docs: add Getting Started page (#2113)

* docs: add Getting Started page

Signed-off-by: Panos Vagenas <pva@zurich.ibm.com>

* refactor usage

Signed-off-by: Panos Vagenas <pva@zurich.ibm.com>

* minor renaming

Signed-off-by: Panos Vagenas <pva@zurich.ibm.com>

---------

Signed-off-by: Panos Vagenas <pva@zurich.ibm.com>
This commit is contained in:
Panos Vagenas
2025-08-21 08:44:53 +02:00
committed by GitHub
parent 555506d8e6
commit 8996d612aa
5 changed files with 248 additions and 248 deletions

17
docs/getting_started/index.md vendored Normal file
View File

@@ -0,0 +1,17 @@
🐣 Ready to kick off your Docling journey? Let's dive right into it!
<div class="grid">
<a href="../installation/" class="card"><b>⬇️ Installation</b><br />Quickly install Docling in your environment</a>
<a href="../usage/" class="card"><b>▶️ Usage</b><br />Get a jumpstart on basic Docling usage</a>
<a href="../concepts/" class="card"><b>🧩 Concepts</b><br />Learn Docling fundamentals and get a glimpse under the hood</a>
<a href="../examples/" class="card"><b>🧑🏽‍🍳 Examples</b><br />Try out recipes for various use cases, including conversion, RAG, and more</a>
<a href="../integrations/" class="card"><b>🤖 Integrations</b><br />Check out integrations with popular AI tools and frameworks</a>
<a href="../reference/document_converter/" class="card"><b>📖 Reference</b><br />See more API details</a>
</div>
## What's next
🚀 The journey has just begun! Join us and become a part of the growing Docling community!
- <a href="https://github.com/docling-project/docling">:fontawesome-brands-github: GitHub</a>
- <a href="https://linkedin.com/company/docling/">:fontawesome-brands-linkedin: LinkedIn</a>

9
docs/index.md vendored
View File

@@ -40,16 +40,11 @@ Docling simplifies document processing, parsing diverse formats — including ad
## Get started
<div class="grid">
<a href="concepts/" class="card"><b>Concepts</b><br />Learn Docling fundamentals</a>
<a href="examples/" class="card"><b>Examples</b><br />Try out recipes for various use cases, including conversion, RAG, and more</a>
<a href="integrations/" class="card"><b>Integrations</b><br />Check out integrations with popular frameworks and tools</a>
<a href="reference/document_converter/" class="card"><b>Reference</b><br />See more API details</a>
</div>
Check out our [getting started](./getting_started/index.md) page to get the ball rolling!
## Live assistant
Do you want to leverage the power of AI and get a live support on Docling?
Do you want to leverage the power of AI and get live support on Docling?
Try out the [Chat with Dosu](https://app.dosu.dev/097760a8-135e-4789-8234-90c8837d7f1c/ask?utm_source=github) functionalities provided by our friends at [Dosu](https://dosu.dev/).
[![Chat with Dosu](https://dosu.dev/dosu-chat-badge.svg)](https://app.dosu.dev/097760a8-135e-4789-8234-90c8837d7f1c/ask?utm_source=github)

192
docs/usage/advanced_options.md vendored Normal file
View File

@@ -0,0 +1,192 @@
## Model prefetching and offline usage
By default, models are downloaded automatically upon first usage. If you would prefer
to explicitly prefetch them for offline use (e.g. in air-gapped environments) you can do
that as follows:
**Step 1: Prefetch the models**
Use the `docling-tools models download` utility:
```sh
$ docling-tools models download
Downloading layout model...
Downloading tableformer model...
Downloading picture classifier model...
Downloading code formula model...
Downloading easyocr models...
Models downloaded into $HOME/.cache/docling/models.
```
Alternatively, models can be programmatically downloaded using `docling.utils.model_downloader.download_models()`.
**Step 2: Use the prefetched models**
```python
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import EasyOcrOptions, PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
artifacts_path = "/local/path/to/models"
pipeline_options = PdfPipelineOptions(artifacts_path=artifacts_path)
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
```
Or using the CLI:
```sh
docling --artifacts-path="/local/path/to/models" FILE
```
Or using the `DOCLING_ARTIFACTS_PATH` environment variable:
```sh
export DOCLING_ARTIFACTS_PATH="/local/path/to/models"
python my_docling_script.py
```
## Using remote services
The main purpose of Docling is to run local models which are not sharing any user data with remote services.
Anyhow, there are valid use cases for processing part of the pipeline using remote services, for example invoking OCR engines from cloud vendors or the usage of hosted LLMs.
In Docling we decided to allow such models, but we require the user to explicitly opt-in in communicating with external services.
```py
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
pipeline_options = PdfPipelineOptions(enable_remote_services=True)
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
```
When the value `enable_remote_services=True` is not set, the system will raise an exception `OperationNotAllowed()`.
_Note: This option is only related to the system sending user data to remote services. Control of pulling data (e.g. model weights) follows the logic described in [Model prefetching and offline usage](#model-prefetching-and-offline-usage)._
### List of remote model services
The options in this list require the explicit `enable_remote_services=True` when processing the documents.
- `PictureDescriptionApiOptions`: Using vision models via API calls.
## Adjust pipeline features
The example file [custom_convert.py](../examples/custom_convert.py) contains multiple ways
one can adjust the conversion pipeline and features.
### Control PDF table extraction options
You can control if table structure recognition should map the recognized structure back to PDF cells (default) or use text cells from the structure prediction itself.
This can improve output quality if you find that multiple columns in extracted tables are erroneously merged into one.
```python
from docling.datamodel.base_models import InputFormat
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.datamodel.pipeline_options import PdfPipelineOptions
pipeline_options = PdfPipelineOptions(do_table_structure=True)
pipeline_options.table_structure_options.do_cell_matching = False # uses text cells predicted from table structure model
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
```
Since docling 1.16.0: You can control which TableFormer mode you want to use. Choose between `TableFormerMode.FAST` (faster but less accurate) and `TableFormerMode.ACCURATE` (default) to receive better quality with difficult table structures.
```python
from docling.datamodel.base_models import InputFormat
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.datamodel.pipeline_options import PdfPipelineOptions, TableFormerMode
pipeline_options = PdfPipelineOptions(do_table_structure=True)
pipeline_options.table_structure_options.mode = TableFormerMode.ACCURATE # use more accurate TableFormer model
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
```
## Impose limits on the document size
You can limit the file size and number of pages which should be allowed to process per document:
```python
from pathlib import Path
from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2408.09869"
converter = DocumentConverter()
result = converter.convert(source, max_num_pages=100, max_file_size=20971520)
```
## Convert from binary PDF streams
You can convert PDFs from a binary stream instead of from the filesystem as follows:
```python
from io import BytesIO
from docling.datamodel.base_models import DocumentStream
from docling.document_converter import DocumentConverter
buf = BytesIO(your_binary_stream)
source = DocumentStream(name="my_doc.pdf", stream=buf)
converter = DocumentConverter()
result = converter.convert(source)
```
## Limit resource usage
You can limit the CPU threads used by Docling by setting the environment variable `OMP_NUM_THREADS` accordingly. The default setting is using 4 CPU threads.
## Use specific backend converters
!!! note
This section discusses directly invoking a [backend](../concepts/architecture.md),
i.e. using a low-level API. This should only be done when necessary. For most cases,
using a `DocumentConverter` (high-level API) as discussed in the sections above
should suffice  and is the recommended way.
By default, Docling will try to identify the document format to apply the appropriate conversion backend (see the list of [supported formats](supported_formats.md)).
You can restrict the `DocumentConverter` to a set of allowed document formats, as shown in the [Multi-format conversion](../examples/run_with_formats.py) example.
Alternatively, you can also use the specific backend that matches your document content. For instance, you can use `HTMLDocumentBackend` for HTML pages:
```python
import urllib.request
from io import BytesIO
from docling.backend.html_backend import HTMLDocumentBackend
from docling.datamodel.base_models import InputFormat
from docling.datamodel.document import InputDocument
url = "https://en.wikipedia.org/wiki/Duck"
text = urllib.request.urlopen(url).read()
in_doc = InputDocument(
path_or_stream=BytesIO(text),
format=InputFormat.HTML,
backend=HTMLDocumentBackend,
filename="duck.html",
)
backend = HTMLDocumentBackend(in_doc=in_doc, path_or_stream=BytesIO(text))
dl_doc = backend.convert()
print(dl_doc.export_to_markdown())
```

265
docs/usage/index.md vendored
View File

@@ -1,262 +1,45 @@
## Conversion
## Basic usage
### Convert a single document
### Python
To convert individual PDF documents, use `convert()`, for example:
In Docling, working with documents is as simple as:
1. converting your source file to a Docling document
2. using that Docling document for your workflow
For example, the snippet below shows conversion with export to Markdown:
```python
from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL
source = "https://arxiv.org/pdf/2408.09869" # file path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown()) # output: "### Docling Technical Report[...]"
doc = converter.convert(source).document
print(doc.export_to_markdown()) # output: "### Docling Technical Report[...]"
```
Docling supports a wide array of [file formats](./supported_formats.md) and, as outlined in the
[architecture](../concepts/architecture.md) guide, provides a versatile document model along with a full suite of
supported operations.
### CLI
You can also use Docling directly from your command line to convert individual files —be it local or by URL— or whole directories.
You can additionally use Docling directly from your terminal, for instance:
```console
docling https://arxiv.org/pdf/2206.01062
```
You can also use 🥚[SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview) and other VLMs via Docling CLI:
The CLI provides various options, such as 🥚[SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview) (incl. MLX acceleration) & other VLMs:
```bash
docling --pipeline vlm --vlm-model smoldocling https://arxiv.org/pdf/2206.01062
```
This will use MLX acceleration on supported Apple Silicon hardware.
For all available options, run `docling --help` or check the [CLI reference](../reference/cli.md).
To see all available options (export formats etc.) run `docling --help`. More details in the [CLI reference page](../reference/cli.md).
## What's next
### Advanced options
#### Model prefetching and offline usage
By default, models are downloaded automatically upon first usage. If you would prefer
to explicitly prefetch them for offline use (e.g. in air-gapped environments) you can do
that as follows:
**Step 1: Prefetch the models**
Use the `docling-tools models download` utility:
```sh
$ docling-tools models download
Downloading layout model...
Downloading tableformer model...
Downloading picture classifier model...
Downloading code formula model...
Downloading easyocr models...
Models downloaded into $HOME/.cache/docling/models.
```
Alternatively, models can be programmatically downloaded using `docling.utils.model_downloader.download_models()`.
**Step 2: Use the prefetched models**
```python
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import EasyOcrOptions, PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
artifacts_path = "/local/path/to/models"
pipeline_options = PdfPipelineOptions(artifacts_path=artifacts_path)
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
```
Or using the CLI:
```sh
docling --artifacts-path="/local/path/to/models" FILE
```
Or using the `DOCLING_ARTIFACTS_PATH` environment variable:
```sh
export DOCLING_ARTIFACTS_PATH="/local/path/to/models"
python my_docling_script.py
```
#### Using remote services
The main purpose of Docling is to run local models which are not sharing any user data with remote services.
Anyhow, there are valid use cases for processing part of the pipeline using remote services, for example invoking OCR engines from cloud vendors or the usage of hosted LLMs.
In Docling we decided to allow such models, but we require the user to explicitly opt-in in communicating with external services.
```py
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, PdfFormatOption
pipeline_options = PdfPipelineOptions(enable_remote_services=True)
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
```
When the value `enable_remote_services=True` is not set, the system will raise an exception `OperationNotAllowed()`.
_Note: This option is only related to the system sending user data to remote services. Control of pulling data (e.g. model weights) follows the logic described in [Model prefetching and offline usage](#model-prefetching-and-offline-usage)._
##### List of remote model services
The options in this list require the explicit `enable_remote_services=True` when processing the documents.
- `PictureDescriptionApiOptions`: Using vision models via API calls.
#### Adjust pipeline features
The example file [custom_convert.py](../examples/custom_convert.py) contains multiple ways
one can adjust the conversion pipeline and features.
##### Control PDF table extraction options
You can control if table structure recognition should map the recognized structure back to PDF cells (default) or use text cells from the structure prediction itself.
This can improve output quality if you find that multiple columns in extracted tables are erroneously merged into one.
```python
from docling.datamodel.base_models import InputFormat
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.datamodel.pipeline_options import PdfPipelineOptions
pipeline_options = PdfPipelineOptions(do_table_structure=True)
pipeline_options.table_structure_options.do_cell_matching = False # uses text cells predicted from table structure model
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
```
Since docling 1.16.0: You can control which TableFormer mode you want to use. Choose between `TableFormerMode.FAST` (faster but less accurate) and `TableFormerMode.ACCURATE` (default) to receive better quality with difficult table structures.
```python
from docling.datamodel.base_models import InputFormat
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.datamodel.pipeline_options import PdfPipelineOptions, TableFormerMode
pipeline_options = PdfPipelineOptions(do_table_structure=True)
pipeline_options.table_structure_options.mode = TableFormerMode.ACCURATE # use more accurate TableFormer model
doc_converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
```
#### Impose limits on the document size
You can limit the file size and number of pages which should be allowed to process per document:
```python
from pathlib import Path
from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2408.09869"
converter = DocumentConverter()
result = converter.convert(source, max_num_pages=100, max_file_size=20971520)
```
#### Convert from binary PDF streams
You can convert PDFs from a binary stream instead of from the filesystem as follows:
```python
from io import BytesIO
from docling.datamodel.base_models import DocumentStream
from docling.document_converter import DocumentConverter
buf = BytesIO(your_binary_stream)
source = DocumentStream(name="my_doc.pdf", stream=buf)
converter = DocumentConverter()
result = converter.convert(source)
```
#### Limit resource usage
You can limit the CPU threads used by Docling by setting the environment variable `OMP_NUM_THREADS` accordingly. The default setting is using 4 CPU threads.
#### Use specific backend converters
!!! note
This section discusses directly invoking a [backend](../concepts/architecture.md),
i.e. using a low-level API. This should only be done when necessary. For most cases,
using a `DocumentConverter` (high-level API) as discussed in the sections above
should suffice  and is the recommended way.
By default, Docling will try to identify the document format to apply the appropriate conversion backend (see the list of [supported formats](supported_formats.md)).
You can restrict the `DocumentConverter` to a set of allowed document formats, as shown in the [Multi-format conversion](../examples/run_with_formats.py) example.
Alternatively, you can also use the specific backend that matches your document content. For instance, you can use `HTMLDocumentBackend` for HTML pages:
```python
import urllib.request
from io import BytesIO
from docling.backend.html_backend import HTMLDocumentBackend
from docling.datamodel.base_models import InputFormat
from docling.datamodel.document import InputDocument
url = "https://en.wikipedia.org/wiki/Duck"
text = urllib.request.urlopen(url).read()
in_doc = InputDocument(
path_or_stream=BytesIO(text),
format=InputFormat.HTML,
backend=HTMLDocumentBackend,
filename="duck.html",
)
backend = HTMLDocumentBackend(in_doc=in_doc, path_or_stream=BytesIO(text))
dl_doc = backend.convert()
print(dl_doc.export_to_markdown())
```
## Chunking
You can chunk a Docling document using a [chunker](../concepts/chunking.md), such as a
`HybridChunker`, as shown below (for more details check out
[this example](../examples/hybrid_chunking.ipynb)):
```python
from docling.document_converter import DocumentConverter
from docling.chunking import HybridChunker
conv_res = DocumentConverter().convert("https://arxiv.org/pdf/2206.01062")
doc = conv_res.document
chunker = HybridChunker(tokenizer="BAAI/bge-small-en-v1.5") # set tokenizer as needed
chunk_iter = chunker.chunk(doc)
```
An example chunk would look like this:
```python
print(list(chunk_iter)[11])
# {
# "text": "In this paper, we present the DocLayNet dataset. [...]",
# "meta": {
# "doc_items": [{
# "self_ref": "#/texts/28",
# "label": "text",
# "prov": [{
# "page_no": 2,
# "bbox": {"l": 53.29, "t": 287.14, "r": 295.56, "b": 212.37, ...},
# }], ...,
# }, ...],
# "headings": ["1 INTRODUCTION"],
# }
# }
```
Check out the Usage subpages (navigation menu on the left) as well as our [featured examples](../examples/index.md) for
additional usage workflows, including conversion customization, RAG, framework integrations, chunking, serialization,
enrichments, and much more!

View File

@@ -54,10 +54,13 @@ theme:
nav:
- Home:
- "Docling": index.md
- Getting started:
- Getting started: getting_started/index.md
- Installation:
- Installation: installation/index.md
- Usage:
- Usage: usage/index.md
- Advanced options: usage/advanced_options.md
- Supported formats: usage/supported_formats.md
- Enrichment features: usage/enrichments.md
- Vision models: usage/vision_models.md
@@ -156,6 +159,9 @@ markdown_extensions:
slugify: !!python/object/apply:pymdownx.slugs.slugify
kwds:
case: lower
- pymdownx.emoji:
emoji_index: !!python/name:material.extensions.emoji.twemoji
emoji_generator: !!python/name:material.extensions.emoji.to_svg
- admonition
- pymdownx.details
- attr_list
@@ -175,3 +181,10 @@ plugins:
extra_css:
- stylesheets/extra.css
extra:
social:
- icon: fontawesome/brands/github
link: https://github.com/docling-project/docling
- icon: fontawesome/brands/linkedin
link: https://linkedin.com/company/docling/