Implement new reading-order model, replacing DS GLM model (WIP)

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
This commit is contained in:
Christoph Auer 2025-02-07 16:19:16 +01:00
parent 9114ada7bc
commit a56dbc5f3f
6 changed files with 329 additions and 361 deletions

View File

@ -1,328 +0,0 @@
import copy
import random
from pathlib import Path
from typing import List, Union
from deepsearch_glm.andromeda_nlp import nlp_model
from docling_core.types.doc import BoundingBox, CoordOrigin, DoclingDocument
from docling_core.types.legacy_doc.base import BoundingBox as DsBoundingBox
from docling_core.types.legacy_doc.base import (
Figure,
PageDimensions,
PageReference,
Prov,
Ref,
)
from docling_core.types.legacy_doc.base import Table as DsSchemaTable
from docling_core.types.legacy_doc.base import TableCell
from docling_core.types.legacy_doc.document import BaseText
from docling_core.types.legacy_doc.document import (
CCSDocumentDescription as DsDocumentDescription,
)
from docling_core.types.legacy_doc.document import CCSFileInfoObject as DsFileInfoObject
from docling_core.types.legacy_doc.document import ExportedCCSDocument as DsDocument
from PIL import ImageDraw
from pydantic import BaseModel, ConfigDict, TypeAdapter
from docling.datamodel.base_models import (
Cluster,
ContainerElement,
FigureElement,
Table,
TextElement,
)
from docling.datamodel.document import ConversionResult, layout_label_to_ds_type
from docling.datamodel.settings import settings
from docling.utils.glm_utils import to_docling_document
from docling.utils.profiling import ProfilingScope, TimeRecorder
from docling.utils.utils import create_hash
class GlmOptions(BaseModel):
model_config = ConfigDict(protected_namespaces=())
model_names: str = "" # e.g. "language;term;reference"
class GlmModel:
def __init__(self, options: GlmOptions):
self.options = options
self.model = nlp_model(loglevel="error", text_ordering=True)
def _to_legacy_document(self, conv_res) -> DsDocument:
title = ""
desc: DsDocumentDescription = DsDocumentDescription(logs=[])
page_hashes = [
PageReference(
hash=create_hash(conv_res.input.document_hash + ":" + str(p.page_no)),
page=p.page_no + 1,
model="default",
)
for p in conv_res.pages
]
file_info = DsFileInfoObject(
filename=conv_res.input.file.name,
document_hash=conv_res.input.document_hash,
num_pages=conv_res.input.page_count,
page_hashes=page_hashes,
)
main_text: List[Union[Ref, BaseText]] = []
tables: List[DsSchemaTable] = []
figures: List[Figure] = []
page_no_to_page = {p.page_no: p for p in conv_res.pages}
for element in conv_res.assembled.elements:
# Convert bboxes to lower-left origin.
target_bbox = DsBoundingBox(
element.cluster.bbox.to_bottom_left_origin(
page_no_to_page[element.page_no].size.height
).as_tuple()
)
if isinstance(element, TextElement):
main_text.append(
BaseText(
text=element.text,
obj_type=layout_label_to_ds_type.get(element.label),
name=element.label,
prov=[
Prov(
bbox=target_bbox,
page=element.page_no + 1,
span=[0, len(element.text)],
)
],
)
)
elif isinstance(element, Table):
index = len(tables)
ref_str = f"#/tables/{index}"
main_text.append(
Ref(
name=element.label,
obj_type=layout_label_to_ds_type.get(element.label),
ref=ref_str,
),
)
# Initialise empty table data grid (only empty cells)
table_data = [
[
TableCell(
text="",
# bbox=[0,0,0,0],
spans=[[i, j]],
obj_type="body",
)
for j in range(element.num_cols)
]
for i in range(element.num_rows)
]
# Overwrite cells in table data for which there is actual cell content.
for cell in element.table_cells:
for i in range(
min(cell.start_row_offset_idx, element.num_rows),
min(cell.end_row_offset_idx, element.num_rows),
):
for j in range(
min(cell.start_col_offset_idx, element.num_cols),
min(cell.end_col_offset_idx, element.num_cols),
):
celltype = "body"
if cell.column_header:
celltype = "col_header"
elif cell.row_header:
celltype = "row_header"
elif cell.row_section:
celltype = "row_section"
def make_spans(cell):
for rspan in range(
min(cell.start_row_offset_idx, element.num_rows),
min(cell.end_row_offset_idx, element.num_rows),
):
for cspan in range(
min(
cell.start_col_offset_idx, element.num_cols
),
min(cell.end_col_offset_idx, element.num_cols),
):
yield [rspan, cspan]
spans = list(make_spans(cell))
if cell.bbox is not None:
bbox = cell.bbox.to_bottom_left_origin(
page_no_to_page[element.page_no].size.height
).as_tuple()
else:
bbox = None
table_data[i][j] = TableCell(
text=cell.text,
bbox=bbox,
# col=j,
# row=i,
spans=spans,
obj_type=celltype,
# col_span=[cell.start_col_offset_idx, cell.end_col_offset_idx],
# row_span=[cell.start_row_offset_idx, cell.end_row_offset_idx]
)
tables.append(
DsSchemaTable(
num_cols=element.num_cols,
num_rows=element.num_rows,
obj_type=layout_label_to_ds_type.get(element.label),
data=table_data,
prov=[
Prov(
bbox=target_bbox,
page=element.page_no + 1,
span=[0, 0],
)
],
)
)
elif isinstance(element, FigureElement):
index = len(figures)
ref_str = f"#/figures/{index}"
main_text.append(
Ref(
name=element.label,
obj_type=layout_label_to_ds_type.get(element.label),
ref=ref_str,
),
)
figures.append(
Figure(
prov=[
Prov(
bbox=target_bbox,
page=element.page_no + 1,
span=[0, 0],
)
],
obj_type=layout_label_to_ds_type.get(element.label),
payload={
"children": TypeAdapter(List[Cluster]).dump_python(
element.cluster.children
)
}, # hack to channel child clusters through GLM
)
)
elif isinstance(element, ContainerElement):
main_text.append(
BaseText(
text="",
payload={
"children": TypeAdapter(List[Cluster]).dump_python(
element.cluster.children
)
}, # hack to channel child clusters through GLM
obj_type=layout_label_to_ds_type.get(element.label),
name=element.label,
prov=[
Prov(
bbox=target_bbox,
page=element.page_no + 1,
span=[0, 0],
)
],
)
)
page_dimensions = [
PageDimensions(page=p.page_no + 1, height=p.size.height, width=p.size.width)
for p in conv_res.pages
if p.size is not None
]
ds_doc: DsDocument = DsDocument(
name=title,
description=desc,
file_info=file_info,
main_text=main_text,
tables=tables,
figures=figures,
page_dimensions=page_dimensions,
)
return ds_doc
def __call__(self, conv_res: ConversionResult) -> DoclingDocument:
with TimeRecorder(conv_res, "glm", scope=ProfilingScope.DOCUMENT):
ds_doc = self._to_legacy_document(conv_res)
ds_doc_dict = ds_doc.model_dump(by_alias=True, exclude_none=True)
glm_doc = self.model.apply_on_doc(ds_doc_dict)
docling_doc: DoclingDocument = to_docling_document(glm_doc) # Experimental
# DEBUG code:
def draw_clusters_and_cells(ds_document, page_no, show: bool = False):
clusters_to_draw = []
image = copy.deepcopy(conv_res.pages[page_no].image)
for ix, elem in enumerate(ds_document.main_text):
if isinstance(elem, BaseText):
prov = elem.prov[0] # type: ignore
elif isinstance(elem, Ref):
_, arr, index = elem.ref.split("/")
index = int(index) # type: ignore
if arr == "tables":
prov = ds_document.tables[index].prov[0]
elif arr == "figures":
prov = ds_document.pictures[index].prov[0]
else:
prov = None
if prov and prov.page == page_no:
clusters_to_draw.append(
Cluster(
id=ix,
label=elem.name,
bbox=BoundingBox.from_tuple(
coord=prov.bbox, # type: ignore
origin=CoordOrigin.BOTTOMLEFT,
).to_top_left_origin(conv_res.pages[page_no].size.height),
)
)
draw = ImageDraw.Draw(image)
for c in clusters_to_draw:
x0, y0, x1, y1 = c.bbox.as_tuple()
draw.rectangle([(x0, y0), (x1, y1)], outline="red")
draw.text((x0 + 2, y0 + 2), f"{c.id}:{c.label}", fill=(255, 0, 0, 255))
cell_color = (
random.randint(30, 140),
random.randint(30, 140),
random.randint(30, 140),
)
for tc in c.cells: # [:1]:
x0, y0, x1, y1 = tc.bbox.as_tuple()
draw.rectangle([(x0, y0), (x1, y1)], outline=cell_color)
if show:
image.show()
else:
out_path: Path = (
Path(settings.debug.debug_output_path)
/ f"debug_{conv_res.input.file.stem}"
)
out_path.mkdir(parents=True, exist_ok=True)
out_file = out_path / f"doc_page_{page_no:05}.png"
image.save(str(out_file), format="png")
# for item in ds_doc.page_dimensions:
# page_no = item.page
# draw_clusters_and_cells(ds_doc, page_no)
return docling_doc

View File

@ -0,0 +1,290 @@
import copy
import random
from pathlib import Path
from typing import Dict, List
from docling_core.types.doc import (
BoundingBox,
CoordOrigin,
DocItemLabel,
DoclingDocument,
DocumentOrigin,
GroupLabel,
ProvenanceItem,
RefItem,
TableData,
)
from docling_core.types.legacy_doc.base import Ref
from docling_core.types.legacy_doc.document import BaseText
from docling_ibm_models.reading_order.reading_order_rb import (
PageElement as ReadingOrderPageElement,
)
from docling_ibm_models.reading_order.reading_order_rb import ReadingOrderPredictor
from PIL import ImageDraw
from pydantic import BaseModel, ConfigDict
from docling.datamodel.base_models import (
Cluster,
ContainerElement,
FigureElement,
Table,
TextElement,
)
from docling.datamodel.document import ConversionResult
from docling.datamodel.settings import settings
from docling.utils.profiling import ProfilingScope, TimeRecorder
class ReadingOrderOptions(BaseModel):
model_config = ConfigDict(protected_namespaces=())
model_names: str = "" # e.g. "language;term;reference"
class ReadingOrderModel:
def __init__(self, options: ReadingOrderOptions):
self.options = options
self.ro_model = ReadingOrderPredictor()
def _assembled_to_readingorder_elements(
self, conv_res: ConversionResult
) -> List[ReadingOrderPageElement]:
elements: List[ReadingOrderPageElement] = []
for (
element
) in (
conv_res.assembled.body
): # FIXME: use conv_res.assembled.elements (include furniture)
page_height = conv_res.pages[element.page_no].size.height # type: ignore
bbox = element.cluster.bbox.to_bottom_left_origin(page_height)
text = element.text or ""
elements.append(
ReadingOrderPageElement(
cid=len(elements),
ref=RefItem(cref=f"#/{element.page_no}/{element.cluster.id}"),
text=text,
page_no=element.page_no,
page_size=conv_res.pages[element.page_no].size,
label=element.label,
l=bbox.l,
r=bbox.r,
b=bbox.b,
t=bbox.t,
coord_origin=bbox.coord_origin,
)
)
return elements
def _readingorder_elements_to_docling_doc(
self,
conv_res: ConversionResult,
ro_elements: List[ReadingOrderPageElement],
el_to_captions_mapping: Dict[int, List[int]],
el_to_footnotes_mapping: Dict[int, List[int]],
el_merges_mapping: Dict[int, List[int]],
) -> DoclingDocument:
id_to_elem = {
RefItem(cref=f"#/{elem.page_no}/{elem.cluster.id}").cref: elem
for elem in conv_res.assembled.elements
}
origin = DocumentOrigin(
mimetype="application/pdf",
filename=conv_res.input.file.name,
binary_hash=conv_res.input.document_hash,
)
doc_name = Path(origin.filename).stem
out_doc: DoclingDocument = DoclingDocument(name=doc_name, origin=origin)
for page in conv_res.pages:
page_no = page.page_no + 1
size = page.size
assert size is not None
out_doc.add_page(page_no=page_no, size=size)
current_list = None
# TODO: handle merges
for rel in ro_elements:
element = id_to_elem[rel.ref.cref]
page_height = conv_res.pages[element.page_no].size.height # type: ignore
if isinstance(element, TextElement):
text = element.text
prov = ProvenanceItem(
page_no=element.page_no + 1,
charspan=(0, len(text)),
bbox=element.cluster.bbox.to_bottom_left_origin(page_height),
)
label = element.label
if label == DocItemLabel.LIST_ITEM:
if current_list is None:
current_list = out_doc.add_group(
label=GroupLabel.LIST, name="list"
)
# TODO: Infer if this is a numbered or a bullet list item
out_doc.add_list_item(
text=text, enumerated=False, prov=prov, parent=current_list
)
elif label == DocItemLabel.SECTION_HEADER:
current_list = None
out_doc.add_heading(text=text, prov=prov)
elif label == DocItemLabel.CODE:
current_list = None
out_doc.add_code(text=text, prov=prov)
elif label == DocItemLabel.FORMULA:
current_list = None
out_doc.add_text(
label=DocItemLabel.FORMULA, text="", orig=text, prov=prov
)
else:
current_list = None
out_doc.add_text(label=element.label, text=text, prov=prov)
elif isinstance(element, Table):
tbl_data = TableData(
num_rows=element.num_rows,
num_cols=element.num_cols,
table_cells=element.table_cells,
)
prov = ProvenanceItem(
page_no=element.page_no + 1,
charspan=(0, 0),
bbox=element.cluster.bbox.to_bottom_left_origin(page_height),
)
tbl = out_doc.add_table(
data=tbl_data, prov=prov, label=element.cluster.label
)
# TODO: handle element.cluster.children.
# TODO: handle captions
# tbl.captions.extend(caption_refs)
elif isinstance(element, FigureElement):
text = ""
prov = ProvenanceItem(
page_no=element.page_no + 1,
charspan=(0, len(text)),
bbox=element.cluster.bbox.to_bottom_left_origin(page_height),
)
pic = out_doc.add_picture(prov=prov)
# TODO: handle element.cluster.children.
# TODO: handle captions
# pic.captions.extend(caption_refs)
# _add_child_elements(pic, doc, obj, pelem)
elif isinstance(element, ContainerElement):
pass
# TODO: handle element.cluster.children.
return out_doc
def __call__(self, conv_res: ConversionResult) -> DoclingDocument:
with TimeRecorder(conv_res, "glm", scope=ProfilingScope.DOCUMENT):
page_elements = self._assembled_to_readingorder_elements(conv_res)
# Apply reading order
sorted_elements = self.ro_model.predict_reading_order(
page_elements=page_elements
)
el_to_captions_mapping = self.ro_model.predict_to_captions(
sorted_elements=sorted_elements
)
el_to_footnotes_mapping = self.ro_model.predict_to_footnotes(
sorted_elements=sorted_elements
)
el_merges_mapping = self.ro_model.predict_merges(
sorted_elements=sorted_elements
)
docling_doc: DoclingDocument = self._readingorder_elements_to_docling_doc(
conv_res,
sorted_elements,
el_to_captions_mapping,
el_to_footnotes_mapping,
el_merges_mapping,
)
# DEBUG code:
def draw_clusters_and_cells(ds_document, page_no, show: bool = False):
clusters_to_draw = []
image = copy.deepcopy(conv_res.pages[page_no].image)
for ix, elem in enumerate(ds_document.main_text):
if isinstance(elem, BaseText):
prov = elem.prov[0] # type: ignore
elif isinstance(elem, Ref):
_, arr, index = elem.ref.split("/")
index = int(index) # type: ignore
if arr == "tables":
prov = ds_document.tables[index].prov[0]
elif arr == "figures":
prov = ds_document.pictures[index].prov[0]
else:
prov = None
if prov and prov.page == page_no:
clusters_to_draw.append(
Cluster(
id=ix,
label=elem.name,
bbox=BoundingBox.from_tuple(
coord=prov.bbox, # type: ignore
origin=CoordOrigin.BOTTOMLEFT,
).to_top_left_origin(conv_res.pages[page_no].size.height),
)
)
draw = ImageDraw.Draw(image)
for c in clusters_to_draw:
x0, y0, x1, y1 = c.bbox.as_tuple()
draw.rectangle([(x0, y0), (x1, y1)], outline="red")
draw.text((x0 + 2, y0 + 2), f"{c.id}:{c.label}", fill=(255, 0, 0, 255))
cell_color = (
random.randint(30, 140),
random.randint(30, 140),
random.randint(30, 140),
)
for tc in c.cells: # [:1]:
x0, y0, x1, y1 = tc.bbox.as_tuple()
draw.rectangle([(x0, y0), (x1, y1)], outline=cell_color)
if show:
image.show()
else:
out_path: Path = (
Path(settings.debug.debug_output_path)
/ f"debug_{conv_res.input.file.stem}"
)
out_path.mkdir(parents=True, exist_ok=True)
out_file = out_path / f"doc_page_{page_no:05}.png"
image.save(str(out_file), format="png")
# for item in ds_doc.page_dimensions:
# page_no = item.page
# draw_clusters_and_cells(ds_doc, page_no)
return docling_doc

View File

@ -25,7 +25,6 @@ from docling.models.document_picture_classifier import (
DocumentPictureClassifier,
DocumentPictureClassifierOptions,
)
from docling.models.ds_glm_model import GlmModel, GlmOptions
from docling.models.easyocr_model import EasyOcrModel
from docling.models.layout_model import LayoutModel
from docling.models.ocr_mac_model import OcrMacModel
@ -35,6 +34,7 @@ from docling.models.page_preprocessing_model import (
PagePreprocessingOptions,
)
from docling.models.rapid_ocr_model import RapidOcrModel
from docling.models.readingorder_model import ReadingOrderModel, ReadingOrderOptions
from docling.models.table_structure_model import TableStructureModel
from docling.models.tesseract_ocr_cli_model import TesseractOcrCliModel
from docling.models.tesseract_ocr_model import TesseractOcrModel
@ -63,7 +63,7 @@ class StandardPdfPipeline(PaginatedPipeline):
or self.pipeline_options.generate_table_images
)
self.glm_model = GlmModel(options=GlmOptions())
self.glm_model = ReadingOrderModel(options=ReadingOrderOptions())
if (ocr_model := self.get_ocr_model(artifacts_path=artifacts_path)) is None:
raise RuntimeError(

View File

@ -125,7 +125,7 @@ def main():
conv_results = doc_converter.convert_all(
input_doc_paths,
raises_on_error=False, # to let conversion run through all and examine results at the end
raises_on_error=True, # to let conversion run through all and examine results at the end
)
success_count, partial_success_count, failure_count = export_documents(
conv_results, output_dir=Path("scratch")

64
poetry.lock generated
View File

@ -1,4 +1,4 @@
# This file is automatically @generated by Poetry 1.8.5 and should not be changed by hand.
# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand.
[[package]]
name = "aiohappyeyeballs"
@ -187,8 +187,8 @@ files = [
lazy-object-proxy = ">=1.4.0"
typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.11\""}
wrapt = [
{version = ">=1.11,<2", markers = "python_version < \"3.11\""},
{version = ">=1.14,<2", markers = "python_version >= \"3.11\""},
{version = ">=1.11,<2", markers = "python_version < \"3.11\""},
]
[[package]]
@ -894,33 +894,39 @@ chunking = ["semchunk (>=2.2.0,<3.0.0)", "transformers (>=4.34.0,<5.0.0)"]
[[package]]
name = "docling-ibm-models"
version = "3.3.1"
version = "3.3.0"
description = "This package contains the AI models used by the Docling PDF conversion package"
optional = false
python-versions = "<4.0,>=3.9"
files = [
{file = "docling_ibm_models-3.3.1-py3-none-any.whl", hash = "sha256:be8f6684839c48d4b318e58a558cd7e2af3351b712f9604a69a415a0e238d5e2"},
{file = "docling_ibm_models-3.3.1.tar.gz", hash = "sha256:f1d64216bbca6507da6f80de1acf450f33bdc7dc81cfd7f532a6cfc545cc092a"},
]
python-versions = "^3.9"
files = []
develop = false
[package.dependencies]
docling-core = "^2.16.0"
huggingface_hub = ">=0.23,<1"
jsonlines = ">=3.1.0,<4.0.0"
jsonlines = "^3.1.0"
numpy = [
{version = ">=1.24.4,<3.0.0", markers = "sys_platform != \"darwin\" or platform_machine != \"x86_64\""},
{version = ">=1.24.4,<2.0.0", markers = "sys_platform == \"darwin\" and platform_machine == \"x86_64\""},
]
opencv-python-headless = ">=4.6.0.66,<5.0.0.0"
Pillow = ">=10.0.0,<11.0.0"
opencv-python-headless = "^4.6.0.66"
Pillow = "^10.0.0"
pydantic = "^2.0.0"
safetensors = {version = ">=0.4.3,<1", extras = ["torch"]}
torch = ">=2.2.2,<3.0.0"
torchvision = ">=0,<1"
tqdm = ">=4.64.0,<5.0.0"
torch = "^2.2.2"
torchvision = "^0"
tqdm = "^4.64.0"
transformers = [
{version = ">=4.42.0,<5.0.0", markers = "sys_platform != \"darwin\" or platform_machine != \"x86_64\""},
{version = ">=4.42.0,<4.43.0", markers = "sys_platform == \"darwin\" and platform_machine == \"x86_64\""},
]
[package.source]
type = "git"
url = "ssh://git@github.com/DS4SD/docling-ibm-models.git"
reference = "dev/add-reading-order"
resolved_reference = "1d2dd932b4484dd9ec6e42c80b0174a06af63e08"
[[package]]
name = "docling-parse"
version = "3.3.0"
@ -2727,13 +2733,13 @@ pygments = ">2.12.0"
[[package]]
name = "mkdocs-material"
version = "9.6.2"
version = "9.6.3"
description = "Documentation that simply works"
optional = false
python-versions = ">=3.8"
files = [
{file = "mkdocs_material-9.6.2-py3-none-any.whl", hash = "sha256:71d90dbd63b393ad11a4d90151dfe3dcbfcd802c0f29ce80bebd9bbac6abc753"},
{file = "mkdocs_material-9.6.2.tar.gz", hash = "sha256:a3de1c5d4c745f10afa78b1a02f917b9dce0808fb206adc0f5bb48b58c1ca21f"},
{file = "mkdocs_material-9.6.3-py3-none-any.whl", hash = "sha256:1125622067e26940806701219303b27c0933e04533560725d97ec26fd16a39cf"},
{file = "mkdocs_material-9.6.3.tar.gz", hash = "sha256:c87f7d1c39ce6326da5e10e232aed51bae46252e646755900f4b0fc9192fa832"},
]
[package.dependencies]
@ -2834,8 +2840,8 @@ files = [
[package.dependencies]
multiprocess = [
{version = "*", optional = true, markers = "python_version < \"3.11\" and extra == \"dill\""},
{version = ">=0.70.15", optional = true, markers = "python_version >= \"3.11\" and extra == \"dill\""},
{version = "*", optional = true, markers = "python_version < \"3.11\" and extra == \"dill\""},
]
pygments = ">=2.0"
pywin32 = {version = ">=301", markers = "platform_system == \"Windows\""}
@ -3844,10 +3850,10 @@ files = [
[package.dependencies]
numpy = [
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""},
{version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""},
{version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""},
{version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""},
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.21.0", markers = "python_version == \"3.9\" and platform_system == \"Darwin\" and platform_machine == \"arm64\""},
{version = ">=1.19.3", markers = "platform_system == \"Linux\" and platform_machine == \"aarch64\" and python_version >= \"3.8\" and python_version < \"3.10\" or python_version > \"3.9\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_system != \"Darwin\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_machine != \"arm64\" and python_version < \"3.10\""},
]
@ -3870,10 +3876,10 @@ files = [
[package.dependencies]
numpy = [
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""},
{version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""},
{version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""},
{version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""},
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.21.0", markers = "python_version == \"3.9\" and platform_system == \"Darwin\" and platform_machine == \"arm64\""},
{version = ">=1.19.3", markers = "platform_system == \"Linux\" and platform_machine == \"aarch64\" and python_version >= \"3.8\" and python_version < \"3.10\" or python_version > \"3.9\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_system != \"Darwin\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_machine != \"arm64\" and python_version < \"3.10\""},
]
@ -4059,9 +4065,9 @@ files = [
[package.dependencies]
numpy = [
{version = ">=1.22.4", markers = "python_version < \"3.11\""},
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
{version = ">=1.22.4", markers = "python_version < \"3.11\""},
]
python-dateutil = ">=2.8.2"
pytz = ">=2020.1"
@ -4825,8 +4831,8 @@ files = [
astroid = ">=2.15.8,<=2.17.0-dev0"
colorama = {version = ">=0.4.5", markers = "sys_platform == \"win32\""}
dill = [
{version = ">=0.2", markers = "python_version < \"3.11\""},
{version = ">=0.3.6", markers = "python_version >= \"3.11\""},
{version = ">=0.2", markers = "python_version < \"3.11\""},
]
isort = ">=4.2.5,<6"
mccabe = ">=0.6,<0.8"
@ -7062,13 +7068,13 @@ vision = ["Pillow (>=10.0.1,<=15.0)"]
[[package]]
name = "transformers"
version = "4.48.2"
version = "4.48.3"
description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow"
optional = false
python-versions = ">=3.9.0"
files = [
{file = "transformers-4.48.2-py3-none-any.whl", hash = "sha256:493bc5b0268b116eff305edf6656367fc89cf570e7a9d5891369e04751db698a"},
{file = "transformers-4.48.2.tar.gz", hash = "sha256:dcfb73473e61f22fb3366fe2471ed2e42779ecdd49527a1bdf1937574855d516"},
{file = "transformers-4.48.3-py3-none-any.whl", hash = "sha256:78697f990f5ef350c23b46bf86d5081ce96b49479ab180b2de7687267de8fd36"},
{file = "transformers-4.48.3.tar.gz", hash = "sha256:a5e8f1e9a6430aa78215836be70cecd3f872d99eeda300f41ad6cc841724afdb"},
]
[package.dependencies]
@ -7850,4 +7856,4 @@ tesserocr = ["tesserocr"]
[metadata]
lock-version = "2.0"
python-versions = "^3.9"
content-hash = "ca0464df452664834ae9bccc59f89240e2f5e8f3b179761de615548c799680e7"
content-hash = "e693a18915e18102575bb9b1179d78faf4fffe211e7d7b3f5bbf177695979ba1"

View File

@ -27,7 +27,7 @@ packages = [{include = "docling"}]
python = "^3.9"
pydantic = "^2.0.0"
docling-core = {extras = ["chunking"], version = "^2.17.2"}
docling-ibm-models = "^3.3.0"
docling-ibm-models = {git = "ssh://git@github.com/DS4SD/docling-ibm-models.git", rev = "dev/add-reading-order"} #"^3.3.0"
deepsearch-glm = "^1.0.0"
docling-parse = "^3.3.0"
filetype = "^1.2.0"