mirror of
https://github.com/DS4SD/docling.git
synced 2025-12-13 15:18:30 +00:00
@@ -11,10 +11,15 @@ from docling.datamodel.pipeline_options import (
|
||||
InferenceFramework,
|
||||
ResponseFormat,
|
||||
VlmPipelineOptions,
|
||||
smoldocling_vlm_mlx_conversion_options,
|
||||
smoldocling_vlm_conversion_options,
|
||||
granite_vision_vlm_conversion_options,
|
||||
granite_vision_vlm_mlx_conversion_options,
|
||||
granite_vision_vlm_ollama_conversion_options,
|
||||
phi_vlm_conversion_options,
|
||||
pixtral_12b_vlm_conversion_options,
|
||||
pixtral_12b_vlm_mlx_conversion_options,
|
||||
qwen25_vl_3b_vlm_mlx_conversion_options,
|
||||
smoldocling_vlm_conversion_options,
|
||||
smoldocling_vlm_mlx_conversion_options,
|
||||
)
|
||||
from docling.document_converter import DocumentConverter, PdfFormatOption
|
||||
from docling.pipeline.vlm_pipeline import VlmPipeline
|
||||
@@ -28,6 +33,7 @@ sources = [
|
||||
pipeline_options = VlmPipelineOptions()
|
||||
# If force_backend_text = True, text from backend will be used instead of generated text
|
||||
pipeline_options.force_backend_text = False
|
||||
pipeline_options.generate_page_images = True
|
||||
|
||||
## On GPU systems, enable flash_attention_2 with CUDA:
|
||||
# pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
|
||||
@@ -37,11 +43,13 @@ pipeline_options.force_backend_text = False
|
||||
# pipeline_options.vlm_options = smoldocling_vlm_conversion_options
|
||||
|
||||
## Pick a VLM model. Fast Apple Silicon friendly implementation for SmolDocling-256M via MLX
|
||||
pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
|
||||
# pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
|
||||
|
||||
## Alternative VLM models:
|
||||
# pipeline_options.vlm_options = granite_vision_vlm_conversion_options
|
||||
|
||||
pipeline_options.vlm_options = phi_vlm_conversion_options
|
||||
|
||||
"""
|
||||
pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
repo_id="mistralai/Pixtral-12B-Base-2409",
|
||||
@@ -105,7 +113,7 @@ converter = DocumentConverter(
|
||||
pipeline_cls=VlmPipeline,
|
||||
pipeline_options=pipeline_options,
|
||||
),
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
out_path = Path("scratch")
|
||||
@@ -121,39 +129,44 @@ for source in sources:
|
||||
res = converter.convert(source)
|
||||
|
||||
print("")
|
||||
#print(res.document.export_to_markdown())
|
||||
# print(res.document.export_to_markdown())
|
||||
|
||||
for i,page in enumerate(res.pages):
|
||||
model_id = pipeline_options.vlm_options.repo_id.replace("/", "_")
|
||||
fname = f"{model_id}-{res.input.file.stem}"
|
||||
|
||||
for i, page in enumerate(res.pages):
|
||||
print("")
|
||||
print(f" ---------- Predicted page {i} in {pipeline_options.vlm_options.response_format}:")
|
||||
print(
|
||||
f" ---------- Predicted page {i} in {pipeline_options.vlm_options.response_format}:"
|
||||
)
|
||||
print(page.predictions.vlm_response.text)
|
||||
print(f" ---------- ")
|
||||
print(" ---------- ")
|
||||
|
||||
print("===== Final output of the converted document =======")
|
||||
|
||||
with (out_path / f"{res.input.file.stem}.json").open("w") as fp:
|
||||
|
||||
with (out_path / f"{fname}.json").open("w") as fp:
|
||||
fp.write(json.dumps(res.document.export_to_dict()))
|
||||
|
||||
res.document.save_as_json(
|
||||
out_path / f"{res.input.file.stem}.json",
|
||||
out_path / f"{fname}.json",
|
||||
image_mode=ImageRefMode.PLACEHOLDER,
|
||||
)
|
||||
print(f" => produced {out_path / res.input.file.stem}.json")
|
||||
|
||||
print(f" => produced {out_path / fname}.json")
|
||||
|
||||
res.document.save_as_markdown(
|
||||
out_path / f"{res.input.file.stem}.md",
|
||||
out_path / f"{fname}.md",
|
||||
image_mode=ImageRefMode.PLACEHOLDER,
|
||||
)
|
||||
print(f" => produced {out_path / res.input.file.stem}.md")
|
||||
|
||||
print(f" => produced {out_path / fname}.md")
|
||||
|
||||
res.document.save_as_html(
|
||||
out_path / f"{res.input.file.stem}.html",
|
||||
out_path / f"{fname}.html",
|
||||
image_mode=ImageRefMode.EMBEDDED,
|
||||
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
|
||||
# split_page_view=True,
|
||||
split_page_view=True,
|
||||
)
|
||||
print(f" => produced {out_path / res.input.file.stem}.html")
|
||||
|
||||
print(f" => produced {out_path / fname}.html")
|
||||
|
||||
pg_num = res.document.num_pages()
|
||||
print("")
|
||||
inference_time = time.time() - start_time
|
||||
@@ -161,4 +174,3 @@ for source in sources:
|
||||
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
|
||||
)
|
||||
print("====================================================")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user