refactoring minimal_vlm_pipeline

Signed-off-by: Peter Staar <taa@zurich.ibm.com>
This commit is contained in:
Peter Staar 2025-05-14 13:57:32 +02:00
parent 7c97b494ec
commit a3716b1961
5 changed files with 53 additions and 73 deletions

View File

@ -155,7 +155,7 @@ class VlmPredictionToken(BaseModel):
class VlmPrediction(BaseModel): class VlmPrediction(BaseModel):
text: str = "" text: str = ""
generated_tokens: list[VlmPredictionToken] = -1 generated_tokens: list[VlmPredictionToken] = []
generation_time: float = -1 generation_time: float = -1

View File

@ -261,6 +261,7 @@ class BaseVlmOptions(BaseModel):
class ResponseFormat(str, Enum): class ResponseFormat(str, Enum):
DOCTAGS = "doctags" DOCTAGS = "doctags"
MARKDOWN = "markdown" MARKDOWN = "markdown"
HTML = "html"
class InferenceFramework(str, Enum): class InferenceFramework(str, Enum):
@ -285,6 +286,11 @@ class HuggingFaceVlmOptions(BaseVlmOptions):
inference_framework: InferenceFramework inference_framework: InferenceFramework
response_format: ResponseFormat response_format: ResponseFormat
scale: float = 2.0
use_kv_cache: bool = True
max_new_tokens: int = 4096
@property @property
def repo_cache_folder(self) -> str: def repo_cache_folder(self) -> str:
return self.repo_id.replace("/", "--") return self.repo_id.replace("/", "--")

View File

@ -28,8 +28,7 @@ class HuggingFaceMlxModel(BasePageModel):
self.enabled = enabled self.enabled = enabled
self.vlm_options = vlm_options self.vlm_options = vlm_options
self.max_tokens = vlm_options.max_new_tokens
self.max_tokens=4096
if self.enabled: if self.enabled:
try: try:
@ -42,7 +41,6 @@ class HuggingFaceMlxModel(BasePageModel):
) )
repo_cache_folder = vlm_options.repo_id.replace("/", "--") repo_cache_folder = vlm_options.repo_id.replace("/", "--")
_log.debug(f"model init: {repo_cache_folder}")
self.apply_chat_template = apply_chat_template self.apply_chat_template = apply_chat_template
self.stream_generate = stream_generate self.stream_generate = stream_generate
@ -52,7 +50,6 @@ class HuggingFaceMlxModel(BasePageModel):
_log.debug( _log.debug(
f"before HuggingFaceVlmModel.download_models: {self.vlm_options.repo_id}" f"before HuggingFaceVlmModel.download_models: {self.vlm_options.repo_id}"
) )
# artifacts_path = self.download_models(self.vlm_options.repo_id)
artifacts_path = HuggingFaceVlmModel.download_models( artifacts_path = HuggingFaceVlmModel.download_models(
self.vlm_options.repo_id, self.vlm_options.repo_id,
progress=True, progress=True,
@ -60,39 +57,12 @@ class HuggingFaceMlxModel(BasePageModel):
elif (artifacts_path / repo_cache_folder).exists(): elif (artifacts_path / repo_cache_folder).exists():
artifacts_path = artifacts_path / repo_cache_folder artifacts_path = artifacts_path / repo_cache_folder
_log.debug(f"downloaded model: {artifacts_path}") self.param_question = vlm_options.prompt
self.param_question = vlm_options.prompt # "Perform Layout Analysis."
## Load the model ## Load the model
_log.debug("start loading model ...") self.vlm_model, self.processor = load(artifacts_path)
self.vlm_model, self.processor = load(artifacts_path)
_log.debug("loaded model ...")
self.config = load_config(artifacts_path) self.config = load_config(artifacts_path)
"""
@staticmethod
def download_models(
repo_id: str,
local_dir: Optional[Path] = None,
force: bool = False,
progress: bool = False,
) -> Path:
from huggingface_hub import snapshot_download
from huggingface_hub.utils import disable_progress_bars
if not progress:
disable_progress_bars()
download_path = snapshot_download(
repo_id=repo_id,
force_download=force,
local_dir=local_dir,
# revision="v0.0.1",
)
return Path(download_path)
"""
def __call__( def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page] self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]: ) -> Iterable[Page]:
@ -104,8 +74,7 @@ class HuggingFaceMlxModel(BasePageModel):
with TimeRecorder(conv_res, "vlm"): with TimeRecorder(conv_res, "vlm"):
assert page.size is not None assert page.size is not None
hi_res_image = page.get_image(scale=2.0) # 144dpi hi_res_image = page.get_image(scale=self.vlm_options.scale)
# hi_res_image = page.get_image(scale=1.0) # 72dpi
if hi_res_image is not None: if hi_res_image is not None:
im_width, im_height = hi_res_image.size im_width, im_height = hi_res_image.size
@ -136,7 +105,6 @@ class HuggingFaceMlxModel(BasePageModel):
max_tokens=4096, max_tokens=4096,
verbose=False, verbose=False,
): ):
print(token.logprobs.shape)
if len(token.logprobs.shape)==1: if len(token.logprobs.shape)==1:
tokens.append(VlmPredictionToken(text=token.text, tokens.append(VlmPredictionToken(text=token.text,
token=token.token, token=token.token,
@ -145,20 +113,15 @@ class HuggingFaceMlxModel(BasePageModel):
tokens.append(VlmPredictionToken(text=token.text, tokens.append(VlmPredictionToken(text=token.text,
token=token.token, token=token.token,
logprob=token.logprobs[0, token.token])) logprob=token.logprobs[0, token.token]))
# print(token.text, end="", flush=True)
output += token.text
output += token.text
if "</doctag>" in token.text: if "</doctag>" in token.text:
break break
generation_time = time.time() - start_time generation_time = time.time() - start_time
page_tags = output page_tags = output
print(tokens)
_log.debug(f"Generation time {generation_time:.2f} seconds.") _log.debug(f"{generation_time:.2f} seconds for {len(tokens)} tokens ({len(tokens)/generation_time} tokens/sec).")
page.predictions.vlm_response = VlmPrediction(text=page_tags, page.predictions.vlm_response = VlmPrediction(text=page_tags,
generation_time=generation_time, generation_time=generation_time,
generated_tokens=tokens) generated_tokens=tokens)

View File

@ -42,17 +42,19 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
) )
self.device = decide_device(accelerator_options.device) self.device = decide_device(accelerator_options.device)
self.device = "cpu" # FIXME
self.use_cache = True if self.device=="mlx":
self.max_new_tokens = 64 # FIXME _log.warning(f"Mapping mlx to cpu for AutoModelForCausalLM")
self.device = cpu
self.use_cache = vlm_options.use_kv_cache
self.max_new_tokens = vlm_options.max_new_tokens
_log.debug(f"Available device for VLM: {self.device}") _log.debug(f"Available device for VLM: {self.device}")
repo_cache_folder = vlm_options.repo_id.replace("/", "--") repo_cache_folder = vlm_options.repo_id.replace("/", "--")
# PARAMETERS: # PARAMETERS:
if artifacts_path is None: if artifacts_path is None:
# artifacts_path = self.download_models(self.vlm_options.repo_id)
artifacts_path = HuggingFaceVlmModel.download_models( artifacts_path = HuggingFaceVlmModel.download_models(
self.vlm_options.repo_id self.vlm_options.repo_id
) )
@ -100,7 +102,6 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
).to(self.device) ).to(self.device)
model_path = artifacts_path model_path = artifacts_path
print(f"model: {model_path}")
# Load generation config # Load generation config
self.generation_config = GenerationConfig.from_pretrained(model_path) self.generation_config = GenerationConfig.from_pretrained(model_path)
@ -116,7 +117,7 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
with TimeRecorder(conv_res, "vlm"): with TimeRecorder(conv_res, "vlm"):
assert page.size is not None assert page.size is not None
hi_res_image = page.get_image(scale=2.0) # 144dpi hi_res_image = page.get_image(scale=self.vlm_options.scale) # 144dpi
# hi_res_image = page.get_image(scale=1.0) # 72dpi # hi_res_image = page.get_image(scale=1.0) # 72dpi
if hi_res_image is not None: if hi_res_image is not None:

View File

@ -11,6 +11,10 @@ from docling.datamodel.pipeline_options import (
InferenceFramework, InferenceFramework,
ResponseFormat, ResponseFormat,
VlmPipelineOptions, VlmPipelineOptions,
smoldocling_vlm_mlx_conversion_options,
smoldocling_vlm_conversion_options,
granite_vision_vlm_conversion_options,
granite_vision_vlm_ollama_conversion_options,
) )
from docling.document_converter import DocumentConverter, PdfFormatOption from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.pipeline.vlm_pipeline import VlmPipeline from docling.pipeline.vlm_pipeline import VlmPipeline
@ -33,7 +37,7 @@ pipeline_options.force_backend_text = False
# pipeline_options.vlm_options = smoldocling_vlm_conversion_options # pipeline_options.vlm_options = smoldocling_vlm_conversion_options
## Pick a VLM model. Fast Apple Silicon friendly implementation for SmolDocling-256M via MLX ## Pick a VLM model. Fast Apple Silicon friendly implementation for SmolDocling-256M via MLX
## pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
## Alternative VLM models: ## Alternative VLM models:
# pipeline_options.vlm_options = granite_vision_vlm_conversion_options # pipeline_options.vlm_options = granite_vision_vlm_conversion_options
@ -45,7 +49,7 @@ pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
response_format=ResponseFormat.MARKDOWN, response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration, inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration,
) )
vlm_conversion_options = pixtral_vlm_conversion_options pipeline_options.vlm_options = pixtral_vlm_conversion_options
""" """
""" """
@ -55,7 +59,7 @@ pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
response_format=ResponseFormat.MARKDOWN, response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration, inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration,
) )
vlm_conversion_options = pixtral_vlm_conversion_options pipeline_options.vlm_options = pixtral_vlm_conversion_options
""" """
""" """
@ -66,16 +70,19 @@ phi_vlm_conversion_options = HuggingFaceVlmOptions(
response_format=ResponseFormat.MARKDOWN, response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForCausalLM, inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForCausalLM,
) )
vlm_conversion_options = phi_vlm_conversion_options pipeline_options.vlm_options = phi_vlm_conversion_options
""" """
"""
pixtral_vlm_conversion_options = HuggingFaceVlmOptions( pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
repo_id="mlx-community/pixtral-12b-bf16", repo_id="mlx-community/pixtral-12b-bf16",
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!", prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
response_format=ResponseFormat.MARKDOWN, response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.MLX, inference_framework=InferenceFramework.MLX,
scale=1.0,
) )
vlm_conversion_options = pixtral_vlm_conversion_options pipeline_options.vlm_options = pixtral_vlm_conversion_options
"""
""" """
qwen_vlm_conversion_options = HuggingFaceVlmOptions( qwen_vlm_conversion_options = HuggingFaceVlmOptions(
@ -84,11 +91,9 @@ qwen_vlm_conversion_options = HuggingFaceVlmOptions(
response_format=ResponseFormat.MARKDOWN, response_format=ResponseFormat.MARKDOWN,
inference_framework=InferenceFramework.MLX, inference_framework=InferenceFramework.MLX,
) )
vlm_conversion_options = qwen_vlm_conversion_options pipeline_options.vlm_options = qwen_vlm_conversion_options
""" """
pipeline_options.vlm_options = vlm_conversion_options
## Set up pipeline for PDF or image inputs ## Set up pipeline for PDF or image inputs
converter = DocumentConverter( converter = DocumentConverter(
format_options={ format_options={
@ -116,19 +121,16 @@ for source in sources:
res = converter.convert(source) res = converter.convert(source)
print("") print("")
print(res.document.export_to_markdown()) #print(res.document.export_to_markdown())
for page in res.pages: for i,page in enumerate(res.pages):
print("") print("")
print(f"Predicted page in {pipeline_options.vlm_options.response_format}:") print(f" ---------- Predicted page {i} in {pipeline_options.vlm_options.response_format}:")
print(page.predictions.vlm_response.text) print(page.predictions.vlm_response.text)
print(f" ---------- ")
res.document.save_as_html( print("===== Final output of the converted document =======")
filename=Path(f"{out_path}/{res.input.file.stem}.html"),
image_mode=ImageRefMode.REFERENCED,
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
)
with (out_path / f"{res.input.file.stem}.json").open("w") as fp: with (out_path / f"{res.input.file.stem}.json").open("w") as fp:
fp.write(json.dumps(res.document.export_to_dict())) fp.write(json.dumps(res.document.export_to_dict()))
@ -136,19 +138,27 @@ for source in sources:
out_path / f"{res.input.file.stem}.json", out_path / f"{res.input.file.stem}.json",
image_mode=ImageRefMode.PLACEHOLDER, image_mode=ImageRefMode.PLACEHOLDER,
) )
print(f" => produced {out_path / res.input.file.stem}.json")
res.document.save_as_markdown( res.document.save_as_markdown(
out_path / f"{res.input.file.stem}.md", out_path / f"{res.input.file.stem}.md",
image_mode=ImageRefMode.PLACEHOLDER, image_mode=ImageRefMode.PLACEHOLDER,
) )
print(f" => produced {out_path / res.input.file.stem}.md")
res.document.save_as_html(
out_path / f"{res.input.file.stem}.html",
image_mode=ImageRefMode.EMBEDDED,
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
# split_page_view=True,
)
print(f" => produced {out_path / res.input.file.stem}.html")
pg_num = res.document.num_pages() pg_num = res.document.num_pages()
print("") print("")
inference_time = time.time() - start_time inference_time = time.time() - start_time
print( print(
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}" f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
) )
print("====================================================")
print("================================================")
print("done!")
print("================================================")