mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-25 19:44:34 +00:00
use AutoModelForVision2Seq for Pixtral and review example (including rename)
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
parent
0cb7520648
commit
9dbf08a084
@ -119,16 +119,16 @@ granite_vision_vlm_ollama_conversion_options = ApiVlmOptions(
|
||||
# Pixtral
|
||||
pixtral_12b_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
repo_id="mistral-community/pixtral-12b",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForVision2Seq,
|
||||
scale=2.0,
|
||||
temperature=0.0,
|
||||
)
|
||||
|
||||
pixtral_12b_vlm_mlx_conversion_options = HuggingFaceVlmOptions(
|
||||
repo_id="mlx-community/pixtral-12b-bf16",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.MLX,
|
||||
scale=2.0,
|
||||
@ -138,7 +138,7 @@ pixtral_12b_vlm_mlx_conversion_options = HuggingFaceVlmOptions(
|
||||
# Phi4
|
||||
phi_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
repo_id="microsoft/Phi-4-multimodal-instruct",
|
||||
prompt="Convert this page to MarkDown. Do not miss any text and only output the bare MarkDown",
|
||||
prompt="Convert this page to MarkDown. Do not miss any text and only output the bare markdown",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForCausalLM,
|
||||
scale=2.0,
|
||||
@ -148,7 +148,7 @@ phi_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
# Qwen
|
||||
qwen25_vl_3b_vlm_mlx_conversion_options = HuggingFaceVlmOptions(
|
||||
repo_id="mlx-community/Qwen2.5-VL-3B-Instruct-bf16",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.MLX,
|
||||
scale=2.0,
|
||||
@ -158,7 +158,7 @@ qwen25_vl_3b_vlm_mlx_conversion_options = HuggingFaceVlmOptions(
|
||||
# Gemma-3
|
||||
gemma_3_12b_mlx_conversion_options = HuggingFaceVlmOptions(
|
||||
repo_id="mlx-community/gemma-3-12b-it-bf16",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.MLX,
|
||||
scale=2.0,
|
||||
@ -167,7 +167,7 @@ gemma_3_12b_mlx_conversion_options = HuggingFaceVlmOptions(
|
||||
|
||||
gemma_3_27b_mlx_conversion_options = HuggingFaceVlmOptions(
|
||||
repo_id="mlx-community/gemma-3-27b-it-bf16",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.MLX,
|
||||
scale=2.0,
|
||||
|
@ -116,7 +116,6 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
||||
assert page.size is not None
|
||||
|
||||
hi_res_image = page.get_image(scale=2) # self.vlm_options.scale)
|
||||
print(hi_res_image)
|
||||
|
||||
if hi_res_image is not None:
|
||||
im_width, im_height = hi_res_image.size
|
||||
@ -127,7 +126,7 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
||||
|
||||
inputs = self.processor(
|
||||
text=prompt, images=hi_res_image, return_tensors="pt"
|
||||
) # .to(self.device)
|
||||
).to(self.device)
|
||||
|
||||
# Generate response
|
||||
start_time = time.time()
|
||||
|
@ -40,7 +40,6 @@ class HuggingFaceVlmModel_AutoModelForVision2Seq(BasePageModel):
|
||||
|
||||
self.device = decide_device(accelerator_options.device)
|
||||
self.device = HuggingFaceVlmModel.map_device_to_cpu_if_mlx(self.device)
|
||||
|
||||
_log.debug(f"Available device for HuggingFace VLM: {self.device}")
|
||||
|
||||
self.use_cache = vlm_options.use_kv_cache
|
||||
@ -73,7 +72,7 @@ class HuggingFaceVlmModel_AutoModelForVision2Seq(BasePageModel):
|
||||
self.vlm_model = AutoModelForVision2Seq.from_pretrained(
|
||||
artifacts_path,
|
||||
device_map=self.device,
|
||||
torch_dtype=torch.bfloat16,
|
||||
# torch_dtype=torch.bfloat16,
|
||||
_attn_implementation=(
|
||||
"flash_attention_2"
|
||||
if self.device.startswith("cuda")
|
||||
|
@ -1,3 +1,9 @@
|
||||
# Compare VLM models
|
||||
# ==================
|
||||
#
|
||||
# This example runs the VLM pipeline with different vision-language models.
|
||||
# Their runtime as well output quality is compared.
|
||||
|
||||
import json
|
||||
import time
|
||||
from pathlib import Path
|
||||
@ -8,9 +14,6 @@ from tabulate import tabulate
|
||||
|
||||
from docling.datamodel.base_models import InputFormat
|
||||
from docling.datamodel.pipeline_model_specializations import (
|
||||
HuggingFaceVlmOptions,
|
||||
InferenceFramework,
|
||||
ResponseFormat,
|
||||
gemma_3_12b_mlx_conversion_options,
|
||||
granite_vision_vlm_conversion_options,
|
||||
granite_vision_vlm_ollama_conversion_options,
|
||||
@ -27,96 +30,24 @@ from docling.datamodel.pipeline_options import (
|
||||
from docling.document_converter import DocumentConverter, PdfFormatOption
|
||||
from docling.pipeline.vlm_pipeline import VlmPipeline
|
||||
|
||||
## Use experimental VlmPipeline
|
||||
pipeline_options = VlmPipelineOptions()
|
||||
# If force_backend_text = True, text from backend will be used instead of generated text
|
||||
pipeline_options.force_backend_text = False
|
||||
pipeline_options.generate_page_images = True
|
||||
|
||||
## On GPU systems, enable flash_attention_2 with CUDA:
|
||||
# pipeline_options.accelerator_options.device = AcceleratorDevice.CUDA
|
||||
# pipeline_options.accelerator_options.cuda_use_flash_attention2 = True
|
||||
|
||||
## Pick a VLM model. We choose SmolDocling-256M by default
|
||||
# pipeline_options.vlm_options = smoldocling_vlm_conversion_options
|
||||
|
||||
## Pick a VLM model. Fast Apple Silicon friendly implementation for SmolDocling-256M via MLX
|
||||
# pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
|
||||
|
||||
## Alternative VLM models:
|
||||
# pipeline_options.vlm_options = granite_vision_vlm_conversion_options
|
||||
|
||||
pipeline_options.vlm_options = phi_vlm_conversion_options
|
||||
# pipeline_options.vlm_options = qwen25_vl_3b_vlm_mlx_conversion_options
|
||||
|
||||
"""
|
||||
pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
repo_id="mistralai/Pixtral-12B-Base-2409",
|
||||
prompt="OCR this image and export it in MarkDown.",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration,
|
||||
)
|
||||
pipeline_options.vlm_options = pixtral_vlm_conversion_options
|
||||
"""
|
||||
|
||||
"""
|
||||
pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
repo_id="mistral-community/pixtral-12b",
|
||||
prompt="OCR this image and export it in MarkDown.",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration,
|
||||
)
|
||||
pipeline_options.vlm_options = pixtral_vlm_conversion_options
|
||||
"""
|
||||
|
||||
"""
|
||||
phi_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
repo_id="microsoft/Phi-4-multimodal-instruct",
|
||||
# prompt="OCR the full page to markdown.",
|
||||
prompt="OCR this image and export it in MarkDown.",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForCausalLM,
|
||||
)
|
||||
pipeline_options.vlm_options = phi_vlm_conversion_options
|
||||
"""
|
||||
|
||||
"""
|
||||
pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
repo_id="mlx-community/pixtral-12b-bf16",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.MLX,
|
||||
scale=1.0,
|
||||
)
|
||||
pipeline_options.vlm_options = pixtral_vlm_conversion_options
|
||||
"""
|
||||
|
||||
"""
|
||||
qwen_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
repo_id="mlx-community/Qwen2.5-VL-3B-Instruct-bf16",
|
||||
prompt="Convert this full page to markdown. Do not miss any text and only output the bare MarkDown!",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.MLX,
|
||||
)
|
||||
pipeline_options.vlm_options = qwen_vlm_conversion_options
|
||||
"""
|
||||
|
||||
|
||||
def convert(sources: list[Path], converter):
|
||||
def convert(sources: list[Path], converter: DocumentConverter):
|
||||
model_id = pipeline_options.vlm_options.repo_id.replace("/", "_")
|
||||
framework = pipeline_options.vlm_options.inference_framework
|
||||
for source in sources:
|
||||
# start_time = time.time()
|
||||
print("================================================")
|
||||
print(f"Processing... {source}")
|
||||
print("Processing...")
|
||||
print(f"Source: {source}")
|
||||
print("---")
|
||||
print(f"Model: {model_id}")
|
||||
print(f"Framework: {framework}")
|
||||
print("================================================")
|
||||
print("")
|
||||
|
||||
res = converter.convert(source)
|
||||
|
||||
print("")
|
||||
# print(res.document.export_to_markdown())
|
||||
|
||||
model_id = pipeline_options.vlm_options.repo_id.replace("/", "_")
|
||||
framework = pipeline_options.vlm_options.inference_framework
|
||||
fname = f"{res.input.file.stem}-{model_id}-{framework}"
|
||||
|
||||
inference_time = 0.0
|
||||
@ -161,11 +92,10 @@ def convert(sources: list[Path], converter):
|
||||
)
|
||||
print("====================================================")
|
||||
|
||||
# return [source, f"{out_path / fname}.html", model_id, framework, inference_time, ]
|
||||
return [
|
||||
source,
|
||||
model_id,
|
||||
framework,
|
||||
str(framework),
|
||||
pg_num,
|
||||
inference_time,
|
||||
]
|
||||
@ -173,7 +103,6 @@ def convert(sources: list[Path], converter):
|
||||
|
||||
if __name__ == "__main__":
|
||||
sources = [
|
||||
# "tests/data/2305.03393v1-pg9-img.png",
|
||||
"tests/data/pdf/2305.03393v1-pg9.pdf",
|
||||
]
|
||||
|
||||
@ -182,9 +111,6 @@ if __name__ == "__main__":
|
||||
|
||||
## Use VlmPipeline
|
||||
pipeline_options = VlmPipelineOptions()
|
||||
|
||||
# If force_backend_text = True, text from backend will be used instead of generated text
|
||||
pipeline_options.force_backend_text = False
|
||||
pipeline_options.generate_page_images = True
|
||||
|
||||
## On GPU systems, enable flash_attention_2 with CUDA:
|
||||
@ -193,14 +119,17 @@ if __name__ == "__main__":
|
||||
|
||||
rows = []
|
||||
for vlm_options in [
|
||||
# smoldocling_vlm_conversion_options, \
|
||||
smoldocling_vlm_mlx_conversion_options,
|
||||
# granite_vision_vlm_conversion_options, \
|
||||
# phi_vlm_conversion_options, \
|
||||
# qwen25_vl_3b_vlm_mlx_conversion_options, \
|
||||
## DocTags / SmolDocling models
|
||||
smoldocling_vlm_conversion_options,
|
||||
# smoldocling_vlm_mlx_conversion_options,
|
||||
## Markdown models (using MLX framework)
|
||||
# qwen25_vl_3b_vlm_mlx_conversion_options,
|
||||
# pixtral_12b_vlm_mlx_conversion_options,
|
||||
# pixtral_12b_vlm_conversion_options,
|
||||
gemma_3_12b_mlx_conversion_options,
|
||||
# gemma_3_12b_mlx_conversion_options,
|
||||
## Markdown models (using Transformers framework)
|
||||
# granite_vision_vlm_conversion_options,
|
||||
phi_vlm_conversion_options,
|
||||
pixtral_12b_vlm_conversion_options,
|
||||
]:
|
||||
pipeline_options.vlm_options = vlm_options
|
||||
|
||||
@ -219,11 +148,13 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
row = convert(sources=sources, converter=converter)
|
||||
print("pipelines: \n", converter._get_initialized_pipelines())
|
||||
|
||||
rows.append(row)
|
||||
|
||||
print(tabulate(rows))
|
||||
print(
|
||||
tabulate(
|
||||
rows, headers=["source", "model_id", "framework", "num_pages", "time"]
|
||||
)
|
||||
)
|
||||
|
||||
print("see if memory gets released ...")
|
||||
time.sleep(10)
|
Loading…
Reference in New Issue
Block a user