mirror of
https://github.com/DS4SD/docling.git
synced 2025-12-08 20:58:11 +00:00
feat(ocr): added support for RapidOCR engine (#415)
* adding rapidocr engine for ocr in docling Signed-off-by: swayam-singhal <swayam.singhal@inito.com> * fixing styling format Signed-off-by: Swaymaw <swaymaw@gmail.com> * updating pyproject.toml and poetry.lock to fix ci bugs Signed-off-by: Swaymaw <swaymaw@gmail.com> * help poetry pinning for python3.9 Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * simplifying rapidocr options so that device can be changed using a single option for all models Signed-off-by: Swaymaw <swaymaw@gmail.com> * fix styling issues and small bug in rapidOcrOptions Signed-off-by: Swaymaw <swaymaw@gmail.com> * use default device until we enable global management Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> --------- Signed-off-by: swayam-singhal <swayam.singhal@inito.com> Signed-off-by: Swaymaw <swaymaw@gmail.com> Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> Co-authored-by: swayam-singhal <swayam.singhal@inito.com> Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
@@ -27,6 +27,7 @@ from docling.datamodel.pipeline_options import (
|
||||
OcrMacOptions,
|
||||
OcrOptions,
|
||||
PdfPipelineOptions,
|
||||
RapidOcrOptions,
|
||||
TableFormerMode,
|
||||
TesseractCliOcrOptions,
|
||||
TesseractOcrOptions,
|
||||
@@ -76,6 +77,7 @@ class OcrEngine(str, Enum):
|
||||
TESSERACT_CLI = "tesseract_cli"
|
||||
TESSERACT = "tesseract"
|
||||
OCRMAC = "ocrmac"
|
||||
RAPIDOCR = "rapidocr"
|
||||
|
||||
|
||||
def export_documents(
|
||||
@@ -262,6 +264,8 @@ def convert(
|
||||
ocr_options = TesseractOcrOptions(force_full_page_ocr=force_ocr)
|
||||
elif ocr_engine == OcrEngine.OCRMAC:
|
||||
ocr_options = OcrMacOptions(force_full_page_ocr=force_ocr)
|
||||
elif ocr_engine == OcrEngine.RAPIDOCR:
|
||||
ocr_options = RapidOcrOptions(force_full_page_ocr=force_ocr)
|
||||
else:
|
||||
raise RuntimeError(f"Unexpected OCR engine type {ocr_engine}")
|
||||
|
||||
|
||||
@@ -29,6 +29,42 @@ class OcrOptions(BaseModel):
|
||||
)
|
||||
|
||||
|
||||
class RapidOcrOptions(OcrOptions):
|
||||
kind: Literal["rapidocr"] = "rapidocr"
|
||||
|
||||
# English and chinese are the most commly used models and have been tested with RapidOCR.
|
||||
lang: List[str] = [
|
||||
"english",
|
||||
"chinese",
|
||||
] # However, language as a parameter is not supported by rapidocr yet and hence changing this options doesn't affect anything.
|
||||
# For more details on supported languages by RapidOCR visit https://rapidai.github.io/RapidOCRDocs/blog/2022/09/28/%E6%94%AF%E6%8C%81%E8%AF%86%E5%88%AB%E8%AF%AD%E8%A8%80/
|
||||
|
||||
# For more details on the following options visit https://rapidai.github.io/RapidOCRDocs/install_usage/api/RapidOCR/
|
||||
text_score: float = 0.5 # same default as rapidocr
|
||||
|
||||
use_det: Optional[bool] = None # same default as rapidocr
|
||||
use_cls: Optional[bool] = None # same default as rapidocr
|
||||
use_rec: Optional[bool] = None # same default as rapidocr
|
||||
|
||||
# class Device(Enum):
|
||||
# CPU = "CPU"
|
||||
# CUDA = "CUDA"
|
||||
# DIRECTML = "DIRECTML"
|
||||
# AUTO = "AUTO"
|
||||
|
||||
# device: Device = Device.AUTO # Default value is AUTO
|
||||
|
||||
print_verbose: bool = False # same default as rapidocr
|
||||
|
||||
det_model_path: Optional[str] = None # same default as rapidocr
|
||||
cls_model_path: Optional[str] = None # same default as rapidocr
|
||||
rec_model_path: Optional[str] = None # same default as rapidocr
|
||||
|
||||
model_config = ConfigDict(
|
||||
extra="forbid",
|
||||
)
|
||||
|
||||
|
||||
class EasyOcrOptions(OcrOptions):
|
||||
kind: Literal["easyocr"] = "easyocr"
|
||||
lang: List[str] = ["fr", "de", "es", "en"]
|
||||
|
||||
147
docling/models/rapid_ocr_model.py
Normal file
147
docling/models/rapid_ocr_model.py
Normal file
@@ -0,0 +1,147 @@
|
||||
import logging
|
||||
from typing import Iterable
|
||||
|
||||
import numpy
|
||||
from docling_core.types.doc import BoundingBox, CoordOrigin
|
||||
|
||||
from docling.datamodel.base_models import OcrCell, Page
|
||||
from docling.datamodel.document import ConversionResult
|
||||
from docling.datamodel.pipeline_options import RapidOcrOptions
|
||||
from docling.datamodel.settings import settings
|
||||
from docling.models.base_ocr_model import BaseOcrModel
|
||||
from docling.utils.profiling import TimeRecorder
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class RapidOcrModel(BaseOcrModel):
|
||||
def __init__(self, enabled: bool, options: RapidOcrOptions):
|
||||
super().__init__(enabled=enabled, options=options)
|
||||
self.options: RapidOcrOptions
|
||||
|
||||
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
|
||||
|
||||
if self.enabled:
|
||||
try:
|
||||
from rapidocr_onnxruntime import RapidOCR # type: ignore
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"RapidOCR is not installed. Please install it via `pip install rapidocr_onnxruntime` to use this OCR engine. "
|
||||
"Alternatively, Docling has support for other OCR engines. See the documentation."
|
||||
)
|
||||
|
||||
# This configuration option will be revamped while introducing device settings for all models.
|
||||
# For the moment we will default to auto and let onnx-runtime pick the best.
|
||||
cls_use_cuda = True
|
||||
rec_use_cuda = True
|
||||
det_use_cuda = True
|
||||
det_use_dml = True
|
||||
cls_use_dml = True
|
||||
rec_use_dml = True
|
||||
|
||||
# # Same as Defaults in RapidOCR
|
||||
# cls_use_cuda = False
|
||||
# rec_use_cuda = False
|
||||
# det_use_cuda = False
|
||||
# det_use_dml = False
|
||||
# cls_use_dml = False
|
||||
# rec_use_dml = False
|
||||
|
||||
# # If we set everything to true onnx-runtime would automatically choose the fastest accelerator
|
||||
# if self.options.device == self.options.Device.AUTO:
|
||||
# cls_use_cuda = True
|
||||
# rec_use_cuda = True
|
||||
# det_use_cuda = True
|
||||
# det_use_dml = True
|
||||
# cls_use_dml = True
|
||||
# rec_use_dml = True
|
||||
|
||||
# # If we set use_cuda to true onnx would use the cuda device available in runtime if no cuda device is available it would run on CPU.
|
||||
# elif self.options.device == self.options.Device.CUDA:
|
||||
# cls_use_cuda = True
|
||||
# rec_use_cuda = True
|
||||
# det_use_cuda = True
|
||||
|
||||
# # If we set use_dml to true onnx would use the dml device available in runtime if no dml device is available it would work on CPU.
|
||||
# elif self.options.device == self.options.Device.DIRECTML:
|
||||
# det_use_dml = True
|
||||
# cls_use_dml = True
|
||||
# rec_use_dml = True
|
||||
|
||||
self.reader = RapidOCR(
|
||||
text_score=self.options.text_score,
|
||||
cls_use_cuda=cls_use_cuda,
|
||||
rec_use_cuda=rec_use_cuda,
|
||||
det_use_cuda=det_use_cuda,
|
||||
det_use_dml=det_use_dml,
|
||||
cls_use_dml=cls_use_dml,
|
||||
rec_use_dml=rec_use_dml,
|
||||
print_verbose=self.options.print_verbose,
|
||||
det_model_path=self.options.det_model_path,
|
||||
cls_model_path=self.options.cls_model_path,
|
||||
rec_model_path=self.options.rec_model_path,
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
|
||||
if not self.enabled:
|
||||
yield from page_batch
|
||||
return
|
||||
|
||||
for page in page_batch:
|
||||
|
||||
assert page._backend is not None
|
||||
if not page._backend.is_valid():
|
||||
yield page
|
||||
else:
|
||||
with TimeRecorder(conv_res, "ocr"):
|
||||
ocr_rects = self.get_ocr_rects(page)
|
||||
|
||||
all_ocr_cells = []
|
||||
for ocr_rect in ocr_rects:
|
||||
# Skip zero area boxes
|
||||
if ocr_rect.area() == 0:
|
||||
continue
|
||||
high_res_image = page._backend.get_page_image(
|
||||
scale=self.scale, cropbox=ocr_rect
|
||||
)
|
||||
im = numpy.array(high_res_image)
|
||||
result, _ = self.reader(
|
||||
im,
|
||||
use_det=self.options.use_det,
|
||||
use_cls=self.options.use_cls,
|
||||
use_rec=self.options.use_rec,
|
||||
)
|
||||
|
||||
del high_res_image
|
||||
del im
|
||||
|
||||
cells = [
|
||||
OcrCell(
|
||||
id=ix,
|
||||
text=line[1],
|
||||
confidence=line[2],
|
||||
bbox=BoundingBox.from_tuple(
|
||||
coord=(
|
||||
(line[0][0][0] / self.scale) + ocr_rect.l,
|
||||
(line[0][0][1] / self.scale) + ocr_rect.t,
|
||||
(line[0][2][0] / self.scale) + ocr_rect.l,
|
||||
(line[0][2][1] / self.scale) + ocr_rect.t,
|
||||
),
|
||||
origin=CoordOrigin.TOPLEFT,
|
||||
),
|
||||
)
|
||||
for ix, line in enumerate(result)
|
||||
]
|
||||
all_ocr_cells.extend(cells)
|
||||
|
||||
# Post-process the cells
|
||||
page.cells = self.post_process_cells(all_ocr_cells, page.cells)
|
||||
|
||||
# DEBUG code:
|
||||
if settings.debug.visualize_ocr:
|
||||
self.draw_ocr_rects_and_cells(conv_res, page, ocr_rects)
|
||||
|
||||
yield page
|
||||
@@ -13,6 +13,7 @@ from docling.datamodel.pipeline_options import (
|
||||
EasyOcrOptions,
|
||||
OcrMacOptions,
|
||||
PdfPipelineOptions,
|
||||
RapidOcrOptions,
|
||||
TesseractCliOcrOptions,
|
||||
TesseractOcrOptions,
|
||||
)
|
||||
@@ -26,6 +27,7 @@ from docling.models.page_preprocessing_model import (
|
||||
PagePreprocessingModel,
|
||||
PagePreprocessingOptions,
|
||||
)
|
||||
from docling.models.rapid_ocr_model import RapidOcrModel
|
||||
from docling.models.table_structure_model import TableStructureModel
|
||||
from docling.models.tesseract_ocr_cli_model import TesseractOcrCliModel
|
||||
from docling.models.tesseract_ocr_model import TesseractOcrModel
|
||||
@@ -121,6 +123,11 @@ class StandardPdfPipeline(PaginatedPipeline):
|
||||
enabled=self.pipeline_options.do_ocr,
|
||||
options=self.pipeline_options.ocr_options,
|
||||
)
|
||||
elif isinstance(self.pipeline_options.ocr_options, RapidOcrOptions):
|
||||
return RapidOcrModel(
|
||||
enabled=self.pipeline_options.do_ocr,
|
||||
options=self.pipeline_options.ocr_options,
|
||||
)
|
||||
elif isinstance(self.pipeline_options.ocr_options, OcrMacOptions):
|
||||
if "darwin" != sys.platform:
|
||||
raise RuntimeError(
|
||||
|
||||
Reference in New Issue
Block a user