mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-26 20:14:47 +00:00
working on vlm's
Signed-off-by: Peter Staar <taa@zurich.ibm.com>
This commit is contained in:
parent
77eb21b235
commit
7fbe021359
@ -270,6 +270,7 @@ class InferenceFramework(str, Enum):
|
||||
TRANSFORMERS_AutoModelForVision2Seq = "transformers-AutoModelForVision2Seq"
|
||||
TRANSFORMERS_AutoModelForCausalLM = "transformers-AutoModelForCausalLM"
|
||||
|
||||
|
||||
class HuggingFaceVlmOptions(BaseVlmOptions):
|
||||
kind: Literal["hf_model_options"] = "hf_model_options"
|
||||
|
||||
|
@ -14,7 +14,6 @@ from docling.models.base_model import BasePageModel
|
||||
from docling.utils.accelerator_utils import decide_device
|
||||
from docling.utils.profiling import TimeRecorder
|
||||
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -31,22 +30,21 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
||||
self.trust_remote_code = True
|
||||
|
||||
self.vlm_options = vlm_options
|
||||
print(self.vlm_options)
|
||||
|
||||
if self.enabled:
|
||||
import torch
|
||||
from transformers import ( # type: ignore
|
||||
AutoModelForCausalLM,
|
||||
AutoProcessor,
|
||||
GenerationConfig,
|
||||
BitsAndBytesConfig,
|
||||
GenerationConfig,
|
||||
)
|
||||
|
||||
device = decide_device(accelerator_options.device)
|
||||
self.device = 'cpu' #device
|
||||
|
||||
_log.debug(f"Available device for HuggingFace VLM: {device}")
|
||||
print(f"Available device for HuggingFace VLM: {device}")
|
||||
self.device = decide_device(accelerator_options.device)
|
||||
self.device = "cpu" # device
|
||||
|
||||
_log.debug(f"Available device for HuggingFace VLM: {self.device}")
|
||||
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
||||
|
||||
# PARAMETERS:
|
||||
@ -101,7 +99,6 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
||||
# Load generation config
|
||||
self.generation_config = GenerationConfig.from_pretrained(model_path)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def download_models(
|
||||
repo_id: str,
|
||||
@ -134,74 +131,27 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
||||
with TimeRecorder(conv_res, "vlm"):
|
||||
assert page.size is not None
|
||||
|
||||
# hi_res_image = page.get_image(scale=2.0) # 144dpi
|
||||
hi_res_image = page.get_image(scale=1.0) # 72dpi
|
||||
|
||||
hi_res_image.show()
|
||||
hi_res_image = page.get_image(scale=2.0) # 144dpi
|
||||
# hi_res_image = page.get_image(scale=1.0) # 72dpi
|
||||
|
||||
if hi_res_image is not None:
|
||||
im_width, im_height = hi_res_image.size
|
||||
|
||||
# populate page_tags with predicted doc tags
|
||||
page_tags = ""
|
||||
|
||||
if hi_res_image:
|
||||
if hi_res_image.mode != "RGB":
|
||||
hi_res_image = hi_res_image.convert("RGB")
|
||||
|
||||
"""
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "This is a page from a document.",
|
||||
},
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": self.param_question},
|
||||
],
|
||||
}
|
||||
]
|
||||
prompt = self.processor.apply_chat_template(
|
||||
messages, add_generation_prompt=False
|
||||
)
|
||||
inputs = self.processor(
|
||||
text=prompt, images=[hi_res_image], return_tensors="pt"
|
||||
)
|
||||
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
||||
|
||||
start_time = time.time()
|
||||
# Call model to generate:
|
||||
generated_ids = self.vlm_model.generate(
|
||||
**inputs, max_new_tokens=4096, use_cache=True
|
||||
)
|
||||
|
||||
generation_time = time.time() - start_time
|
||||
generated_texts = self.processor.batch_decode(
|
||||
generated_ids[:, inputs["input_ids"].shape[1] :],
|
||||
skip_special_tokens=False,
|
||||
)[0]
|
||||
|
||||
num_tokens = len(generated_ids[0])
|
||||
page_tags = generated_texts
|
||||
"""
|
||||
|
||||
hi_res_image.show()
|
||||
|
||||
# Define prompt structure
|
||||
user_prompt = '<|user|>'
|
||||
assistant_prompt = '<|assistant|>'
|
||||
prompt_suffix = '<|end|>'
|
||||
user_prompt = "<|user|>"
|
||||
assistant_prompt = "<|assistant|>"
|
||||
prompt_suffix = "<|end|>"
|
||||
|
||||
# Part 1: Image Processing
|
||||
print("\n--- IMAGE PROCESSING ---")
|
||||
# image_url = 'https://www.ilankelman.org/stopsigns/australia.jpg'
|
||||
prompt = f'{user_prompt}<|image_1|>Convert this image into MarkDown and only return the bare MarkDown!{prompt_suffix}{assistant_prompt}'
|
||||
print(f'>>> Prompt\n{prompt}')
|
||||
prompt = f"{user_prompt}<|image_1|>Convert this image into MarkDown and only return the bare MarkDown!{prompt_suffix}{assistant_prompt}"
|
||||
|
||||
inputs = self.processor(text=prompt, images=hi_res_image, return_tensors='pt').to(self.device) #.to('cuda:0')
|
||||
print("inputs: ", inputs.keys())
|
||||
inputs = self.processor(
|
||||
text=prompt, images=hi_res_image, return_tensors="pt"
|
||||
).to(self.device)
|
||||
|
||||
# Generate response
|
||||
generate_ids = self.vlm_model.generate(
|
||||
@ -210,19 +160,14 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
||||
generation_config=self.generation_config,
|
||||
num_logits_to_keep=1,
|
||||
)
|
||||
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
||||
generate_ids = generate_ids[:, inputs["input_ids"].shape[1] :]
|
||||
|
||||
num_tokens = len(generate_ids[0])
|
||||
# num_tokens = len(generate_ids[0])
|
||||
response = self.processor.batch_decode(
|
||||
generate_ids,
|
||||
skip_special_tokens=True,
|
||||
clean_up_tokenization_spaces=False,
|
||||
)[0]
|
||||
print(f'>>> Response\n{response}')
|
||||
|
||||
_log.debug(
|
||||
f"Generated {num_tokens} tokens."
|
||||
)
|
||||
|
||||
# inference_time = time.time() - start_time
|
||||
# tokens_per_second = num_tokens / generation_time
|
||||
|
@ -24,8 +24,12 @@ from docling.datamodel.settings import settings
|
||||
from docling.models.api_vlm_model import ApiVlmModel
|
||||
from docling.models.hf_mlx_model import HuggingFaceMlxModel
|
||||
from docling.models.hf_vlm_model import HuggingFaceVlmModel
|
||||
from docling.models.hf_vlm_models.hf_vlm_model_AutoModelForVision2Seq import HuggingFaceVlmModel_AutoModelForVision2Seq
|
||||
from docling.models.hf_vlm_models.hf_vlm_model_AutoModelForCausalLM import HuggingFaceVlmModel_AutoModelForCausalLM
|
||||
from docling.models.hf_vlm_models.hf_vlm_model_AutoModelForCausalLM import (
|
||||
HuggingFaceVlmModel_AutoModelForCausalLM,
|
||||
)
|
||||
from docling.models.hf_vlm_models.hf_vlm_model_AutoModelForVision2Seq import (
|
||||
HuggingFaceVlmModel_AutoModelForVision2Seq,
|
||||
)
|
||||
from docling.pipeline.base_pipeline import PaginatedPipeline
|
||||
from docling.utils.profiling import ProfilingScope, TimeRecorder
|
||||
|
||||
@ -79,7 +83,10 @@ class VlmPipeline(PaginatedPipeline):
|
||||
vlm_options=vlm_options,
|
||||
),
|
||||
]
|
||||
elif vlm_options.inference_framework == InferenceFramework.TRANSFORMERS_AutoModelForVision2Seq:
|
||||
elif (
|
||||
vlm_options.inference_framework
|
||||
== InferenceFramework.TRANSFORMERS_AutoModelForVision2Seq
|
||||
):
|
||||
self.build_pipe = [
|
||||
HuggingFaceVlmModel_AutoModelForVision2Seq(
|
||||
enabled=True, # must be always enabled for this pipeline to make sense.
|
||||
@ -88,7 +95,10 @@ class VlmPipeline(PaginatedPipeline):
|
||||
vlm_options=vlm_options,
|
||||
),
|
||||
]
|
||||
elif vlm_options.inference_framework == InferenceFramework.TRANSFORMERS_AutoModelForCausalLM:
|
||||
elif (
|
||||
vlm_options.inference_framework
|
||||
== InferenceFramework.TRANSFORMERS_AutoModelForCausalLM
|
||||
):
|
||||
self.build_pipe = [
|
||||
HuggingFaceVlmModel_AutoModelForCausalLM(
|
||||
enabled=True, # must be always enabled for this pipeline to make sense.
|
||||
@ -98,7 +108,9 @@ class VlmPipeline(PaginatedPipeline):
|
||||
),
|
||||
]
|
||||
else:
|
||||
_log.warning("falling back to HuggingFaceVlmModel (AutoModelForVision2Seq) pipeline")
|
||||
_log.warning(
|
||||
"falling back to HuggingFaceVlmModel (AutoModelForVision2Seq) pipeline"
|
||||
)
|
||||
self.build_pipe = [
|
||||
HuggingFaceVlmModel(
|
||||
enabled=True, # must be always enabled for this pipeline to make sense.
|
||||
|
@ -7,9 +7,9 @@ from docling_core.types.doc.document import DEFAULT_EXPORT_LABELS
|
||||
|
||||
from docling.datamodel.base_models import InputFormat
|
||||
from docling.datamodel.pipeline_options import (
|
||||
HuggingFaceVlmOptions,
|
||||
InferenceFramework,
|
||||
ResponseFormat,
|
||||
HuggingFaceVlmOptions,
|
||||
VlmPipelineOptions,
|
||||
smoldocling_vlm_mlx_conversion_options,
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user