use AutoModelForVision2Seq for Pixtral and review example (including rename)

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
Michele Dolfi 2025-06-01 16:30:58 +02:00
parent 0cb7520648
commit 9dbf08a084
4 changed files with 39 additions and 110 deletions

View File

@ -119,16 +119,16 @@ granite_vision_vlm_ollama_conversion_options = ApiVlmOptions(
# Pixtral
pixtral_12b_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="mistral-community/pixtral-12b",
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration,
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForVision2Seq,
scale=2.0,
temperature=0.0,
)
pixtral_12b_vlm_mlx_conversion_options = HuggingFaceVlmOptions(
repo_id="mlx-community/pixtral-12b-bf16",
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.MLX,
scale=2.0,
@ -138,7 +138,7 @@ pixtral_12b_vlm_mlx_conversion_options = HuggingFaceVlmOptions(
# Phi4
phi_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="microsoft/Phi-4-multimodal-instruct",
prompt="Convert this page to MarkDown. Do not miss any text and only output the bare MarkDown",
prompt="Convert this page to MarkDown. Do not miss any text and only output the bare markdown",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForCausalLM,
scale=2.0,
@ -148,7 +148,7 @@ phi_vlm_conversion_options = HuggingFaceVlmOptions(
# Qwen
qwen25_vl_3b_vlm_mlx_conversion_options = HuggingFaceVlmOptions(
repo_id="mlx-community/Qwen2.5-VL-3B-Instruct-bf16",
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.MLX,
scale=2.0,
@ -158,7 +158,7 @@ qwen25_vl_3b_vlm_mlx_conversion_options = HuggingFaceVlmOptions(
# Gemma-3
gemma_3_12b_mlx_conversion_options = HuggingFaceVlmOptions(
repo_id="mlx-community/gemma-3-12b-it-bf16",
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.MLX,
scale=2.0,
@ -167,7 +167,7 @@ gemma_3_12b_mlx_conversion_options = HuggingFaceVlmOptions(
gemma_3_27b_mlx_conversion_options = HuggingFaceVlmOptions(
repo_id="mlx-community/gemma-3-27b-it-bf16",
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.MLX,
scale=2.0,

View File

@ -116,7 +116,6 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
assert page.size is not None
hi_res_image = page.get_image(scale=2) # self.vlm_options.scale)
print(hi_res_image)
if hi_res_image is not None:
im_width, im_height = hi_res_image.size
@ -127,7 +126,7 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
inputs = self.processor(
text=prompt, images=hi_res_image, return_tensors="pt"
) # .to(self.device)
).to(self.device)
# Generate response
start_time = time.time()

View File

@ -40,7 +40,6 @@ class HuggingFaceVlmModel_AutoModelForVision2Seq(BasePageModel):
self.device = decide_device(accelerator_options.device)
self.device = HuggingFaceVlmModel.map_device_to_cpu_if_mlx(self.device)
_log.debug(f"Available device for HuggingFace VLM: {self.device}")
self.use_cache = vlm_options.use_kv_cache
@ -73,7 +72,7 @@ class HuggingFaceVlmModel_AutoModelForVision2Seq(BasePageModel):
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
artifacts_path,
device_map=self.device,
torch_dtype=torch.bfloat16,
# torch_dtype=torch.bfloat16,
_attn_implementation=(
"flash_attention_2"
if self.device.startswith("cuda")

View File

@ -1,3 +1,9 @@
# Compare VLM models
# ==================
#
# This example runs the VLM pipeline with different vision-language models.
# Their runtime as well output quality is compared.
import json
import time
from pathlib import Path
@ -8,9 +14,6 @@ from tabulate import tabulate
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_model_specializations import (
HuggingFaceVlmOptions,
InferenceFramework,
ResponseFormat,
gemma_3_12b_mlx_conversion_options,
granite_vision_vlm_conversion_options,
granite_vision_vlm_ollama_conversion_options,
@ -27,96 +30,24 @@ from docling.datamodel.pipeline_options import (
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline
## Use experimental VlmPipeline
pipeline_options = VlmPipelineOptions()
# If force_backend_text = True, text from backend will be used instead of generated text
pipeline_options.force_backend_text = False
pipeline_options.generate_page_images = True
## On GPU systems, enable flash_attention_2 with CUDA:
# pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
# pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
## Pick a VLM model. We choose SmolDocling-256M by default
# pipeline_options.vlm_options = smoldocling_vlm_conversion_options
## Pick a VLM model. Fast Apple Silicon friendly implementation for SmolDocling-256M via MLX
# pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
## Alternative VLM models:
# pipeline_options.vlm_options = granite_vision_vlm_conversion_options
pipeline_options.vlm_options = phi_vlm_conversion_options
# pipeline_options.vlm_options = qwen25_vl_3b_vlm_mlx_conversion_options
"""
pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="mistralai/Pixtral-12B-Base-2409",
prompt="OCR this image and export it in MarkDown.",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration,
)
pipeline_options.vlm_options = pixtral_vlm_conversion_options
"""
"""
pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="mistral-community/pixtral-12b",
prompt="OCR this image and export it in MarkDown.",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration,
)
pipeline_options.vlm_options = pixtral_vlm_conversion_options
"""
"""
phi_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="microsoft/Phi-4-multimodal-instruct",
# prompt="OCR the full page to markdown.",
prompt="OCR this image and export it in MarkDown.",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForCausalLM,
)
pipeline_options.vlm_options = phi_vlm_conversion_options
"""
"""
pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="mlx-community/pixtral-12b-bf16",
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.MLX,
scale=1.0,
)
pipeline_options.vlm_options = pixtral_vlm_conversion_options
"""
"""
qwen_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="mlx-community/Qwen2.5-VL-3B-Instruct-bf16",
prompt="Convert this full page to markdown. Do not miss any text and only output the bare MarkDown!",
response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.MLX,
)
pipeline_options.vlm_options = qwen_vlm_conversion_options
"""
def convert(sources: list[Path], converter):
def convert(sources: list[Path], converter: DocumentConverter):
model_id = pipeline_options.vlm_options.repo_id.replace("/", "_")
framework = pipeline_options.vlm_options.inference_framework
for source in sources:
# start_time = time.time()
print("================================================")
print(f"Processing... {source}")
print("Processing...")
print(f"Source: {source}")
print("---")
print(f"Model: {model_id}")
print(f"Framework: {framework}")
print("================================================")
print("")
res = converter.convert(source)
print("")
# print(res.document.export_to_markdown())
model_id = pipeline_options.vlm_options.repo_id.replace("/", "_")
framework = pipeline_options.vlm_options.inference_framework
fname = f"{res.input.file.stem}-{model_id}-{framework}"
inference_time = 0.0
@ -161,11 +92,10 @@ def convert(sources: list[Path], converter):
)
print("====================================================")
# return [source, f"{out_path / fname}.html", model_id, framework, inference_time, ]
return [
source,
model_id,
framework,
str(framework),
pg_num,
inference_time,
]
@ -173,7 +103,6 @@ def convert(sources: list[Path], converter):
if __name__ == "__main__":
sources = [
# "tests/data/2305.03393v1-pg9-img.png",
"tests/data/pdf/2305.03393v1-pg9.pdf",
]
@ -182,9 +111,6 @@ if __name__ == "__main__":
## Use VlmPipeline
pipeline_options = VlmPipelineOptions()
# If force_backend_text = True, text from backend will be used instead of generated text
pipeline_options.force_backend_text = False
pipeline_options.generate_page_images = True
## On GPU systems, enable flash_attention_2 with CUDA:
@ -193,14 +119,17 @@ if __name__ == "__main__":
rows = []
for vlm_options in [
# smoldocling_vlm_conversion_options, \
smoldocling_vlm_mlx_conversion_options,
# granite_vision_vlm_conversion_options, \
# phi_vlm_conversion_options, \
# qwen25_vl_3b_vlm_mlx_conversion_options, \
## DocTags / SmolDocling models
smoldocling_vlm_conversion_options,
# smoldocling_vlm_mlx_conversion_options,
## Markdown models (using MLX framework)
# qwen25_vl_3b_vlm_mlx_conversion_options,
# pixtral_12b_vlm_mlx_conversion_options,
# pixtral_12b_vlm_conversion_options,
gemma_3_12b_mlx_conversion_options,
# gemma_3_12b_mlx_conversion_options,
## Markdown models (using Transformers framework)
# granite_vision_vlm_conversion_options,
phi_vlm_conversion_options,
pixtral_12b_vlm_conversion_options,
]:
pipeline_options.vlm_options = vlm_options
@ -219,11 +148,13 @@ if __name__ == "__main__":
)
row = convert(sources=sources, converter=converter)
print("pipelines: \n", converter._get_initialized_pipelines())
rows.append(row)
print(tabulate(rows))
print(
tabulate(
rows, headers=["source", "model_id", "framework", "num_pages", "time"]
)
)
print("see if memory gets released ...")
time.sleep(10)