feat: add image-text-to-text models in transformers (#1772)

* feat(dolphin): add dolphin support

Signed-off-by: Georg Heiler <georg.kf.heiler@gmail.com>

* rename

Signed-off-by: Georg Heiler <georg.kf.heiler@gmail.com>

* reformat

Signed-off-by: Georg Heiler <georg.kf.heiler@gmail.com>

* fix mypy

Signed-off-by: Georg Heiler <georg.kf.heiler@gmail.com>

* add prompt style and examples

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

---------

Signed-off-by: Georg Heiler <georg.kf.heiler@gmail.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
geoHeil
2025-07-08 05:54:57 +02:00
committed by GitHub
parent e25873d557
commit a07ba863c4
3 changed files with 77 additions and 18 deletions

View File

@@ -31,6 +31,12 @@ class TransformersModelType(str, Enum):
AUTOMODEL = "automodel"
AUTOMODEL_VISION2SEQ = "automodel-vision2seq"
AUTOMODEL_CAUSALLM = "automodel-causallm"
AUTOMODEL_IMAGETEXTTOTEXT = "automodel-imagetexttotext"
class TransformersPromptStyle(str, Enum):
CHAT = "chat"
RAW = "raw"
class InlineVlmOptions(BaseVlmOptions):
@@ -44,6 +50,7 @@ class InlineVlmOptions(BaseVlmOptions):
inference_framework: InferenceFramework
transformers_model_type: TransformersModelType = TransformersModelType.AUTOMODEL
transformers_prompt_style: TransformersPromptStyle = TransformersPromptStyle.CHAT
response_format: ResponseFormat
torch_dtype: Optional[str] = None

View File

@@ -13,6 +13,7 @@ from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options_vlm_model import (
InlineVlmOptions,
TransformersModelType,
TransformersPromptStyle,
)
from docling.models.base_model import BasePageModel
from docling.models.utils.hf_model_download import (
@@ -41,6 +42,7 @@ class HuggingFaceTransformersVlmModel(BasePageModel, HuggingFaceModelDownloadMix
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForImageTextToText,
AutoModelForVision2Seq,
AutoProcessor,
BitsAndBytesConfig,
@@ -91,6 +93,11 @@ class HuggingFaceTransformersVlmModel(BasePageModel, HuggingFaceModelDownloadMix
== TransformersModelType.AUTOMODEL_VISION2SEQ
):
model_cls = AutoModelForVision2Seq
elif (
self.vlm_options.transformers_model_type
== TransformersModelType.AUTOMODEL_IMAGETEXTTOTEXT
):
model_cls = AutoModelForImageTextToText
self.processor = AutoProcessor.from_pretrained(
artifacts_path,
@@ -169,7 +176,10 @@ class HuggingFaceTransformersVlmModel(BasePageModel, HuggingFaceModelDownloadMix
def formulate_prompt(self, user_prompt: str) -> str:
"""Formulate a prompt for the VLM."""
if self.vlm_options.repo_id == "microsoft/Phi-4-multimodal-instruct":
if self.vlm_options.transformers_prompt_style == TransformersPromptStyle.RAW:
return user_prompt
elif self.vlm_options.repo_id == "microsoft/Phi-4-multimodal-instruct":
_log.debug("Using specialized prompt for Phi-4")
# more info here: https://huggingface.co/microsoft/Phi-4-multimodal-instruct#loading-the-model-locally
@@ -182,20 +192,25 @@ class HuggingFaceTransformersVlmModel(BasePageModel, HuggingFaceModelDownloadMix
return prompt
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "This is a page from a document.",
},
{"type": "image"},
{"type": "text", "text": user_prompt},
],
}
]
prompt = self.processor.apply_chat_template(
messages, add_generation_prompt=False
elif self.vlm_options.transformers_prompt_style == TransformersPromptStyle.CHAT:
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "This is a page from a document.",
},
{"type": "image"},
{"type": "text", "text": user_prompt},
],
}
]
prompt = self.processor.apply_chat_template(
messages, add_generation_prompt=False
)
return prompt
raise RuntimeError(
f"Uknown prompt style `{self.vlm_options.transformers_prompt_style}`. Valid values are {', '.join(s.value for s in TransformersPromptStyle)}."
)
return prompt