feat: tesseract and tesserocr models. WIP.

Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com>
This commit is contained in:
Nikos Livathinos 2024-10-02 13:30:27 +02:00
parent 455d6ff70f
commit c211808742
3 changed files with 224 additions and 0 deletions

View File

@ -0,0 +1,72 @@
import logging
from typing import Iterable
import numpy
from docling.datamodel.base_models import BoundingBox, CoordOrigin, OcrCell, Page
from docling.datamodel.pipeline_options import TesseractOcrOptions
from docling.models.base_ocr_model import BaseOcrModel
_log = logging.getLogger(__name__)
class TesseractModel(BaseOcrModel):
def __init__(self, enabled: bool, options: TesseractOcrOptions):
super().__init__(enabled=enabled, options=options)
self.options: TesseractOcrOptions
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
if self.enabled:
import tesserocr
self.reader = easyocr.Reader(lang_list=self.options.lang)
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
if not self.enabled:
yield from page_batch
return
for page in page_batch:
ocr_rects = self.get_ocr_rects(page)
all_ocr_cells = []
for ocr_rect in ocr_rects:
high_res_image = page._backend.get_page_image(
scale=self.scale, cropbox=ocr_rect
)
im = numpy.array(high_res_image)
result = self.reader.readtext(im)
del high_res_image
del im
cells = [
OcrCell(
id=ix,
text=line[1],
confidence=line[2],
bbox=BoundingBox.from_tuple(
coord=(
(line[0][0][0] / self.scale) + ocr_rect.l,
(line[0][0][1] / self.scale) + ocr_rect.t,
(line[0][2][0] / self.scale) + ocr_rect.l,
(line[0][2][1] / self.scale) + ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
),
)
for ix, line in enumerate(result)
]
all_ocr_cells.extend(cells)
## Remove OCR cells which overlap with programmatic cells.
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
page.cells.extend(filtered_ocr_cells)
# DEBUG code:
# self.draw_ocr_rects_and_cells(page, ocr_rects)
yield page

View File

@ -0,0 +1,72 @@
import logging
from typing import Iterable
import numpy
from docling.datamodel.base_models import BoundingBox, CoordOrigin, OcrCell, Page
from docling.datamodel.pipeline_options import TesseractOcrOptions
from docling.models.base_ocr_model import BaseOcrModel
_log = logging.getLogger(__name__)
class TesserOcrModel(BaseOcrModel):
def __init__(self, enabled: bool, options: TesseractOcrOptions):
super().__init__(enabled=enabled, options=options)
self.options: TesseractOcrOptions
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
if self.enabled:
import tesserocr
self.reader = easyocr.Reader(lang_list=self.options.lang)
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
if not self.enabled:
yield from page_batch
return
for page in page_batch:
ocr_rects = self.get_ocr_rects(page)
all_ocr_cells = []
for ocr_rect in ocr_rects:
high_res_image = page._backend.get_page_image(
scale=self.scale, cropbox=ocr_rect
)
im = numpy.array(high_res_image)
result = self.reader.readtext(im)
del high_res_image
del im
cells = [
OcrCell(
id=ix,
text=line[1],
confidence=line[2],
bbox=BoundingBox.from_tuple(
coord=(
(line[0][0][0] / self.scale) + ocr_rect.l,
(line[0][0][1] / self.scale) + ocr_rect.t,
(line[0][2][0] / self.scale) + ocr_rect.l,
(line[0][2][1] / self.scale) + ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
),
)
for ix, line in enumerate(result)
]
all_ocr_cells.extend(cells)
## Remove OCR cells which overlap with programmatic cells.
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
page.cells.extend(filtered_ocr_cells)
# DEBUG code:
# self.draw_ocr_rects_and_cells(page, ocr_rects)
yield page

View File

@ -0,0 +1,80 @@
from pathlib import Path
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import PipelineOptions
from docling.document_converter import DocumentConverter
from .verify_utils import verify_conversion_result
GENERATE = False
# Debug
def save_output(pdf_path: Path, doc_result: ConversionResult):
r"""
"""
import json
import os
parent = pdf_path.parent
dict_fn = os.path.join(parent, f"{pdf_path.stem}.json")
with open(dict_fn, "w") as fd:
json.dump(doc_result.render_as_dict(), fd)
pages_fn = os.path.join(parent, f"{pdf_path.stem}.pages.json")
pages = [p.model_dump() for p in doc_result.pages]
with open(pages_fn, "w") as fd:
json.dump(pages, fd)
doctags_fn = os.path.join(parent, f"{pdf_path.stem}.doctags.txt")
with open(doctags_fn, "w") as fd:
fd.write(doc_result.render_as_doctags())
md_fn = os.path.join(parent, f"{pdf_path.stem}.md")
with open(md_fn, "w") as fd:
fd.write(doc_result.render_as_markdown())
def get_pdf_paths():
# TODO: Debug
# Define the directory you want to search
# directory = Path("./tests/data")
directory = Path("./tests/data/scanned")
# List all PDF files in the directory and its subdirectories
pdf_files = sorted(directory.rglob("*.pdf"))
return pdf_files
def get_converter():
pipeline_options = PipelineOptions()
# Debug
pipeline_options.do_ocr = True
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
converter = DocumentConverter(
pipeline_options=pipeline_options,
pdf_backend=DoclingParseDocumentBackend,
)
return converter
def test_e2e_conversions():
pdf_paths = get_pdf_paths()
converter = get_converter()
for pdf_path in pdf_paths:
print(f"converting {pdf_path}")
doc_result: ConversionResult = converter.convert_single(pdf_path)
# Debug
verify_conversion_result(
input_path=pdf_path, doc_result=doc_result, generate=GENERATE
)