mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-26 20:14:47 +00:00
refactoring minimal_vlm_pipeline
Signed-off-by: Peter Staar <taa@zurich.ibm.com>
This commit is contained in:
parent
7c97b494ec
commit
a3716b1961
@ -155,7 +155,7 @@ class VlmPredictionToken(BaseModel):
|
||||
|
||||
class VlmPrediction(BaseModel):
|
||||
text: str = ""
|
||||
generated_tokens: list[VlmPredictionToken] = -1
|
||||
generated_tokens: list[VlmPredictionToken] = []
|
||||
generation_time: float = -1
|
||||
|
||||
|
||||
|
@ -261,6 +261,7 @@ class BaseVlmOptions(BaseModel):
|
||||
class ResponseFormat(str, Enum):
|
||||
DOCTAGS = "doctags"
|
||||
MARKDOWN = "markdown"
|
||||
HTML = "html"
|
||||
|
||||
|
||||
class InferenceFramework(str, Enum):
|
||||
@ -285,6 +286,11 @@ class HuggingFaceVlmOptions(BaseVlmOptions):
|
||||
inference_framework: InferenceFramework
|
||||
response_format: ResponseFormat
|
||||
|
||||
scale: float = 2.0
|
||||
|
||||
use_kv_cache: bool = True
|
||||
max_new_tokens: int = 4096
|
||||
|
||||
@property
|
||||
def repo_cache_folder(self) -> str:
|
||||
return self.repo_id.replace("/", "--")
|
||||
|
@ -28,8 +28,7 @@ class HuggingFaceMlxModel(BasePageModel):
|
||||
self.enabled = enabled
|
||||
|
||||
self.vlm_options = vlm_options
|
||||
|
||||
self.max_tokens=4096
|
||||
self.max_tokens = vlm_options.max_new_tokens
|
||||
|
||||
if self.enabled:
|
||||
try:
|
||||
@ -42,7 +41,6 @@ class HuggingFaceMlxModel(BasePageModel):
|
||||
)
|
||||
|
||||
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
||||
_log.debug(f"model init: {repo_cache_folder}")
|
||||
|
||||
self.apply_chat_template = apply_chat_template
|
||||
self.stream_generate = stream_generate
|
||||
@ -52,7 +50,6 @@ class HuggingFaceMlxModel(BasePageModel):
|
||||
_log.debug(
|
||||
f"before HuggingFaceVlmModel.download_models: {self.vlm_options.repo_id}"
|
||||
)
|
||||
# artifacts_path = self.download_models(self.vlm_options.repo_id)
|
||||
artifacts_path = HuggingFaceVlmModel.download_models(
|
||||
self.vlm_options.repo_id,
|
||||
progress=True,
|
||||
@ -60,39 +57,12 @@ class HuggingFaceMlxModel(BasePageModel):
|
||||
elif (artifacts_path / repo_cache_folder).exists():
|
||||
artifacts_path = artifacts_path / repo_cache_folder
|
||||
|
||||
_log.debug(f"downloaded model: {artifacts_path}")
|
||||
|
||||
self.param_question = vlm_options.prompt # "Perform Layout Analysis."
|
||||
self.param_question = vlm_options.prompt
|
||||
|
||||
## Load the model
|
||||
_log.debug("start loading model ...")
|
||||
self.vlm_model, self.processor = load(artifacts_path)
|
||||
_log.debug("loaded model ...")
|
||||
self.vlm_model, self.processor = load(artifacts_path)
|
||||
self.config = load_config(artifacts_path)
|
||||
|
||||
"""
|
||||
@staticmethod
|
||||
def download_models(
|
||||
repo_id: str,
|
||||
local_dir: Optional[Path] = None,
|
||||
force: bool = False,
|
||||
progress: bool = False,
|
||||
) -> Path:
|
||||
from huggingface_hub import snapshot_download
|
||||
from huggingface_hub.utils import disable_progress_bars
|
||||
|
||||
if not progress:
|
||||
disable_progress_bars()
|
||||
download_path = snapshot_download(
|
||||
repo_id=repo_id,
|
||||
force_download=force,
|
||||
local_dir=local_dir,
|
||||
# revision="v0.0.1",
|
||||
)
|
||||
|
||||
return Path(download_path)
|
||||
"""
|
||||
|
||||
def __call__(
|
||||
self, conv_res: ConversionResult, page_batch: Iterable[Page]
|
||||
) -> Iterable[Page]:
|
||||
@ -104,8 +74,7 @@ class HuggingFaceMlxModel(BasePageModel):
|
||||
with TimeRecorder(conv_res, "vlm"):
|
||||
assert page.size is not None
|
||||
|
||||
hi_res_image = page.get_image(scale=2.0) # 144dpi
|
||||
# hi_res_image = page.get_image(scale=1.0) # 72dpi
|
||||
hi_res_image = page.get_image(scale=self.vlm_options.scale)
|
||||
|
||||
if hi_res_image is not None:
|
||||
im_width, im_height = hi_res_image.size
|
||||
@ -136,7 +105,6 @@ class HuggingFaceMlxModel(BasePageModel):
|
||||
max_tokens=4096,
|
||||
verbose=False,
|
||||
):
|
||||
print(token.logprobs.shape)
|
||||
if len(token.logprobs.shape)==1:
|
||||
tokens.append(VlmPredictionToken(text=token.text,
|
||||
token=token.token,
|
||||
@ -145,20 +113,15 @@ class HuggingFaceMlxModel(BasePageModel):
|
||||
tokens.append(VlmPredictionToken(text=token.text,
|
||||
token=token.token,
|
||||
logprob=token.logprobs[0, token.token]))
|
||||
|
||||
|
||||
# print(token.text, end="", flush=True)
|
||||
output += token.text
|
||||
|
||||
output += token.text
|
||||
if "</doctag>" in token.text:
|
||||
break
|
||||
|
||||
generation_time = time.time() - start_time
|
||||
page_tags = output
|
||||
|
||||
print(tokens)
|
||||
|
||||
_log.debug(f"Generation time {generation_time:.2f} seconds.")
|
||||
_log.debug(f"{generation_time:.2f} seconds for {len(tokens)} tokens ({len(tokens)/generation_time} tokens/sec).")
|
||||
page.predictions.vlm_response = VlmPrediction(text=page_tags,
|
||||
generation_time=generation_time,
|
||||
generated_tokens=tokens)
|
||||
|
@ -42,17 +42,19 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
||||
)
|
||||
|
||||
self.device = decide_device(accelerator_options.device)
|
||||
self.device = "cpu" # FIXME
|
||||
|
||||
self.use_cache = True
|
||||
self.max_new_tokens = 64 # FIXME
|
||||
if self.device=="mlx":
|
||||
_log.warning(f"Mapping mlx to cpu for AutoModelForCausalLM")
|
||||
self.device = cpu
|
||||
|
||||
self.use_cache = vlm_options.use_kv_cache
|
||||
self.max_new_tokens = vlm_options.max_new_tokens
|
||||
|
||||
_log.debug(f"Available device for VLM: {self.device}")
|
||||
repo_cache_folder = vlm_options.repo_id.replace("/", "--")
|
||||
|
||||
# PARAMETERS:
|
||||
if artifacts_path is None:
|
||||
# artifacts_path = self.download_models(self.vlm_options.repo_id)
|
||||
artifacts_path = HuggingFaceVlmModel.download_models(
|
||||
self.vlm_options.repo_id
|
||||
)
|
||||
@ -100,7 +102,6 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
||||
).to(self.device)
|
||||
|
||||
model_path = artifacts_path
|
||||
print(f"model: {model_path}")
|
||||
|
||||
# Load generation config
|
||||
self.generation_config = GenerationConfig.from_pretrained(model_path)
|
||||
@ -116,7 +117,7 @@ class HuggingFaceVlmModel_AutoModelForCausalLM(BasePageModel):
|
||||
with TimeRecorder(conv_res, "vlm"):
|
||||
assert page.size is not None
|
||||
|
||||
hi_res_image = page.get_image(scale=2.0) # 144dpi
|
||||
hi_res_image = page.get_image(scale=self.vlm_options.scale) # 144dpi
|
||||
# hi_res_image = page.get_image(scale=1.0) # 72dpi
|
||||
|
||||
if hi_res_image is not None:
|
||||
|
@ -11,6 +11,10 @@ from docling.datamodel.pipeline_options import (
|
||||
InferenceFramework,
|
||||
ResponseFormat,
|
||||
VlmPipelineOptions,
|
||||
smoldocling_vlm_mlx_conversion_options,
|
||||
smoldocling_vlm_conversion_options,
|
||||
granite_vision_vlm_conversion_options,
|
||||
granite_vision_vlm_ollama_conversion_options,
|
||||
)
|
||||
from docling.document_converter import DocumentConverter, PdfFormatOption
|
||||
from docling.pipeline.vlm_pipeline import VlmPipeline
|
||||
@ -33,7 +37,7 @@ pipeline_options.force_backend_text = False
|
||||
# pipeline_options.vlm_options = smoldocling_vlm_conversion_options
|
||||
|
||||
## Pick a VLM model. Fast Apple Silicon friendly implementation for SmolDocling-256M via MLX
|
||||
## pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
|
||||
pipeline_options.vlm_options = smoldocling_vlm_mlx_conversion_options
|
||||
|
||||
## Alternative VLM models:
|
||||
# pipeline_options.vlm_options = granite_vision_vlm_conversion_options
|
||||
@ -45,7 +49,7 @@ pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration,
|
||||
)
|
||||
vlm_conversion_options = pixtral_vlm_conversion_options
|
||||
pipeline_options.vlm_options = pixtral_vlm_conversion_options
|
||||
"""
|
||||
|
||||
"""
|
||||
@ -55,7 +59,7 @@ pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_LlavaForConditionalGeneration,
|
||||
)
|
||||
vlm_conversion_options = pixtral_vlm_conversion_options
|
||||
pipeline_options.vlm_options = pixtral_vlm_conversion_options
|
||||
"""
|
||||
|
||||
"""
|
||||
@ -66,16 +70,19 @@ phi_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.TRANSFORMERS_AutoModelForCausalLM,
|
||||
)
|
||||
vlm_conversion_options = phi_vlm_conversion_options
|
||||
pipeline_options.vlm_options = phi_vlm_conversion_options
|
||||
"""
|
||||
|
||||
"""
|
||||
pixtral_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
repo_id="mlx-community/pixtral-12b-bf16",
|
||||
prompt="Convert this page to markdown. Do not miss any text and only output the bare MarkDown!",
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.MLX,
|
||||
scale=1.0,
|
||||
)
|
||||
vlm_conversion_options = pixtral_vlm_conversion_options
|
||||
pipeline_options.vlm_options = pixtral_vlm_conversion_options
|
||||
"""
|
||||
|
||||
"""
|
||||
qwen_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
@ -84,11 +91,9 @@ qwen_vlm_conversion_options = HuggingFaceVlmOptions(
|
||||
response_format=ResponseFormat.MARKDOWN,
|
||||
inference_framework=InferenceFramework.MLX,
|
||||
)
|
||||
vlm_conversion_options = qwen_vlm_conversion_options
|
||||
pipeline_options.vlm_options = qwen_vlm_conversion_options
|
||||
"""
|
||||
|
||||
pipeline_options.vlm_options = vlm_conversion_options
|
||||
|
||||
## Set up pipeline for PDF or image inputs
|
||||
converter = DocumentConverter(
|
||||
format_options={
|
||||
@ -116,19 +121,16 @@ for source in sources:
|
||||
res = converter.convert(source)
|
||||
|
||||
print("")
|
||||
print(res.document.export_to_markdown())
|
||||
#print(res.document.export_to_markdown())
|
||||
|
||||
for page in res.pages:
|
||||
for i,page in enumerate(res.pages):
|
||||
print("")
|
||||
print(f"Predicted page in {pipeline_options.vlm_options.response_format}:")
|
||||
print(f" ---------- Predicted page {i} in {pipeline_options.vlm_options.response_format}:")
|
||||
print(page.predictions.vlm_response.text)
|
||||
print(f" ---------- ")
|
||||
|
||||
res.document.save_as_html(
|
||||
filename=Path(f"{out_path}/{res.input.file.stem}.html"),
|
||||
image_mode=ImageRefMode.REFERENCED,
|
||||
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
|
||||
)
|
||||
|
||||
print("===== Final output of the converted document =======")
|
||||
|
||||
with (out_path / f"{res.input.file.stem}.json").open("w") as fp:
|
||||
fp.write(json.dumps(res.document.export_to_dict()))
|
||||
|
||||
@ -136,19 +138,27 @@ for source in sources:
|
||||
out_path / f"{res.input.file.stem}.json",
|
||||
image_mode=ImageRefMode.PLACEHOLDER,
|
||||
)
|
||||
|
||||
print(f" => produced {out_path / res.input.file.stem}.json")
|
||||
|
||||
res.document.save_as_markdown(
|
||||
out_path / f"{res.input.file.stem}.md",
|
||||
image_mode=ImageRefMode.PLACEHOLDER,
|
||||
)
|
||||
|
||||
print(f" => produced {out_path / res.input.file.stem}.md")
|
||||
|
||||
res.document.save_as_html(
|
||||
out_path / f"{res.input.file.stem}.html",
|
||||
image_mode=ImageRefMode.EMBEDDED,
|
||||
labels=[*DEFAULT_EXPORT_LABELS, DocItemLabel.FOOTNOTE],
|
||||
# split_page_view=True,
|
||||
)
|
||||
print(f" => produced {out_path / res.input.file.stem}.html")
|
||||
|
||||
pg_num = res.document.num_pages()
|
||||
print("")
|
||||
inference_time = time.time() - start_time
|
||||
print(
|
||||
f"Total document prediction time: {inference_time:.2f} seconds, pages: {pg_num}"
|
||||
)
|
||||
|
||||
print("================================================")
|
||||
print("done!")
|
||||
print("================================================")
|
||||
print("====================================================")
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user