minor reorg of top-level docs (#1098)

* minor reorg of top-level docs

Signed-off-by: Panos Vagenas <pva@zurich.ibm.com>

* fix typo [no ci]

Signed-off-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>

---------

Signed-off-by: Panos Vagenas <pva@zurich.ibm.com>
Signed-off-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
This commit is contained in:
Panos Vagenas 2025-03-03 12:59:55 +01:00 committed by GitHub
parent 712fab8235
commit 8a0d24d4af
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 35 additions and 30 deletions

View File

@ -123,6 +123,6 @@ For individual model usage, please refer to the model licenses found in the orig
Docling has been brought to you by IBM.
[supported_formats]: https://ds4sd.github.io/docling/supported_formats/
[supported_formats]: https://ds4sd.github.io/docling/usage/supported_formats/
[docling_document]: https://ds4sd.github.io/docling/concepts/docling_document/
[integrations]: https://ds4sd.github.io/docling/integrations/

View File

@ -1,6 +1,6 @@
# WARNING
# This example demonstrates only how to develop a new enrichment model.
# It does not run thr actual formula understanding model.
# It does not run the actual formula understanding model.
import logging
from pathlib import Path

View File

@ -1,6 +1,6 @@
# WARNING
# This example demonstrates only how to develop a new enrichment model.
# It does not run thr actual picture classifier model.
# It does not run the actual picture classifier model.
import logging
from pathlib import Path

View File

@ -149,7 +149,7 @@ This is a collection of FAQ collected from the user questions on <https://github
**Details**:
Using the [`HybridChunker`](./concepts/chunking.md#hybrid-chunker) often triggers a warning like this:
Using the [`HybridChunker`](../concepts/chunking.md#hybrid-chunker) often triggers a warning like this:
> Token indices sequence length is longer than the specified maximum sequence length for this model (531 > 512). Running this sequence through the model will result in indexing errors
This is a warning that is emitted by transformers, saying that actually *running this sequence through the model* will result in indexing errors, i.e. the problematic case is only if one indeed passes the particular sequence through the (embedding) model.

View File

@ -47,6 +47,6 @@ Docling simplifies document processing, parsing diverse formats — including ad
Docling has been brought to you by IBM.
[supported_formats]: ./supported_formats.md
[supported_formats]: ./usage/supported_formats.md
[docling_document]: ./concepts/docling_document.md
[integrations]: ./integrations/index.md

View File

@ -6,10 +6,10 @@ The following table provides an overview of the default enrichment models availa
| Feature | Parameter | Processed item | Description |
| ------- | --------- | ---------------| ----------- |
| Code understanding | `do_code_enrichment` | `CodeItem` | See [docs below](#code-understanding). |
| Formula understanding | `do_formula_enrichment` | `TextItem` with label `FORMULA` | See [docs below](#formula-understanding). |
| Picrure classification | `do_picture_classification` | `PictureItem` | See [docs below](#picture-classification). |
| Picture description | `do_picture_description` | `PictureItem` | See [docs below](#picture-description). |
| Code understanding | `do_code_enrichment` | `CodeItem` | See [docs below](#code-understanding). |
| Formula understanding | `do_formula_enrichment` | `TextItem` with label `FORMULA` | See [docs below](#formula-understanding). |
| Picrure classification | `do_picture_classification` | `PictureItem` | See [docs below](#picture-classification). |
| Picture description | `do_picture_description` | `PictureItem` | See [docs below](#picture-description). |
## Enrichments details
@ -204,7 +204,7 @@ pipeline_options.picture_description_options = PictureDescriptionApiOptions(
End-to-end code snippets for cloud providers are available in the examples section:
- [IBM watsonx.ai](./examples/pictures_description_api.py)
- [IBM watsonx.ai](../examples/pictures_description_api.py)
## Develop new enrichment models
@ -212,5 +212,5 @@ End-to-end code snippets for cloud providers are available in the examples secti
Beside looking at the implementation of all the models listed above, the Docling documentation has a few examples
dedicated to the implementation of enrichment models.
- [Develop picture enrichment](./examples/develop_picture_enrichment.py)
- [Develop formula enrichment](./examples/develop_formula_understanding.py)
- [Develop picture enrichment](../examples/develop_picture_enrichment.py)
- [Develop formula enrichment](../examples/develop_formula_understanding.py)

View File

@ -22,7 +22,7 @@ A simple example would look like this:
docling https://arxiv.org/pdf/2206.01062
```
To see all available options (export formats etc.) run `docling --help`. More details in the [CLI reference page](./reference/cli.md).
To see all available options (export formats etc.) run `docling --help`. More details in the [CLI reference page](../reference/cli.md).
### Advanced options
@ -104,7 +104,7 @@ The options in this list require the explicit `enable_remote_services=True` when
#### Adjust pipeline features
The example file [custom_convert.py](./examples/custom_convert.py) contains multiple ways
The example file [custom_convert.py](../examples/custom_convert.py) contains multiple ways
one can adjust the conversion pipeline and features.
##### Control PDF table extraction options
@ -183,13 +183,13 @@ You can limit the CPU threads used by Docling by setting the environment variabl
!!! note
This section discusses directly invoking a [backend](./concepts/architecture.md),
This section discusses directly invoking a [backend](../concepts/architecture.md),
i.e. using a low-level API. This should only be done when necessary. For most cases,
using a `DocumentConverter` (high-level API) as discussed in the sections above
should suffice  and is the recommended way.
By default, Docling will try to identify the document format to apply the appropriate conversion backend (see the list of [supported formats](./supported_formats.md)).
You can restrict the `DocumentConverter` to a set of allowed document formats, as shown in the [Multi-format conversion](./examples/run_with_formats.py) example.
By default, Docling will try to identify the document format to apply the appropriate conversion backend (see the list of [supported formats](../supported_formats.md)).
You can restrict the `DocumentConverter` to a set of allowed document formats, as shown in the [Multi-format conversion](../examples/run_with_formats.py) example.
Alternatively, you can also use the specific backend that matches your document content. For instance, you can use `HTMLDocumentBackend` for HTML pages:
```python
@ -214,9 +214,9 @@ print(dl_doc.export_to_markdown())
## Chunking
You can chunk a Docling document using a [chunker](concepts/chunking.md), such as a
You can chunk a Docling document using a [chunker](../concepts/chunking.md), such as a
`HybridChunker`, as shown below (for more details check out
[this example](examples/hybrid_chunking.ipynb)):
[this example](../examples/hybrid_chunking.ipynb)):
```python
from docling.document_converter import DocumentConverter

View File

@ -1,6 +1,6 @@
Docling can parse various documents formats into a unified representation (Docling
Document), which it can export to different formats too — check out
[Architecture](./concepts/architecture.md) for more details.
[Architecture](../concepts/architecture.md) for more details.
Below you can find a listing of all supported input and output formats.
@ -22,7 +22,7 @@ Schema-specific support:
|--------|-------------|
| USPTO XML | XML format followed by [USPTO](https://www.uspto.gov/patents) patents |
| JATS XML | XML format followed by [JATS](https://jats.nlm.nih.gov/) articles |
| Docling JSON | JSON-serialized [Docling Document](./concepts/docling_document.md) |
| Docling JSON | JSON-serialized [Docling Document](../concepts/docling_document.md) |
## Supported output formats

View File

@ -54,12 +54,14 @@ theme:
nav:
- Home:
- "Docling": index.md
- Installation: installation.md
- Usage: usage.md
- Supported formats: supported_formats.md
- Enrichment features: enrichments.md
- FAQ: faq.md
- Docling v2: v2.md
- Installation:
- Installation: installation/index.md
- Usage:
- Usage: usage/index.md
- Supported formats: usage/supported_formats.md
- Enrichment features: usage/enrichments.md
- FAQ:
- FAQ: faq/index.md
- Concepts:
- Concepts: concepts/index.md
- Architecture: concepts/architecture.md
@ -73,11 +75,8 @@ nav:
- "Batch conversion": examples/batch_convert.py
- "Multi-format conversion": examples/run_with_formats.py
- "Figure export": examples/export_figures.py
- "Figure enrichment": examples/develop_picture_enrichment.py
- "Table export": examples/export_tables.py
- "Multimodal export": examples/export_multimodal.py
- "Annotate picture with local vlm": examples/pictures_description.ipynb
- "Annotate picture with remote vlm": examples/pictures_description_api.py
- "Force full page OCR": examples/full_page_ocr.py
- "Automatic OCR language detection with tesseract": examples/tesseract_lang_detection.py
- "RapidOCR with custom OCR models": examples/rapidocr_with_custom_models.py
@ -91,6 +90,12 @@ nav:
- examples/rag_haystack.ipynb
- examples/rag_langchain.ipynb
- examples/rag_llamaindex.ipynb
- 🖼️ Picture annotation:
- "Annotate picture with local VLM": examples/pictures_description.ipynb
- "Annotate picture with remote VLM": examples/pictures_description_api.py
- ✨ Enrichment development:
- "Figure enrichment": examples/develop_picture_enrichment.py
- "Formula enrichment": examples/develop_formula_understanding.py
- 🗂️ More examples:
- examples/rag_weaviate.ipynb
- RAG with Granite [↗]: https://github.com/ibm-granite-community/granite-snack-cookbook/blob/main/recipes/RAG/Granite_Docling_RAG.ipynb