added the VlmPredictionToken

Signed-off-by: Peter Staar <taa@zurich.ibm.com>
This commit is contained in:
Peter Staar 2025-05-14 12:23:46 +02:00
parent f159075b67
commit 7c97b494ec
8 changed files with 67 additions and 99 deletions

View File

@ -1,6 +1,10 @@
from enum import Enum
from typing import TYPE_CHECKING, Dict, List, Optional, Union
from docling_core.types.io import (
DocumentStream,
)
from docling_core.types.doc import (
BoundingBox,
DocItemLabel,
@ -12,9 +16,6 @@ from docling_core.types.doc import (
from docling_core.types.doc.page import SegmentedPdfPage, TextCell
# DO NOT REMOVE; explicitly exposed from this location
from docling_core.types.io import (
DocumentStream,
)
from PIL.Image import Image
from pydantic import BaseModel, ConfigDict
@ -127,12 +128,6 @@ class ErrorItem(BaseModel):
error_message: str
# class Cell(BaseModel):
# id: int
# text: str
# bbox: BoundingBox
class Cluster(BaseModel):
id: int
label: DocItemLabel
@ -153,9 +148,15 @@ class BasePageElement(BaseModel):
class LayoutPrediction(BaseModel):
clusters: List[Cluster] = []
class VlmPredictionToken(BaseModel):
text: str = ""
token: int = -1
logprob: float = -1
class VlmPrediction(BaseModel):
text: str = ""
generated_tokens: list[VlmPredictionToken] = -1
generation_time: float = -1
class ContainerElement(

View File

@ -20,30 +20,8 @@ import filetype
# DO NOT REMOVE; explicitly exposed from this location
from docling_core.types.doc import (
DocItem,
DocItemLabel,
DoclingDocument,
PictureItem,
SectionHeaderItem,
TableItem,
TextItem,
)
from docling_core.types.doc.document import ListItem
from docling_core.types.legacy_doc.base import (
BaseText,
Figure,
GlmTableCell,
PageDimensions,
PageReference,
Prov,
Ref,
Table as DsSchemaTable,
TableCell,
)
from docling_core.types.legacy_doc.document import (
CCSDocumentDescription as DsDocumentDescription,
CCSFileInfoObject as DsFileInfoObject,
ExportedCCSDocument as DsDocument,
)
from docling_core.utils.file import resolve_source_to_stream
from docling_core.utils.legacy import docling_document_to_legacy

View File

@ -1,19 +1,7 @@
import logging
import time
from collections.abc import Iterable
from pathlib import Path
from typing import Optional
from docling.datamodel.base_models import Page, VlmPrediction
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
AcceleratorOptions,
HuggingFaceVlmOptions,
)
from docling.models.base_model import BasePageModel
from docling.utils.accelerator_utils import decide_device
from docling.utils.profiling import TimeRecorder
_log = logging.getLogger(__name__)

View File

@ -4,7 +4,7 @@ from collections.abc import Iterable
from pathlib import Path
from typing import Optional
from docling.datamodel.base_models import Page, VlmPrediction
from docling.datamodel.base_models import Page, VlmPrediction, VlmPredictionToken
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
AcceleratorOptions,
@ -29,6 +29,8 @@ class HuggingFaceMlxModel(BasePageModel):
self.vlm_options = vlm_options
self.max_tokens=4096
if self.enabled:
try:
from mlx_vlm import generate, load # type: ignore
@ -40,29 +42,32 @@ class HuggingFaceMlxModel(BasePageModel):
)
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
print(f"model init: {repo_cache_folder}")
_log.debug(f"model init: {repo_cache_folder}")
self.apply_chat_template = apply_chat_template
self.stream_generate = stream_generate
# PARAMETERS:
if artifacts_path is None:
print(f"before HuggingFaceVlmModel.download_models: {self.vlm_options.repo_id}")
_log.debug(
f"before HuggingFaceVlmModel.download_models: {self.vlm_options.repo_id}"
)
# artifacts_path = self.download_models(self.vlm_options.repo_id)
artifacts_path = HuggingFaceVlmModel.download_models(
self.vlm_options.repo_id, progress=True,
self.vlm_options.repo_id,
progress=True,
)
elif (artifacts_path / repo_cache_folder).exists():
artifacts_path = artifacts_path / repo_cache_folder
print(f"downloaded model: {artifacts_path}")
_log.debug(f"downloaded model: {artifacts_path}")
self.param_question = vlm_options.prompt # "Perform Layout Analysis."
## Load the model
print("start loading model ...")
_log.debug("start loading model ...")
self.vlm_model, self.processor = load(artifacts_path)
print("loaded model ...")
_log.debug("loaded model ...")
self.config = load_config(artifacts_path)
"""
@ -117,9 +122,11 @@ class HuggingFaceMlxModel(BasePageModel):
)
start_time = time.time()
print("start generating ...")
_log.debug("start generating ...")
# Call model to generate:
tokens:list[VlmPredictionToken] = []
output = ""
for token in self.stream_generate(
self.vlm_model,
@ -129,23 +136,31 @@ class HuggingFaceMlxModel(BasePageModel):
max_tokens=4096,
verbose=False,
):
print(token.text, end="", flush=True)
print(token.logprobs.shape)
if len(token.logprobs.shape)==1:
tokens.append(VlmPredictionToken(text=token.text,
token=token.token,
logprob=token.logprobs[token.token]))
elif len(token.logprobs.shape)==2 and token.logprobs.shape[0]==1:
tokens.append(VlmPredictionToken(text=token.text,
token=token.token,
logprob=token.logprobs[0, token.token]))
# print(token.text, end="", flush=True)
output += token.text
if "</doctag>" in token.text:
break
generation_time = time.time() - start_time
page_tags = output
_log.debug(f"Generation time {generation_time:.2f} seconds.")
print(tokens)
# inference_time = time.time() - start_time
# tokens_per_second = num_tokens / generation_time
# print("")
# print(f"Page Inference Time: {inference_time:.2f} seconds")
# print(f"Total tokens on page: {num_tokens:.2f}")
# print(f"Tokens/sec: {tokens_per_second:.2f}")
# print("")
page.predictions.vlm_response = VlmPrediction(text=page_tags)
_log.debug(f"Generation time {generation_time:.2f} seconds.")
page.predictions.vlm_response = VlmPrediction(text=page_tags,
generation_time=generation_time,
generated_tokens=tokens)
yield page

View File

@ -170,7 +170,7 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
def formulate_prompt(self) -> str:
"""Formulate a prompt for the VLM."""
if self.vlm_options.repo_id=="microsoft/Phi-4-multimodal-instruct":
if self.vlm_options.repo_id == "microsoft/Phi-4-multimodal-instruct":
user_prompt = "<|user|>"
assistant_prompt = "<|assistant|>"
prompt_suffix = "<|end|>"
@ -183,6 +183,4 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
else:
raise ValueError(f"No prompt template for {self.vlm_options.repo_id}")
return ""

View File

@ -4,8 +4,6 @@ from collections.abc import Iterable
from pathlib import Path
from typing import Optional
from transformers import AutoProcessor, LlavaForConditionalGeneration
from docling.datamodel.base_models import Page, VlmPrediction
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
@ -35,7 +33,6 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
self.vlm_options = vlm_options
if self.enabled:
import torch
from transformers import ( # type: ignore
AutoProcessor,
LlavaForConditionalGeneration,
@ -116,6 +113,8 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
use_cache=self.use_cache, # Enables KV caching which can improve performance
)
print(generate_ids)
num_tokens = len(generate_ids[0])
generation_time = time.time() - start_time
@ -125,32 +124,23 @@ class HuggingFaceVlmModel_LlavaForConditionalGeneration(BasePageModel):
clean_up_tokenization_spaces=False,
)[0]
"""
_log.debug(
f"Generated {num_tokens} tokens in time {generation_time:.2f} seconds."
)
"""
# inference_time = time.time() - start_time
# tokens_per_second = num_tokens / generation_time
# print("")
# print(f"Page Inference Time: {inference_time:.2f} seconds")
# print(f"Total tokens on page: {num_tokens:.2f}")
# print(f"Tokens/sec: {tokens_per_second:.2f}")
# print("")
page.predictions.vlm_response = VlmPrediction(text=response)
page.predictions.vlm_response = VlmPrediction(text=response,
generated_tokens=num_tokens,
generation_time=generation_time)
yield page
def formulate_prompt(self) -> str:
"""Formulate a prompt for the VLM."""
if self.vlm_options.repo_id=="mistral-community/pixtral-12b":
#prompt = f"<s>[INST]{self.vlm_options.prompt}\n[IMG][/INST]"
if self.vlm_options.repo_id == "mistral-community/pixtral-12b":
# prompt = f"<s>[INST]{self.vlm_options.prompt}\n[IMG][/INST]"
chat = [
{
"role": "user", "content": [
"role": "user",
"content": [
{"type": "text", "content": self.vlm_options.prompt},
{"type": "image"},
]
],
}
]
prompt = self.processor.apply_chat_template(chat)

View File

@ -11,7 +11,6 @@ from docling.datamodel.pipeline_options import (
InferenceFramework,
ResponseFormat,
VlmPipelineOptions,
smoldocling_vlm_mlx_conversion_options,
)
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline

View File

@ -1,5 +1,4 @@
import logging
import time
from pathlib import Path
from docling_core.types.doc import ImageRefMode, TableItem, TextItem