.gz", hash = "sha256:bc8847ecc9e784a098efd35e20cba772bc5a1b529dfcef9dc1972db9021a1049"},
]
[package.dependencies]
markdown = ">=3.6"
pyyaml = "*"
[package.extras]
extra = ["pygments (>=2.12)"]
[[package]] [[package]]
name = "pymilvus" name = "pymilvus"
version = "2.4.8" version = "2.4.8"
@ -4460,128 +4859,128 @@ testing = ["filelock"]
[[package]] [[package]]
name = "python-bidi" name = "python-bidi"
version = "0.6.0" version = "0.6.1"
description = "Python Bidi layout wrapping the Rust crate unicode-bidi" description = "Python Bidi layout wrapping the Rust crate unicode-bidi"
optional = false optional = false
python-versions = "*" python-versions = "*"
files = [ files = [
{file = "python_bidi-0.6.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:032b16f70c5d4f48c8dc5a4ade071826a0fb64172e0435d49deba6ea66fc5d42"}, {file = "python_bidi-0.6.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:e4d5f46b52a6057540a1d09cc2efcc5ddc99319f4fd9ea1de0007878e08e1f3c"},
{file = "python_bidi-0.6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:53b50f6ad3e633dcc74fc96bb959bf375a84db36db380d76f9c189ce33099ede"}, {file = "python_bidi-0.6.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5ca2c05e5a041ff8698e638b196fd1d7629f47e55a5412657abdf5cb09e72b79"},
{file = "python_bidi-0.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2d2928ae4aedff4f49ac2e334d176b9488762276bae8b32045c3b91f41c447e4"}, {file = "python_bidi-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8ea67606546af9eb40c6cfe5d1551fc1a9c96d7f82125c90a776d253fde8d64"},
{file = "python_bidi-0.6.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8f3e5ef9093699300868f9c92975e4d3472131e9da1125501b1950faa0eec62a"}, {file = "python_bidi-0.6.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f1702455861f5304e73d72bda9a08d5175815780f0cac83743f237610100946"},
{file = "python_bidi-0.6.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0eb05fc7115f296e09e06d47648b032a2dff4322b363b8b7f88d4695be452951"}, {file = "python_bidi-0.6.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:43bc35c668ec003309e3831c3ae5577e7b0ca564701ddd647b8112c3d38f8dee"},
{file = "python_bidi-0.6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6fdf72111aed1e30bb89989f55e167411d5fb7a94ee412a3116b9a9b257516f4"}, {file = "python_bidi-0.6.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7d72cbdf452504e5c18582843859e9a27aa710009db87f56052fcf39a19a7aa9"},
{file = "python_bidi-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9daa84f8f8138521a5971d38c92d918bdb0a899268d83d9daa5eba7dce641ce"}, {file = "python_bidi-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a429c12570a7f4ca016a708bb3aa94962ef583863227779caee60b55a68b435"},
{file = "python_bidi-0.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d2e5bafacba56696712ea2284c27f8a3d3b4ee94684b7dcd06af8775cf650dea"}, {file = "python_bidi-0.6.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:24ce7ace8eb7af96b60aaad9bd48283a40d9f13b7b0f3fac48a4d5e4eacbc207"},
{file = "python_bidi-0.6.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:7214a175dd09a4da5f755dbf19d767261d2087686dfff321b4a3967d09096081"}, {file = "python_bidi-0.6.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c4e31fb4fe01bcf4b91bf78695d65c858c684551cf5fb2d107a4625da32be445"},
{file = "python_bidi-0.6.0-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:9f6fe4d9b86c123a960c7506ffb31ebba0c7c465a364b344f96858679bf54401"}, {file = "python_bidi-0.6.1-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:21dc7da0f89876d23c0ef99aebba061059357e0c13fe0281afa9234ab97d2515"},
{file = "python_bidi-0.6.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:ddf12de3ce92bbfcc3f0cdcc4591f9dbbdf3f83388da22646dbf0ba56d66844d"}, {file = "python_bidi-0.6.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:4b2f143f651c010b57f0ccec0c3faa4b794a9ae1afefea5f5e12d7c20132355c"},
{file = "python_bidi-0.6.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:550565296af0e3e938cedc87c78a6ba02e38dab7c4bb2fbbf3717f2412e2a6e1"}, {file = "python_bidi-0.6.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:531ce6a560e4142a919389e5bbb36b3aeb2923845c71fcde1514ba9f58ca4ab6"},
{file = "python_bidi-0.6.0-cp310-none-win32.whl", hash = "sha256:b6958bc4a27e2854c1e9a3d6a2dac0cfd09451834c64f96738c3365d8a053358"}, {file = "python_bidi-0.6.1-cp310-none-win32.whl", hash = "sha256:449d8b7fd54faa7fbcf56e02273620bc08a8ed8c099883eaa68b0f109845b853"},
{file = "python_bidi-0.6.0-cp310-none-win_amd64.whl", hash = "sha256:712d666331e813f498ad6f16e23b6c9795f21e7a231b7047f32f2843e303ec92"}, {file = "python_bidi-0.6.1-cp310-none-win_amd64.whl", hash = "sha256:6295a2f0102782353cc657bf57c8254205c5d292c167cfb06315548263c4bd6c"},
{file = "python_bidi-0.6.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:b3984f4d91b75f19c1e1c2e5a52f4263f4c4a11de2c1f5bfb7b8fceb7960d8d8"}, {file = "python_bidi-0.6.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:dce1c4edf396d7b93f8b9718d129675a5aa1bb617245ad4d9c99dd567037cdf1"},
{file = "python_bidi-0.6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:603b4485b7dc588bc58f80f1271f103b859a45b19024b90686c639a451e50b0a"}, {file = "python_bidi-0.6.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0c6437aec52c0a953fd476c82f8ec511b0c611d15ccbe44fccd628887a6adb7a"},
{file = "python_bidi-0.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d4f2a41ba306fd2827a1e5f153e856f5e79176abf4f0ae41def5255113548cc"}, {file = "python_bidi-0.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bd97cc94216d3edf5a6f6b6fbe3d49741faa7fbd18395490eda96f0fe27d543"},
{file = "python_bidi-0.6.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb50d50809508f0f9907973e8c99fd663d7d3b2bb124218c7f9d9abe374527c5"}, {file = "python_bidi-0.6.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4677aa514898df2031404f3ba77a003f114f8adf4683f46229862317d0962156"},
{file = "python_bidi-0.6.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fd5d2c89acc022cfd3b2d87b09f3ac8503beb6ca45af2ee31df9bd0fbbbe85ce"}, {file = "python_bidi-0.6.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e86bf0a1d92e3e63ba6bbc0a9b8b4e402a87297efc0aa780e68e0a3fa16d2394"},
{file = "python_bidi-0.6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08c7ebd084312706868df172fb46f635ee437344181c0c55302f0da221f3bf75"}, {file = "python_bidi-0.6.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7373a284ef3fd86b1a7a5869a20d138f5ffef011d64f5d0affdaec412e528bb7"},
{file = "python_bidi-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3f8689da1893a5a70e5bb6b47fff4571b8ab6a3653b8f9e3d3555ddaaabb607f"}, {file = "python_bidi-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86c5a89577c46ba754cbc61ce5e061828bbb680f884a416bc2dbc8dee9958146"},
{file = "python_bidi-0.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7cac60293dddbe6307bfb15f8a227f614afa882999ff669b5af795dca7db97dc"}, {file = "python_bidi-0.6.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dae26c1d02124d7ee6fd3e46cf2af4c7d453ddb63324fa445802ad90f867337"},
{file = "python_bidi-0.6.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:4019165cb8e9e73bebec839156ff25e02b499da5f3e849e44c5c76fd487be967"}, {file = "python_bidi-0.6.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:3978e8218a683c9994764e379921536b3f02c9a42b9734542108bd8a90c1d454"},
{file = "python_bidi-0.6.0-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:6684e0f1cb2d769281b6b8bbb51c69a700b63b18a6cb6088d3f34a9eb544620a"}, {file = "python_bidi-0.6.1-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:91b54175bd63f3914f4ef91e434416e2ad214cb278bb2c52c386b5e211dcdf72"},
{file = "python_bidi-0.6.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:7203782c888fcffc0e20e1e6b2d8bfe947ce356796a6709c09c1d751943b6ed7"}, {file = "python_bidi-0.6.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:2372c47e112614b0936380020c9b07201bc42d20a14eae82bd2b5df2820c1c1a"},
{file = "python_bidi-0.6.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f7d98736704548a001fb072becdfbda9d67dde8fd993320494c2370243c92f87"}, {file = "python_bidi-0.6.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3d999ab2f3b884e0e0252fc34d5bb618439ec7852bc68ae1a7cc4bcb7a173079"},
{file = "python_bidi-0.6.0-cp311-none-win32.whl", hash = "sha256:205d885944f929e93283b88a45fe57ae0102c39ba0576ab856f9e5dd50d7a049"}, {file = "python_bidi-0.6.1-cp311-none-win32.whl", hash = "sha256:79f002b542020b59a0797fe18a3a810a81c36f97a449e44b86d666f4adca206d"},
{file = "python_bidi-0.6.0-cp311-none-win_amd64.whl", hash = "sha256:b7847f882442179fd67608958c1ce8af9ee4b051a921342c7a3bc071e2ba0fc4"}, {file = "python_bidi-0.6.1-cp311-none-win_amd64.whl", hash = "sha256:20ca913be99845c36f1d0a7ffe5278720d29aee432b6a55a17aecafb82aefb42"},
{file = "python_bidi-0.6.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:694373c087f2d5067289832070a21e84fc648ac087163723ccd0759dac3a7161"}, {file = "python_bidi-0.6.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:c039d49cee2ef509290c1e1afdbf1b6158e74f74100afc3127f1e089d8175121"},
{file = "python_bidi-0.6.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:dd2ae8876412974b8959520688a271c1b3dbb65ef57306e3bf745115147d05b8"}, {file = "python_bidi-0.6.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cf2deb32d6295d18b320e74a37eb08f24512f154eccb8f8015d2914d577f6f18"},
{file = "python_bidi-0.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2d748eccc2c40ce5b56bde1b7eef72f7b6037e289fb34a38335cd05e3b5f7cd6"}, {file = "python_bidi-0.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e6b986a80cc95ccb0826aaddbb8c386d0f7f6a32c92690592188d4c814bc2c00"},
{file = "python_bidi-0.6.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:22b6866cf18e2e8189cdbc5ede22b843c15c8aaef5eb8438fb02f8197fb29bf9"}, {file = "python_bidi-0.6.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:16e39952287e2644605bb5f40fd327199e449171863af63b674ef4b91a81530b"},
{file = "python_bidi-0.6.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e056f602e634b8cd3c8c5497f52d43674f5de088df4f1a8d73e99cd97735fb3f"}, {file = "python_bidi-0.6.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:859ab2a628d483b8db3273802fca128414abff6ace98780984436baada9ae297"},
{file = "python_bidi-0.6.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3adf383d7e1bc50c8357f78ec3591c483066f9b7744a0c2c89d1ef501c75f693"}, {file = "python_bidi-0.6.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5893348452498797cd3dc0f966c0524ddb187b2702e662984de7e242c266c023"},
{file = "python_bidi-0.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db9981b2d05ef108a540424dabfa157dff20ec4adb909e5a6d2938cac6cf3987"}, {file = "python_bidi-0.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f306c17f41d7b90cb738c115c6f5c153604672811b195da9b1415c291f732bf0"},
{file = "python_bidi-0.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7dcf1d8834e1db2f4d3372c607fe2a12acbeeb4a9aba1bf0014cc37474ef08d1"}, {file = "python_bidi-0.6.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:05fedcd7d8b1c3997b2a3a8e6786947481fc60a423b5a93e673b9f37920bf8ba"},
{file = "python_bidi-0.6.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:58b9628fa1d15b30686fb6196cc2b3d6c1546bfe7e5fbdd9b758d69a76411cd4"}, {file = "python_bidi-0.6.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:57cdf7d407aca3f293fbd0ac744207bdf277928828bd312ac52976986b04d90f"},
{file = "python_bidi-0.6.0-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:7fa5babd7d89a541d6507bddd4839271db1504a54f46a5ee64c959dde41c0596"}, {file = "python_bidi-0.6.1-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:b779e802542768cd89ed934313dd9fa428b931028532b0ba794c6d12765679ab"},
{file = "python_bidi-0.6.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0b5c33ad97ad7bb2fa335a0ce63d0a887e99dbc86ce2684f7622c0fb1b25873e"}, {file = "python_bidi-0.6.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b7639a03e2bdb80f5bd7e8ee3d81e794d5cc32a4070a8a64c29020fa97591d30"},
{file = "python_bidi-0.6.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:48034cc54c792dfeeb017505293600bc4ece89fca1fc28d6fb24f932d7ef1bcf"}, {file = "python_bidi-0.6.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2a6291f66d79636815e6360a9de6ef6fc924c05e38fac0343bd3d4cc04d87833"},
{file = "python_bidi-0.6.0-cp312-none-win32.whl", hash = "sha256:8483de08f3b41063f1819a397aa6686ae88ac908192e448b72e4bf7caa91a655"}, {file = "python_bidi-0.6.1-cp312-none-win32.whl", hash = "sha256:0f46cb78804dd3b04e6da1c9806dc5736565a65fcfed907b2ca158e9b2f0904f"},
{file = "python_bidi-0.6.0-cp312-none-win_amd64.whl", hash = "sha256:a82ee4b48e9b192d4ff3873f2fd063efae063b904b6283119b8cef7165a54084"}, {file = "python_bidi-0.6.1-cp312-none-win_amd64.whl", hash = "sha256:9f72887a61f87dc284b729b8f825687e81c1b01179e1b8d1c9c11897c58323fc"},
{file = "python_bidi-0.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e080e4bf367c3761fc9a430a6a0375dcb10a541721a6b688142a9bbee883e576"}, {file = "python_bidi-0.6.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c2209dae25b0d34b53062534a30018e712664ff8841a86516af928355373a78"},
{file = "python_bidi-0.6.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1002a9b65deae763b236d7d4ea6f046acdb778c85932053ce0d4607f691a1a93"}, {file = "python_bidi-0.6.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2a7da8a53296272d39575262b61c813c4397a2f159d21dc8f2145beb78054bee"},
{file = "python_bidi-0.6.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9418a69c7189907cd27ebe783708572dff979be77e1a7d2b646ff0a456f4f59b"}, {file = "python_bidi-0.6.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:49565ba1c151fe34be4707c9afe48c25c7651e8f1a8aa59275c0ba966d12afc3"},
{file = "python_bidi-0.6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:61c05401d8ff120221b53938e7576a330fde22b22e22bf9243e8fffa225cd35f"}, {file = "python_bidi-0.6.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:721875c76e8f314a9f90c6d91a50042d64622274457b7f117a3710a4a88219d3"},
{file = "python_bidi-0.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5e8382835ae85a4bacd188e563fcd5c90d73be7406f7e4ee1148f7a3fa61ff1"}, {file = "python_bidi-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7be39d50f5b2a7c522a7c7ed282f7518cfa163c321cf097e37d91e52138638ae"},
{file = "python_bidi-0.6.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19d07a95ebab603849a639d649a07474dc54485ad822aa045309a12ec0f7d388"}, {file = "python_bidi-0.6.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:357150587cbe5bfb799b690b6d056457d899fa5e3e0389d850a86533598730cc"},
{file = "python_bidi-0.6.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:e8695ad198e816b42df61ea2a315f7d84189f69a3aa608c0fa71bb5d9105790e"}, {file = "python_bidi-0.6.1-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:eff6d500a4afdd141b3792596a26af5f23b25e9bb5782cda22b6dbd5f173c539"},
{file = "python_bidi-0.6.0-cp37-cp37m-musllinux_1_2_armv7l.whl", hash = "sha256:13956919a2bcf0d5f240d66acd99256996abec10ae235d328d93433480dac62a"}, {file = "python_bidi-0.6.1-cp37-cp37m-musllinux_1_2_armv7l.whl", hash = "sha256:e83ce823494fbcaa62521b07590e2df5ab896674b18ee6d2e00cd4a642ee1868"},
{file = "python_bidi-0.6.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:88ee27d0ce129b51e0aedcf88a7961e300f0e3b5d0e707ca813e2af33b46e8a1"}, {file = "python_bidi-0.6.1-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:af335a47ba80df69c4b4c860d0cb2e6b7519a9435d1ddf2ff5d07c12c2457d72"},
{file = "python_bidi-0.6.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:50ec1353643a03c8c324968e1216624e0bba57b77af465675932ce6cc5505015"}, {file = "python_bidi-0.6.1-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:10b0ee6db22ea9c0208143e68bed3fc044737c674dbdf04d660dad49fc6a9d1f"},
{file = "python_bidi-0.6.0-cp37-none-win32.whl", hash = "sha256:9ec06a91c64fb6832351dc8ab1dc9f970b505e09ccb83b8ff2c91bd04ce31417"}, {file = "python_bidi-0.6.1-cp37-none-win32.whl", hash = "sha256:0c6d806955ba5dbdb25390e0a902a4b230ec061dc46202aaaa90ab00a09246dd"},
{file = "python_bidi-0.6.0-cp37-none-win_amd64.whl", hash = "sha256:4425879da7b1ca6257759ace9277506d9d6cf0fc13820bfa1e779931a6bb9795"}, {file = "python_bidi-0.6.1-cp37-none-win_amd64.whl", hash = "sha256:41eed1e3037a44a3de7535307afa4c476a804de97a53f3bba492ad303277054f"},
{file = "python_bidi-0.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5985ed1f85b8a2853c73976d259e3095122559646956c5bf8f1c6c4eb2bd7ebd"}, {file = "python_bidi-0.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:71f15e1023a47fd151f95d323724f6af035738e61eb454f11844a533473e6de1"},
{file = "python_bidi-0.6.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:afb77402c6d79daa1715a8a5d6d0eff13387e0db1a34c0f91a09b40ca6a60972"}, {file = "python_bidi-0.6.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:10ff6884eceba3a7592160e0677371bc77c25f1d3bf7e205466d8fe9601b13e9"},
{file = "python_bidi-0.6.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2c6d339b94efde502286a8f80f130db6014762c8218e6f3af23bfe446217b10e"}, {file = "python_bidi-0.6.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:67c18c82b95fcbab3d4ce340dfcacc6bdb700a67c46e5d378d5ad5fbc7c8e480"},
{file = "python_bidi-0.6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:afec9e08733d6754ef309eef617ba324eacf4bdf0081c3ec34758cbfb964e889"}, {file = "python_bidi-0.6.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ca23a0b2dda59665170ae7152ba090eea77da39f984b3cd8f79b4039563e946"},
{file = "python_bidi-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2901c29525e8c6071781bd796658f7934143fe6bcfb4f998a11cc80372f756fc"}, {file = "python_bidi-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:290786e0bca55a65e460eb573ab7430033b731ae07e80f39acfa500342a482c3"},
{file = "python_bidi-0.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c71bb7e5fbd67fd64dc7b07c0a69a1b1daffdae0839d543e6e48dbfa82509208"}, {file = "python_bidi-0.6.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9765498ff033615a5655620ade87ab9fb7936938f9d5bbc967bffa4eea76b6f4"},
{file = "python_bidi-0.6.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:782b166b22cdd1738dc557acf7311a1d85565b9f58c48eb4004e4f770854c9d2"}, {file = "python_bidi-0.6.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:07ebf09fb3712027dfb3e052f71978ded8475fdaaa8ee08cc333c372b366acda"},
{file = "python_bidi-0.6.0-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:1000815b42e9eba8d4e28e8d6f9558f055d54b9ec746875117d8b8150c86511c"}, {file = "python_bidi-0.6.1-cp38-cp38-musllinux_1_2_armv7l.whl", hash = "sha256:1445b9f509f0d48ac09c94ee26c9ce4f94257220fe7cb0710d37b54574c43af1"},
{file = "python_bidi-0.6.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:dfae0ea2444833acab3f7c62fd38b965f7332617993ef09098672ca9279bb27d"}, {file = "python_bidi-0.6.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:e31e418ebbf8b4c9a59af13ae43cb23304b7da4e75555a8d68525d8f4183e022"},
{file = "python_bidi-0.6.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:65fcf6afe02d64b3ec9a6b97513fad50b858f88b83f785e4c0416a9acac5bc63"}, {file = "python_bidi-0.6.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:85d985e38e11b353d37f8be4a0a0b87d8e6bac1db16ced87ca7940c3323ec10b"},
{file = "python_bidi-0.6.0-cp38-none-win32.whl", hash = "sha256:0fc9ad821600a0bd4c9bd6327f5cac3c1494f0d291173bf41e655f2ec80f1cee"}, {file = "python_bidi-0.6.1-cp38-none-win32.whl", hash = "sha256:32f82666e2468104011257722cebcf153236638706f030ebbd738cbe74cde07d"},
{file = "python_bidi-0.6.0-cp38-none-win_amd64.whl", hash = "sha256:09cd618b42b6e042140c3c15792942c4a2fd259ed68cd68f224dfe00ff312f1d"}, {file = "python_bidi-0.6.1-cp38-none-win_amd64.whl", hash = "sha256:34bb781fb3f2d7102c0a0a3748503f5af2583575ad104ab8987f416d98302fb9"},
{file = "python_bidi-0.6.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:332506db671bc2ba8ae2591ba48c617a25dd2924a0ae185bc970f9f4e386a55f"}, {file = "python_bidi-0.6.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:cc794ca257335c56d161b585427ce07122e79f78671ad1ed57ceb7b4d0d1460b"},
{file = "python_bidi-0.6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c066bffffcb66e13fff3e4cc4a9570d744f4b48e54caa0308faf98a0a8dc4570"}, {file = "python_bidi-0.6.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4a5029f8a2b1eb61aee34ba3c971767105929ef1af0723ba07a866479a861ee6"},
{file = "python_bidi-0.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36fe41cc095045b23bfddc5c48a6aef1674dc32b1d1a52ece3b302a5fb28f33a"}, {file = "python_bidi-0.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9f101fe2d14f95beef4d0700073e1026e401228bd8af69acb1744e556915a7d"},
{file = "python_bidi-0.6.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:018747edf332240e6400335a10d34c66d7d27e096d05ea0761afb61dc4e750b0"}, {file = "python_bidi-0.6.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:83a01910edf6a83f025e57cd3d8e05f4933c939c17283be4c8acecd968836a04"},
{file = "python_bidi-0.6.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6aae20bb48ff0ccc4bd3ede085bfb781918c938f2cc09867c879d23252d18775"}, {file = "python_bidi-0.6.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bf84d89893c0a1cb286a120f1a9de7ee3093b174bdb2be6b3c90f9f241677e0e"},
{file = "python_bidi-0.6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:600236fbce5e43348c71de7327dd88f1484358cdad04ee742752a289569f1d82"}, {file = "python_bidi-0.6.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:52fb816fb80150a20ea64967f33ec89f509a229b9a880eb097f01d92da616e91"},
{file = "python_bidi-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9dc0ac10d7728b17ce9ac22d09918bd6f8b64e9b92a5199cb9a9cf29016dd41"}, {file = "python_bidi-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d56b82fce448b047d7186942e8ce604ab727e8b9e47bdb6af4122aa7ac852c6"},
{file = "python_bidi-0.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6cbccc3484f6c30a682960fdde2ede944d9bc6b9ed8b8ead683e97af066ebe07"}, {file = "python_bidi-0.6.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:63c7e61cb7446ad2c8ab679a6ad03037d7f2ec5ce2ba334a1651d66adf47cf3b"},
{file = "python_bidi-0.6.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:de1b836e0d8134b8331423a5c76c886b5c25eed8d6f9e5dcac7767feba3d052c"}, {file = "python_bidi-0.6.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:98c3eb1b1d15140ea52f69194403f08ac76b057fb42a50cb74bd3b2cce155730"},
{file = "python_bidi-0.6.0-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:cfb45fecb08bb070dc0e62e6ee8249bbb6b6622181756fae2cff60c8eb5850e9"}, {file = "python_bidi-0.6.1-cp39-cp39-musllinux_1_2_armv7l.whl", hash = "sha256:c89b2f708018955ea52cc36c6d65923a0ddd56db2f9ec2672c8a2ddbacc9a3f5"},
{file = "python_bidi-0.6.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:fb6b3545296ff4c1a6cef465359f6ed9b32cfc4bd3d8a6633f0234476414e387"}, {file = "python_bidi-0.6.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:e420621ad4f57809e3f3817a609ce5f80538f1f75cf9cd6579fbb9bcf590352d"},
{file = "python_bidi-0.6.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e511838eeff5b76f053afe0b936920e5aca91ea597c43caa196e0c6b5cd0d623"}, {file = "python_bidi-0.6.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:121775718e39fd884d5399e46a94375a594f641abe3ab2f1f4857cd0dbc23325"},
{file = "python_bidi-0.6.0-cp39-none-win32.whl", hash = "sha256:de171a2e7671dc5d19f957054e9f8fba997a98caebfcd3d386c4189d23e0d73f"}, {file = "python_bidi-0.6.1-cp39-none-win32.whl", hash = "sha256:cca50435936c229eb2bd00ff0adb53feaacfe840ed3735d72ebc72702418c32c"},
{file = "python_bidi-0.6.0-cp39-none-win_amd64.whl", hash = "sha256:75243e17201831d8f626be57a1ba52fe4f62594eb8bc777e2a81785a93745466"}, {file = "python_bidi-0.6.1-cp39-none-win_amd64.whl", hash = "sha256:0e82b650ffdf30d8a4a809affb96bdf4a7dabe3b9f2c68b2e19616d4f54955db"},
{file = "python_bidi-0.6.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a75ca41875c8829295931eb2f0f380da50c1448d64e3c28c3db4966afdfbc53f"}, {file = "python_bidi-0.6.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee41b97746846b53565fbd7606eebac73658ef5a28b5f900ce91c85a5b407e13"},
{file = "python_bidi-0.6.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4700f71dc553cb65dc8b132de1ee542ae6c518fa8e942b5e0d3ba07bca054a42"}, {file = "python_bidi-0.6.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b751f4a05657acaca2008afeb11586e088e55a310718d31c20d0e63c4c7b6a22"},
{file = "python_bidi-0.6.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:13b7a10fa19b949132581dfd621ca800030cf21dc06a13366371a6e71309c6f6"}, {file = "python_bidi-0.6.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9ce2a05082269b7ff0bf231b29ec7ecb68b096e30d758eb9c969c3cec9e7168f"},
{file = "python_bidi-0.6.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ef186911e27c968be69cdbaccaa378f0fa129b224a2854ec491963632ea37ff1"}, {file = "python_bidi-0.6.1-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de7bbb1997c7e6dedf5285482ee8b4d26917b73e0a4f0b1899e16043fac5900f"},
{file = "python_bidi-0.6.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1af301fe73f76c46e3ddd21b0a3c4467b01e0c3a94f69cd185a78db6810300e8"}, {file = "python_bidi-0.6.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:076dab730e851820621f296174c0150f0b58f4b41a187c498cf1c9f84c6956a5"},
{file = "python_bidi-0.6.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:bf6e718dbbf15f4fb24fd199ebe089c8a28ed712aedc7757d7730741e28cff27"}, {file = "python_bidi-0.6.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:01991cc5a538a4d3a58185dc0a9f01acd8e443b17ca9c78688de982aa46aa4fb"},
{file = "python_bidi-0.6.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:30214494b84c49247624c162d9141e7fc8dbc3957d21959feb92703cb87b474d"}, {file = "python_bidi-0.6.1-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:7ed862af0c9f05ea6df6c480eb207bba5d380fab9ecc3ca7c9741b59d5481000"},
{file = "python_bidi-0.6.0-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl", hash = "sha256:5753d3204d13189a12a298c82c8c23eba94c252ee9aab3dddb7014b0cd4f37b1"}, {file = "python_bidi-0.6.1-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl", hash = "sha256:2687cf56b00fe86a7f8e96d24c8045bf8fb247950fb4d84605655776c2dbb5c9"},
{file = "python_bidi-0.6.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:959fcb0554ca4136044bbb308654aa88c3ffa9031a6c6b074b29221dbb6d553f"}, {file = "python_bidi-0.6.1-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:4b176c726e74e089bea131e6542f151452d35d7d265590f64a2eb738c1a41795"},
{file = "python_bidi-0.6.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:6ca12af1e09355d6296730bd44adf5023a8b696ce77a9a04f35f56b10cd60428"}, {file = "python_bidi-0.6.1-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:b723da2743e73a866f7a14172edd9577bced2e3fba6286b1e5f54a7e1c404b8f"},
{file = "python_bidi-0.6.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f13deaa892d5dbc742b4ca4f96e9f6255d5f33b4bbfb04c4c77afc4c1b36378a"}, {file = "python_bidi-0.6.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b84d75948959d76dccefe0e656a107550dbc5907ffd47459eda9bb150b57be76"},
{file = "python_bidi-0.6.0-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:96b47ad6492fc3f17a8f9335ae76bafec6ae4769138da34c58f493618f653e78"}, {file = "python_bidi-0.6.1-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2bb9b99e9b9c0479f20880251161c52a15848373852281a60365e030fe39af85"},
{file = "python_bidi-0.6.0-pp37-pypy37_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:56cb6986f7fe97a425c6914d465f7098223263a498a3e48c49dbffc9ebe46ee3"}, {file = "python_bidi-0.6.1-pp37-pypy37_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2f60f19b6e90dac559cd9e800c09c911acd8dad0cd0d5a3fe8409ce9e5bed723"},
{file = "python_bidi-0.6.0-pp37-pypy37_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b90235b0c665483821fd5ab4a0d4db59025f12769dbd4fa1e2d6b0616e1178d3"}, {file = "python_bidi-0.6.1-pp37-pypy37_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c996e1516cb4daf3ff697525a87ce9ce0362d836fc395fa7b3637b09e11782a2"},
{file = "python_bidi-0.6.0-pp37-pypy37_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:9ca5506abe6b3a03f139703deec86852e88c13ad32d6b66109b5630539f9f386"}, {file = "python_bidi-0.6.1-pp37-pypy37_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:c6e5a40bcf57c017f3bc59455711c4e52970907d5fbdcde984ab76119cbbd6aa"},
{file = "python_bidi-0.6.0-pp37-pypy37_pp73-musllinux_1_2_armv7l.whl", hash = "sha256:5f6f04dbd30a667a3dd61356ca9e97d33cbdd8fbbe953c5ad3ab86b6901c73e7"}, {file = "python_bidi-0.6.1-pp37-pypy37_pp73-musllinux_1_2_armv7l.whl", hash = "sha256:91308a5ade4ba96c5fc107f68f48e415ddd123f45d1b4a504572743d2547b46b"},
{file = "python_bidi-0.6.0-pp37-pypy37_pp73-musllinux_1_2_i686.whl", hash = "sha256:d63cf8bd056c4ec14ff9d8ee7181543cd758c1f4ce0eea0710fa854e1fede644"}, {file = "python_bidi-0.6.1-pp37-pypy37_pp73-musllinux_1_2_i686.whl", hash = "sha256:b489db2e7037bf4802747900463343c5b356a8437948b6032b07cc859b855956"},
{file = "python_bidi-0.6.0-pp37-pypy37_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:17a9db493051792e71a813dd09a4c555e475cd874bf7594429be9c0cf16e270f"}, {file = "python_bidi-0.6.1-pp37-pypy37_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:dead77866bd69d948ccc836a772b711a74d4a18f692c1a8d8a45e8367d7a1a0c"},
{file = "python_bidi-0.6.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:618a70c0183372e23756766db135930507093e95f386c429187f9ae29c4d965f"}, {file = "python_bidi-0.6.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52047983079d9c8acea72d777a6fe15dda476ff96e47a784e8aec1aa4a3ed160"},
{file = "python_bidi-0.6.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4b880e8e75bea3136c5a44960365665d32abdee204024fd77e9a9975809c72ae"}, {file = "python_bidi-0.6.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:22ed0569e668063b63b5db786ed898718f954ad9271304d65a4be0906c478297"},
{file = "python_bidi-0.6.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f20e5592534f3b06b2beb0a38f1df8ce1fb2c8f628573381637ca53083dd4648"}, {file = "python_bidi-0.6.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:39958c9749c9e57c520c10c777b3688ec766be25a7b94abc717b6dbd4b755c88"},
{file = "python_bidi-0.6.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:16c8a3284bf874b6c38f8cb10f0f48fd1d7c198cf0a4937d39e73e460096c652"}, {file = "python_bidi-0.6.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1647059eb21181e6ac03894834d96fc282b482e28f4117a748aafc0320c58019"},
{file = "python_bidi-0.6.0-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:e079ac4ece790fcc4f1a4fcd0b4bfaa290482f2f04bd69936a93aff6a0ce9719"}, {file = "python_bidi-0.6.1-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:28df2ed9ca3a971a530b31240839e8d9593d5eaf4de159227aa6e8125d021623"},
{file = "python_bidi-0.6.0-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl", hash = "sha256:f48486bc16d37361cd21b32a27b2109cb45372cf8e1b4cc59809f2ae4634ad22"}, {file = "python_bidi-0.6.1-pp38-pypy38_pp73-musllinux_1_2_armv7l.whl", hash = "sha256:0f460a333b5620cef14bd709b2f2ab95eb882b116cd8777bc006a35ded8be6fd"},
{file = "python_bidi-0.6.0-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:895fe7e1d67acff2d313184148a1414b50fbbf2148df272a5e9a84f8196f2d3e"}, {file = "python_bidi-0.6.1-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:6240ccbc0e1e582b17c994667af61a498844b50e2bdb51e76c29d3c2f4f225b8"},
{file = "python_bidi-0.6.0-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:18c2d0bffafa590629a5e95ee079c491954ee2249350d62db4497164f7d3f4cf"}, {file = "python_bidi-0.6.1-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:3d007a8708b490e8f5c89f828395f79e9ab8e19ff09ad8fcbb50d1b7fdea6442"},
{file = "python_bidi-0.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3dbde6d205610653d17cc5bb785c5d5da5af6ae634e5daf92a7a6e75a50f94a"}, {file = "python_bidi-0.6.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:646faaa87b1cd693c054124a0c4080449b1c125b6d5394cef4d77b56e92b7da1"},
{file = "python_bidi-0.6.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:132954f67e3af38ca7c7cd85bde6a49c89bd470ba01603acbd0baf8048acbab5"}, {file = "python_bidi-0.6.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:38b1cbb292eaf91cc5ea2282b98cccd3d79ae0ed3f1ce5a2f5d83938264227a7"},
{file = "python_bidi-0.6.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c2c8c79faafbc5852db896f8d488090530cb1421765528305a6678694a1961f0"}, {file = "python_bidi-0.6.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:af1c6103847397bb020057737f6c670f62b87dfab0395f3c7e72cfb915e37b43"},
{file = "python_bidi-0.6.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a5c0191270c2438953329af2116fdee021c20da3a33f418303f1bf9859984eb"}, {file = "python_bidi-0.6.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:35840cf91858522cea9887068f007835b9867518ac863379a840bcc58f468be3"},
{file = "python_bidi-0.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c652bab5b2d978f9abf324e9c1de50cb175599402b5ec14b7553780f68af597d"}, {file = "python_bidi-0.6.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc93b876f7d030c01639aab2d91cebb975a2676a7449347966017324683309e1"},
{file = "python_bidi-0.6.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:657ac6ddf02d40de633d616d8d052e616169787d535902e3a4240738ab902a0c"}, {file = "python_bidi-0.6.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:44cee53c32709c8ecb310d90c1fce083065a4f67a91639d749ec562ff14c9cac"},
{file = "python_bidi-0.6.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:8096c8a8d7498750cf54a55de44eb689a236ae8d3b47b642e25e55cfbcff6e4e"}, {file = "python_bidi-0.6.1-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:d3c34a0d3d038a4e2f064f9c5e723e5aed146cbbd0cad9705f61b45d51dccf92"},
{file = "python_bidi-0.6.0-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl", hash = "sha256:0458e2f2d24c115f5f103aa54d9fe8b98c5197b85b616b0db68aaba32908c28c"}, {file = "python_bidi-0.6.1-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl", hash = "sha256:eedb5fee92fafc2cc118d826b464a31e4ca5875e97f8c6041071db68940a8dba"},
{file = "python_bidi-0.6.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:ce855e6be84e0b6e00286c62e2dd1ccb505beaeb78f969e270aec5998e53e4fb"}, {file = "python_bidi-0.6.1-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:b72dc51d43d1ae50f5abafc834d84260d73f011c1811bb0263aed45c98a88c6a"},
{file = "python_bidi-0.6.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:bb3c0dfc5131e706d46df50547ce51ff92722431b6d8d81142ea208374550b3e"}, {file = "python_bidi-0.6.1-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:21aba9a66f49a47a82069f1fc6507af94cbee68e985ffe2282e60f8eb1d73d4b"},
{file = "python_bidi-0.6.0.tar.gz", hash = "sha256:0665a0826074a9ff8d29640c0c405a2710b671db14fcc8b1c3ee6615ff10b837"}, {file = "python_bidi-0.6.1.tar.gz", hash = "sha256:671c5d331187455a73342c655c0717b1e36969b7fdb8c787c8f2234d0eab47f4"},
] ]
[package.extras] [package.extras]
@ -4808,6 +5207,20 @@ files = [
{file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"},
] ]
[[package]]
name = "pyyaml-env-tag"
version = "0.1"
description = "A custom YAML tag for referencing environment variables in YAML files. "
optional = false
python-versions = ">=3.6"
files = [
{file = "pyyaml_env_tag-0.1-py3-none-any.whl", hash = "sha256:af31106dec8a4d68c60207c1886031cbf839b68aa7abccdb19868200532c2069"},
{file = "pyyaml_env_tag-0.1.tar.gz", hash = "sha256:70092675bda14fdec33b31ba77e7543de9ddc88f2e5b99160396572d11525bdb"},
]
[package.dependencies]
pyyaml = "*"
[[package]] [[package]]
name = "pyzmq" name = "pyzmq"
version = "26.2.0" version = "26.2.0"
@ -5978,6 +6391,24 @@ test = ["cmapfile", "czifile", "dask", "defusedxml", "fsspec", "imagecodecs", "l
xml = ["defusedxml", "lxml"] xml = ["defusedxml", "lxml"]
zarr = ["fsspec", "zarr"] zarr = ["fsspec", "zarr"]
[[package]]
name = "tinycss2"
version = "1.3.0"
description = "A tiny CSS parser"
optional = false
python-versions = ">=3.8"
files = [
{file = "tinycss2-1.3.0-py3-none-any.whl", hash = "sha256:54a8dbdffb334d536851be0226030e9505965bb2f30f21a4a82c55fb2a80fae7"},
{file = "tinycss2-1.3.0.tar.gz", hash = "sha256:152f9acabd296a8375fbca5b84c961ff95971fcfc32e79550c8df8e29118c54d"},
]
[package.dependencies]
webencodings = ">=0.4"
[package.extras]
doc = ["sphinx", "sphinx_rtd_theme"]
test = ["pytest", "ruff"]
[[package]] [[package]]
name = "tokenize-rt" name = "tokenize-rt"
version = "6.0.0" version = "6.0.0"
@ -6720,6 +7151,48 @@ platformdirs = ">=3.9.1,<5"
docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.2,!=7.3)", "sphinx-argparse (>=0.4)", "sphinxcontrib-towncrier (>=0.2.1a0)", "towncrier (>=23.6)"] docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.2,!=7.3)", "sphinx-argparse (>=0.4)", "sphinxcontrib-towncrier (>=0.2.1a0)", "towncrier (>=23.6)"]
test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess (>=1)", "flaky (>=3.7)", "packaging (>=23.1)", "pytest (>=7.4)", "pytest-env (>=0.8.2)", "pytest-freezer (>=0.4.8)", "pytest-mock (>=3.11.1)", "pytest-randomly (>=3.12)", "pytest-timeout (>=2.1)", "setuptools (>=68)", "time-machine (>=2.10)"] test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess (>=1)", "flaky (>=3.7)", "packaging (>=23.1)", "pytest (>=7.4)", "pytest-env (>=0.8.2)", "pytest-freezer (>=0.4.8)", "pytest-mock (>=3.11.1)", "pytest-randomly (>=3.12)", "pytest-timeout (>=2.1)", "setuptools (>=68)", "time-machine (>=2.10)"]
[[package]]
name = "watchdog"
version = "5.0.3"
description = "Filesystem events monitoring"
optional = false
python-versions = ">=3.9"
files = [
{file = "watchdog-5.0.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:85527b882f3facda0579bce9d743ff7f10c3e1e0db0a0d0e28170a7d0e5ce2ea"},
{file = "watchdog-5.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:53adf73dcdc0ef04f7735066b4a57a4cd3e49ef135daae41d77395f0b5b692cb"},
{file = "watchdog-5.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e25adddab85f674acac303cf1f5835951345a56c5f7f582987d266679979c75b"},
{file = "watchdog-5.0.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f01f4a3565a387080dc49bdd1fefe4ecc77f894991b88ef927edbfa45eb10818"},
{file = "watchdog-5.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:91b522adc25614cdeaf91f7897800b82c13b4b8ac68a42ca959f992f6990c490"},
{file = "watchdog-5.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d52db5beb5e476e6853da2e2d24dbbbed6797b449c8bf7ea118a4ee0d2c9040e"},
{file = "watchdog-5.0.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:94d11b07c64f63f49876e0ab8042ae034674c8653bfcdaa8c4b32e71cfff87e8"},
{file = "watchdog-5.0.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:349c9488e1d85d0a58e8cb14222d2c51cbc801ce11ac3936ab4c3af986536926"},
{file = "watchdog-5.0.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:53a3f10b62c2d569e260f96e8d966463dec1a50fa4f1b22aec69e3f91025060e"},
{file = "watchdog-5.0.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:950f531ec6e03696a2414b6308f5c6ff9dab7821a768c9d5788b1314e9a46ca7"},
{file = "watchdog-5.0.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ae6deb336cba5d71476caa029ceb6e88047fc1dc74b62b7c4012639c0b563906"},
{file = "watchdog-5.0.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1021223c08ba8d2d38d71ec1704496471ffd7be42cfb26b87cd5059323a389a1"},
{file = "watchdog-5.0.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:752fb40efc7cc8d88ebc332b8f4bcbe2b5cc7e881bccfeb8e25054c00c994ee3"},
{file = "watchdog-5.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a2e8f3f955d68471fa37b0e3add18500790d129cc7efe89971b8a4cc6fdeb0b2"},
{file = "watchdog-5.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b8ca4d854adcf480bdfd80f46fdd6fb49f91dd020ae11c89b3a79e19454ec627"},
{file = "watchdog-5.0.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:90a67d7857adb1d985aca232cc9905dd5bc4803ed85cfcdcfcf707e52049eda7"},
{file = "watchdog-5.0.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:720ef9d3a4f9ca575a780af283c8fd3a0674b307651c1976714745090da5a9e8"},
{file = "watchdog-5.0.3-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:223160bb359281bb8e31c8f1068bf71a6b16a8ad3d9524ca6f523ac666bb6a1e"},
{file = "watchdog-5.0.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:560135542c91eaa74247a2e8430cf83c4342b29e8ad4f520ae14f0c8a19cfb5b"},
{file = "watchdog-5.0.3-py3-none-manylinux2014_aarch64.whl", hash = "sha256:dd021efa85970bd4824acacbb922066159d0f9e546389a4743d56919b6758b91"},
{file = "watchdog-5.0.3-py3-none-manylinux2014_armv7l.whl", hash = "sha256:78864cc8f23dbee55be34cc1494632a7ba30263951b5b2e8fc8286b95845f82c"},
{file = "watchdog-5.0.3-py3-none-manylinux2014_i686.whl", hash = "sha256:1e9679245e3ea6498494b3028b90c7b25dbb2abe65c7d07423ecfc2d6218ff7c"},
{file = "watchdog-5.0.3-py3-none-manylinux2014_ppc64.whl", hash = "sha256:9413384f26b5d050b6978e6fcd0c1e7f0539be7a4f1a885061473c5deaa57221"},
{file = "watchdog-5.0.3-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:294b7a598974b8e2c6123d19ef15de9abcd282b0fbbdbc4d23dfa812959a9e05"},
{file = "watchdog-5.0.3-py3-none-manylinux2014_s390x.whl", hash = "sha256:26dd201857d702bdf9d78c273cafcab5871dd29343748524695cecffa44a8d97"},
{file = "watchdog-5.0.3-py3-none-manylinux2014_x86_64.whl", hash = "sha256:0f9332243355643d567697c3e3fa07330a1d1abf981611654a1f2bf2175612b7"},
{file = "watchdog-5.0.3-py3-none-win32.whl", hash = "sha256:c66f80ee5b602a9c7ab66e3c9f36026590a0902db3aea414d59a2f55188c1f49"},
{file = "watchdog-5.0.3-py3-none-win_amd64.whl", hash = "sha256:f00b4cf737f568be9665563347a910f8bdc76f88c2970121c86243c8cfdf90e9"},
{file = "watchdog-5.0.3-py3-none-win_ia64.whl", hash = "sha256:49f4d36cb315c25ea0d946e018c01bb028048023b9e103d3d3943f58e109dd45"},
{file = "watchdog-5.0.3.tar.gz", hash = "sha256:108f42a7f0345042a854d4d0ad0834b741d421330d5f575b81cb27b883500176"},
]
[package.extras]
watchmedo = ["PyYAML (>=3.10)"]
[[package]] [[package]]
name = "wcwidth" name = "wcwidth"
version = "0.2.13" version = "0.2.13"
@ -6731,6 +7204,17 @@ files = [
{file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"},
] ]
[[package]]
name = "webencodings"
version = "0.5.1"
description = "Character encoding aliases for legacy web content"
optional = false
python-versions = "*"
files = [
{file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"},
{file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"},
]
[[package]] [[package]]
name = "wheel" name = "wheel"
version = "0.44.0" version = "0.44.0"
@ -7115,4 +7599,4 @@ tesserocr = ["tesserocr"]
[metadata] [metadata]
lock-version = "2.0" lock-version = "2.0"
python-versions = "^3.10" python-versions = "^3.10"
content-hash = "14143d6cc79f4c2c8a4d021711198697e91ca01ecf290dd270b483984461c3d1" content-hash = "8a545ce70eb2001e47c79c102a494aa42d8f5efee5dfbf3dfd0acfb3fb0f8ec9"

View File

@ -1,6 +1,6 @@
[tool.poetry] [tool.poetry]
name = "docling" name = "docling"
version = "2.0.0-dev1" # DO NOT EDIT, updated automatically version = "1.20.0" # DO NOT EDIT, updated automatically
description = "Docling PDF conversion package" description = "Docling PDF conversion package"
authors = ["Christoph Auer <cau@zurich.ibm.com>", "Michele Dolfi <dol@zurich.ibm.com>", "Maxim Lysak <mly@zurich.ibm.com>", "Nikos Livathinos <nli@zurich.ibm.com>", "Ahmed Nassar <ahn@zurich.ibm.com>", "Peter Staar <taa@zurich.ibm.com>"] authors = ["Christoph Auer <cau@zurich.ibm.com>", "Michele Dolfi <dol@zurich.ibm.com>", "Maxim Lysak <mly@zurich.ibm.com>", "Nikos Livathinos <nli@zurich.ibm.com>", "Ahmed Nassar <ahn@zurich.ibm.com>", "Peter Staar <taa@zurich.ibm.com>"]
license = "MIT" license = "MIT"
@ -40,8 +40,6 @@ pydantic = "^2.0.0"
docling-core = {git = "https://github.com/DS4SD/docling-core.git", rev = "7c104d61aa5d003dd8d9711c37e23ce04799f4c9"} docling-core = {git = "https://github.com/DS4SD/docling-core.git", rev = "7c104d61aa5d003dd8d9711c37e23ce04799f4c9"}
docling-ibm-models = {git = "https://github.com/DS4SD/docling-ibm-models.git", rev = "1d2e2a2e6eb152c237f1383cdba20cf85db80b97"} docling-ibm-models = {git = "https://github.com/DS4SD/docling-ibm-models.git", rev = "1d2e2a2e6eb152c237f1383cdba20cf85db80b97"}
deepsearch-glm = {git = "https://github.com/DS4SD/deepsearch-glm.git", rev = "c185c4f985ccd29a470a1cddd3bec43880b739ee"} deepsearch-glm = {git = "https://github.com/DS4SD/deepsearch-glm.git", rev = "c185c4f985ccd29a470a1cddd3bec43880b739ee"}
docling-parse = "^1.5.1"
filetype = "^1.2.0" filetype = "^1.2.0"
pypdfium2 = "^4.30.0" pypdfium2 = "^4.30.0"
pydantic-settings = "^2.3.0" pydantic-settings = "^2.3.0"
@ -49,6 +47,7 @@ huggingface_hub = ">=0.23,<1"
requests = "^2.32.3" requests = "^2.32.3"
easyocr = "^1.7" easyocr = "^1.7"
tesserocr = { version = "^2.7.1", optional = true } tesserocr = { version = "^2.7.1", optional = true }
docling-parse = "^1.6.0"
certifi = ">=2024.7.4" certifi = ">=2024.7.4"
rtree = "^1.3.0" rtree = "^1.3.0"
scipy = "^1.14.1" scipy = "^1.14.1"
@ -76,6 +75,8 @@ pandas-stubs = "^2.1.4.231227"
ipykernel = "^6.29.5" ipykernel = "^6.29.5"
ipywidgets = "^8.1.5" ipywidgets = "^8.1.5"
nbqa = "^1.9.0" nbqa = "^1.9.0"
mkdocs-material = "^9.5.40"
mkdocs-jupyter = "^0.25.0"
[tool.poetry.group.examples.dependencies] [tool.poetry.group.examples.dependencies]
datasets = "^2.21.0" datasets = "^2.21.0"
@ -114,6 +115,7 @@ py_version=311
pretty = true pretty = true
# strict = true # strict = true
no_implicit_optional = true no_implicit_optional = true
plugins = "pydantic.mypy"
python_version = "3.10" python_version = "3.10"
[[tool.mypy.overrides]] [[tool.mypy.overrides]]
@ -121,6 +123,15 @@ module = [
"docling_parse.*", "docling_parse.*",
"pypdfium2.*", "pypdfium2.*",
"networkx.*", "networkx.*",
"scipy.*",
"filetype.*",
"tesserocr.*",
"docling_ibm_models.*",
"easyocr.*",
"deepsearch_glm.*",
"lxml.*",
"bs4.*",
"huggingface_hub.*"
] ]
ignore_missing_imports = true ignore_missing_imports = true

View File

@ -26,7 +26,6 @@ def _get_backend(pdf_doc):
return doc_backend return doc_backend
@pytest.mark.skip
def test_text_cell_counts(): def test_text_cell_counts():
pdf_doc = Path("./tests/data/redp5695.pdf") pdf_doc = Path("./tests/data/redp5695.pdf")

View File

@ -3,7 +3,6 @@ from pathlib import Path
import pytest import pytest
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.datamodel.base_models import InputFormat from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption from docling.document_converter import DocumentConverter, PdfFormatOption