simplify README, move content to docs

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
Michele Dolfi 2024-10-16 18:06:06 +02:00
parent 0858ed91c3
commit b7d976149b
5 changed files with 31 additions and 262 deletions

274
README.md
View File

@ -7,6 +7,7 @@
# Docling # Docling
[![arXiv](https://img.shields.io/badge/arXiv-2408.09869-b31b1b.svg)](https://arxiv.org/abs/2408.09869) [![arXiv](https://img.shields.io/badge/arXiv-2408.09869-b31b1b.svg)](https://arxiv.org/abs/2408.09869)
[![Docs](https://img.shields.io/badge/docs-live-brightgreen)](https://ds4sd.github.io/docling/)
[![PyPI version](https://img.shields.io/pypi/v/docling)](https://pypi.org/project/docling/) [![PyPI version](https://img.shields.io/pypi/v/docling)](https://pypi.org/project/docling/)
![Python](https://img.shields.io/badge/python-3.10%20%7C%203.11%20%7C%203.12-blue) ![Python](https://img.shields.io/badge/python-3.10%20%7C%203.11%20%7C%203.12-blue)
[![Poetry](https://img.shields.io/endpoint?url=https://python-poetry.org/badge/v0.json)](https://python-poetry.org/) [![Poetry](https://img.shields.io/endpoint?url=https://python-poetry.org/badge/v0.json)](https://python-poetry.org/)
@ -16,15 +17,19 @@
[![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit) [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit)
[![License MIT](https://img.shields.io/github/license/DS4SD/docling)](https://opensource.org/licenses/MIT) [![License MIT](https://img.shields.io/github/license/DS4SD/docling)](https://opensource.org/licenses/MIT)
Docling bundles PDF document conversion to JSON and Markdown in an easy, self-contained package. Docling parses documents and exports them to the desired format with ease and speed.
## Features ## Features
* ⚡ Converts any PDF document to JSON or Markdown format, stable and lightning fast
* 📑 Understands detailed page layout, reading order and recovers table structures * 🗂️ Multi-format support for input (PDF, DOCX etc.) & output (Markdown, JSON etc.)
* 📝 Extracts metadata from the document, such as title, authors, references and language * 📑 Advanced PDF document understanding incl. page layout, reading order & table structures
* 🔍 Includes OCR support for scanned PDFs * 📝 Metadata extraction, including title, authors, references & language
* 🤖 Integrates easily with LLM app / RAG frameworks like 🦙 LlamaIndex and 🦜🔗 LangChain * 🤖 Seamless LlamaIndex 🦙 & LangChain 🦜🔗 integration for powerful RAG / QA applications
* 💻 Provides a simple and convenient CLI * 🔍 OCR support for scanned PDFs
* 💻 Simple and convenient CLI
Explore the [documentation](https://ds4sd.github.io/docling/) to discover plenty examples and unlock the full power of Docling!
## Installation ## Installation
@ -35,271 +40,30 @@ pip install docling
Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures. Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.
<details> More [detailed installation instructions](https://ds4sd.github.io/docling/installation/) are available in the docs.
<summary><b>Alternative PyTorch distributions</b></summary>
The Docling models depend on the [PyTorch](https://pytorch.org/) library.
Depending on your architecture, you might want to use a different distribution of `torch`.
For example, you might want support for different accelerator or for a cpu-only version.
All the different ways for installing `torch` are listed on their website <https://pytorch.org/>.
One common situation is the installation on Linux systems with cpu-only support.
In this case, we suggest the installation of Docling with the following options
```bash
# Example for installing on the Linux cpu-only version
pip install docling --extra-index-url https://download.pytorch.org/whl/cpu
```
</details>
<details>
<summary><b>Alternative OCR engines</b></summary>
Docling supports multiple OCR engines for processing scanned documents. The current version provides
the following engines.
| Engine | Installation | Usage |
| ------ | ------------ | ----- |
| [EasyOCR](https://github.com/JaidedAI/EasyOCR) | Default in Docling or via `pip install easyocr`. | `EasyOcrOptions` |
| Tesseract | System dependency. See description for Tesseract and Tesserocr below. | `TesseractOcrOptions` |
| Tesseract CLI | System dependency. See description below. | `TesseractCliOcrOptions` |
The Docling `DocumentConverter` allows to choose the OCR engine with the `ocr_options` settings. For example
```python
from docling.datamodel.base_models import ConversionStatus, PipelineOptions
from docling.datamodel.pipeline_options import PipelineOptions, EasyOcrOptions, TesseractOcrOptions
from docling.document_converter import DocumentConverter
pipeline_options = PipelineOptions()
pipeline_options.do_ocr = True
pipeline_options.ocr_options = TesseractOcrOptions() # Use Tesseract
doc_converter = DocumentConverter(
pipeline_options=pipeline_options,
)
```
#### Tesseract installation
[Tesseract](https://github.com/tesseract-ocr/tesseract) is a popular OCR engine which is available
on most operating systems. For using this engine with Docling, Tesseract must be installed on your
system, using the packaging tool of your choice. Below we provide example commands.
After installing Tesseract you are expected to provide the path to its language files using the
`TESSDATA_PREFIX` environment variable (note that it must terminate with a slash `/`).
For macOS, we reccomend using [Homebrew](https://brew.sh/).
```console
brew install tesseract leptonica pkg-config
TESSDATA_PREFIX=/opt/homebrew/share/tessdata/
echo "Set TESSDATA_PREFIX=${TESSDATA_PREFIX}"
```
For Debian-based systems.
```console
apt-get install tesseract-ocr tesseract-ocr-eng libtesseract-dev libleptonica-dev pkg-config
TESSDATA_PREFIX=$(dpkg -L tesseract-ocr-eng | grep tessdata$)
echo "Set TESSDATA_PREFIX=${TESSDATA_PREFIX}"
```
For RHEL systems.
```console
dnf install tesseract tesseract-devel tesseract-langpack-eng leptonica-devel
TESSDATA_PREFIX=/usr/share/tesseract/tessdata/
echo "Set TESSDATA_PREFIX=${TESSDATA_PREFIX}"
```
#### Linking to Tesseract
The most efficient usage of the Tesseract library is via linking. Docling is using
the [Tesserocr](https://github.com/sirfz/tesserocr) package for this.
If you get into installation issues of Tesserocr, we suggest using the following
installation options:
```console
pip uninstall tesserocr
pip install --no-binary :all: tesserocr
```
</details>
<details>
<summary><b>Docling development setup</b></summary>
To develop for Docling (features, bugfixes etc.), install as follows from your local clone's root dir:
```bash
poetry install --all-extras
```
</details>
## Getting started ## Getting started
### Convert a single document To convert invidual documents, use `convert()`, for example:
To convert invidual PDF documents, use `convert_single()`, for example:
```python ```python
from docling.document_converter import DocumentConverter from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL
converter = DocumentConverter() converter = DocumentConverter()
result = converter.convert_single(source) result = converter.convert(source)
print(result.document.export_to_markdown()) # output: "## Docling Technical Report[...]" print(result.document.export_to_markdown()) # output: "## Docling Technical Report[...]"
print(result.document.export_to_document_tokens()) # output: "<document><title><page_1><loc_20>..." print(result.document.export_to_document_tokens()) # output: "<document><title><page_1><loc_20>..."
``` ```
### Convert a batch of documents
For an example of batch-converting documents, see [batch_convert.py](https://github.com/DS4SD/docling/blob/main/examples/batch_convert.py). Check out [Getting started](https://ds4sd.github.io/docling/).
You will find lots of tuning options to leverage all the advanced capabilities.
From a local repo clone, you can run it with:
```
python examples/batch_convert.py
```
The output of the above command will be written to `./scratch`.
### CLI
You can also use Docling directly from your command line to convert individual files —be it local or by URL— or whole directories.
A simple example would look like this:
```console
docling https://arxiv.org/pdf/2206.01062
```
To see all available options (export formats etc.) run `docling --help`.
<details>
<summary><b>CLI reference</b></summary>
Here are the available options as of this writing (for an up-to-date listing, run `docling --help`):
```console
$ docling --help
Usage: docling [OPTIONS] source
╭─ Arguments ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ * input_sources source PDF files to convert. Can be local file / directory paths or URL. [default: None] [required] │
╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ --json --no-json If enabled the document is exported as JSON. [default: no-json] │
│ --md --no-md If enabled the document is exported as Markdown. [default: md] │
│ --txt --no-txt If enabled the document is exported as Text. [default: no-txt] │
│ --doctags --no-doctags If enabled the document is exported as Doc Tags. [default: no-doctags] │
│ --ocr --no-ocr If enabled, the bitmap content will be processed using OCR. [default: ocr] │
│ --backend [pypdfium2|docling] The PDF backend to use. [default: docling] │
│ --output PATH Output directory where results are saved. [default: .] │
│ --version Show version information. │
│ --help Show this message and exit. │
╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
```
</details>
### RAG
Check out the following examples showcasing RAG using Docling with standard LLM application frameworks:
- [Basic RAG pipeline with LlamaIndex 🦙](https://github.com/DS4SD/docling/tree/main/docs/examples/rag_llamaindex.ipynb)
- [Basic RAG pipeline with LangChain 🦜🔗](https://github.com/DS4SD/docling/tree/main/docs/examples/rag_langchain.ipynb)
## Advanced features
### Adjust pipeline features
The example file [custom_convert.py](https://github.com/DS4SD/docling/blob/main/examples/custom_convert.py) contains multiple ways
one can adjust the conversion pipeline and features.
#### Control pipeline options ## Get help and support
You can control if table structure recognition or OCR should be performed by arguments passed to `DocumentConverter`: Please feel free to connect with us using the [discussion section](https://github.com/DS4SD/docling/discussions).
```python
doc_converter = DocumentConverter(
artifacts_path=artifacts_path,
pipeline_options=PipelineOptions(
do_table_structure=False, # controls if table structure is recovered
do_ocr=True, # controls if OCR is applied (ignores programmatic content)
),
)
```
#### Control table extraction options
You can control if table structure recognition should map the recognized structure back to PDF cells (default) or use text cells from the structure prediction itself.
This can improve output quality if you find that multiple columns in extracted tables are erroneously merged into one.
```python
from docling.datamodel.pipeline_options import PipelineOptions
pipeline_options = PipelineOptions(do_table_structure=True)
pipeline_options.table_structure_options.do_cell_matching = False # uses text cells predicted from table structure model
doc_converter = DocumentConverter(
artifacts_path=artifacts_path,
pipeline_options=pipeline_options,
)
```
Since docling 1.16.0: You can control which TableFormer mode you want to use. Choose between `TableFormerMode.FAST` (default) and `TableFormerMode.ACCURATE` (better, but slower) to receive better quality with difficult table structures.
```python
from docling.datamodel.pipeline_options import PipelineOptions, TableFormerMode
pipeline_options = PipelineOptions(do_table_structure=True)
pipeline_options.table_structure_options.mode = TableFormerMode.ACCURATE # use more accurate TableFormer model
doc_converter = DocumentConverter(
artifacts_path=artifacts_path,
pipeline_options=pipeline_options,
)
```
### Impose limits on the document size
You can limit the file size and number of pages which should be allowed to process per document:
```python
conv_input = DocumentConversionInput.from_paths(
paths=[Path("./test/data/2206.01062.pdf")],
limits=DocumentLimits(max_num_pages=100, max_file_size=20971520)
)
```
### Convert from binary PDF streams
You can convert PDFs from a binary stream instead of from the filesystem as follows:
```python
buf = BytesIO(your_binary_stream)
docs = [DocumentStream(filename="my_doc.pdf", stream=buf)]
conv_input = DocumentConversionInput.from_streams(docs)
results = doc_converter.convert_batch(conv_input)
```
### Limit resource usage
You can limit the CPU threads used by Docling by setting the environment variable `OMP_NUM_THREADS` accordingly. The default setting is using 4 CPU threads.
### Chunking
You can perform a hierarchy-aware chunking of a Docling document as follows:
```python
from docling.document_converter import DocumentConverter
from docling_core.transforms.chunker import HierarchicalChunker
doc = DocumentConverter().convert_single("https://arxiv.org/pdf/2206.01062").legacy_document
chunks = list(HierarchicalChunker().chunk(doc))
print(chunks[0])
# ChunkWithMetadata(
# path='#/main-text/1',
# text='DocLayNet: A Large Human-Annotated Dataset [...]',
# page=1,
# bbox=[107.30, 672.38, 505.19, 709.08],
# [...]
# )
```
## Technical report ## Technical report

View File

@ -1,5 +1,6 @@
With Docling v2, we introduce a unified document representation format called `DoclingDocument`. It is defined as a With Docling v2, we introduce a unified document representation format called `DoclingDocument`. It is defined as a
pydantic datatype, which can express several features common to documents, such as: pydantic datatype, which can express several features common to documents, such as:
* Text, Tables, Pictures, and more * Text, Tables, Pictures, and more
* Document hierarchy with sections and groups * Document hierarchy with sections and groups
* Disambiguation between main body and headers, footers (furniture) * Disambiguation between main body and headers, footers (furniture)

View File

@ -17,13 +17,13 @@
[![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit) [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit)
[![License MIT](https://img.shields.io/github/license/DS4SD/docling)](https://opensource.org/licenses/MIT) [![License MIT](https://img.shields.io/github/license/DS4SD/docling)](https://opensource.org/licenses/MIT)
Docling bundles PDF document conversion to JSON and Markdown in an easy, self-contained package. Docling parses documents and exports them to the desired format with ease and speed.
## Features ## Features
* ⚡ Converts PDF, Word, Powerpoint or HTML documents to JSON or Markdown format, stable and lightning fast * 🗂️ Multi-format support for input (PDF, DOCX etc.) & output (Markdown, JSON etc.)
* 📑 Understands detailed page layout, reading order and recovers table structures * 📑 Advanced PDF document understanding incl. page layout, reading order & table structures
* 📝 Extracts metadata from the document, such as title, authors, references and language * 📝 Metadata extraction, including title, authors, references & language
* 🔍 Includes OCR support for scanned PDFs or image formats * 🤖 Seamless LlamaIndex 🦙 & LangChain 🦜🔗 integration for powerful RAG / QA applications
* 🤖 Integrates easily with LLM app / RAG frameworks like LlamaIndex&nbsp;🦙 & LangChain&nbsp;🦜🔗 * 🔍 OCR support for scanned PDFs
* 💻 Provides a simple and convenient CLI * 💻 Simple and convenient CLI

View File

@ -1,6 +1,7 @@
## What's new ## What's new
Docling v2 introduces several new features: Docling v2 introduces several new features:
- Understands and converts PDF, MS Word, MS Powerpoint, HTML and several image formats - Understands and converts PDF, MS Word, MS Powerpoint, HTML and several image formats
- Produces a new, universal document representation which can encapsulate document hierarchy - Produces a new, universal document representation which can encapsulate document hierarchy
- Comes with a fresh new API and CLI - Comes with a fresh new API and CLI
@ -29,6 +30,7 @@ docling ./input/dir --output ./scratch --abort-on-error
``` ```
**Notable changes from Docling v1:** **Notable changes from Docling v1:**
- The standalone switches for different export formats are removed, and replaced with `--from` and `--to` arguments, to define input and output formats respectively. - The standalone switches for different export formats are removed, and replaced with `--from` and `--to` arguments, to define input and output formats respectively.
- The new `--abort-on-error` will abort any batch conversion as soon an error is encountered - The new `--abort-on-error` will abort any batch conversion as soon an error is encountered
- The `--backend` option for PDFs was removed - The `--backend` option for PDFs was removed
@ -168,6 +170,7 @@ conv_result.legacy_document # provides the representation in previous ExportedCC
## Export into JSON, Markdown, Doctags ## Export into JSON, Markdown, Doctags
**Note**: All `render_...` methods in `ConversionResult` have been removed in Docling v2, **Note**: All `render_...` methods in `ConversionResult` have been removed in Docling v2,
and are now available on `DoclingDocument` as: and are now available on `DoclingDocument` as:
- `DoclingDocument.export_to_dict` - `DoclingDocument.export_to_dict`
- `DoclingDocument.export_to_markdown` - `DoclingDocument.export_to_markdown`
- `DoclingDocument.export_to_document_tokens` - `DoclingDocument.export_to_document_tokens`

View File

@ -54,6 +54,7 @@ nav:
- Get started: - Get started:
- Home: index.md - Home: index.md
- Installation: installation.md - Installation: installation.md
- Use Docling: use_docling.md
- Docling v2: v2.md - Docling v2: v2.md
- Concepts: - Concepts:
- The Docling Document format: concepts/docling_format.md - The Docling Document format: concepts/docling_format.md