diff --git a/CHANGELOG.md b/CHANGELOG.md index 933aba35..8c802863 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,3 +1,14 @@ +## [v2.7.1](https://github.com/DS4SD/docling/releases/tag/v2.7.1) - 2024-11-26 + +### Fix + +* Fixes for wordx ([#432](https://github.com/DS4SD/docling/issues/432)) ([`d0a1180`](https://github.com/DS4SD/docling/commit/d0a118047804765b1b8532e72e08272e678c0c93)) +* Force pydantic < 2.10.0 ([#407](https://github.com/DS4SD/docling/issues/407)) ([`d7072b4`](https://github.com/DS4SD/docling/commit/d7072b4b56227756eb2c7abd3a6e7387eeefe7c1)) + +### Documentation + +* Add DocETL, Kotaemon, spaCy integrations; minor docs improvements ([#408](https://github.com/DS4SD/docling/issues/408)) ([`7a45b92`](https://github.com/DS4SD/docling/commit/7a45b92078b3a9fdd8f0650002eddc03e9d780af)) + ## [v2.7.0](https://github.com/DS4SD/docling/releases/tag/v2.7.0) - 2024-11-20 ### Feature diff --git a/docling/backend/msword_backend.py b/docling/backend/msword_backend.py index 089e94c2..496bdb7b 100644 --- a/docling/backend/msword_backend.py +++ b/docling/backend/msword_backend.py @@ -14,7 +14,8 @@ from docling_core.types.doc import ( TableData, ) from lxml import etree -from PIL import Image +from lxml.etree import XPath +from PIL import Image, UnidentifiedImageError from docling.backend.abstract_backend import DeclarativeDocumentBackend from docling.datamodel.base_models import InputFormat @@ -132,8 +133,14 @@ class MsWordDocumentBackend(DeclarativeDocumentBackend): def walk_linear(self, body, docx_obj, doc) -> DoclingDocument: for element in body: tag_name = etree.QName(element).localname + # Check for Inline Images (blip elements) - drawing_blip = element.xpath(".//a:blip") + namespaces = { + "a": "http://schemas.openxmlformats.org/drawingml/2006/main", + "r": "http://schemas.openxmlformats.org/officeDocument/2006/relationships", + } + xpath_expr = XPath(".//a:blip", namespaces=namespaces) + drawing_blip = xpath_expr(element) # Check for Tables if element.tag.endswith("tbl"): @@ -210,7 +217,6 @@ class MsWordDocumentBackend(DeclarativeDocumentBackend): paragraph = docx.text.paragraph.Paragraph(element, docx_obj) if paragraph.text is None: - # _log.warn(f"paragraph has text==None") return text = paragraph.text.strip() # if len(text)==0 # keep empty paragraphs, they seperate adjacent lists! @@ -502,10 +508,17 @@ class MsWordDocumentBackend(DeclarativeDocumentBackend): image_data = get_docx_image(element, drawing_blip) image_bytes = BytesIO(image_data) # Open the BytesIO object with PIL to create an Image - pil_image = Image.open(image_bytes) - doc.add_picture( - parent=self.parents[self.level], - image=ImageRef.from_pil(image=pil_image, dpi=72), - caption=None, - ) + try: + pil_image = Image.open(image_bytes) + doc.add_picture( + parent=self.parents[self.level], + image=ImageRef.from_pil(image=pil_image, dpi=72), + caption=None, + ) + except (UnidentifiedImageError, OSError) as e: + _log.warning("Warning: image cannot be loaded by Pillow") + doc.add_picture( + parent=self.parents[self.level], + caption=None, + ) return diff --git a/poetry.lock b/poetry.lock index 461d0f5a..680af6dd 100644 --- a/poetry.lock +++ b/poetry.lock @@ -896,13 +896,13 @@ files = [ [[package]] name = "docling-core" -version = "2.4.1" +version = "2.5.0" description = "A python library to define and validate data types in Docling." optional = false python-versions = "<4.0,>=3.9" files = [ - {file = "docling_core-2.4.1-py3-none-any.whl", hash = "sha256:d76f623f55e48ac4b2d5cda8388d039043d150baf5b1b24577189bfac6bf7475"}, - {file = "docling_core-2.4.1.tar.gz", hash = "sha256:5656950aef376a3c77666778c0e3905496eb1aae5da4de1d6e750fbfc4be414c"}, + {file = "docling_core-2.5.0-py3-none-any.whl", hash = "sha256:7694f89e10b46a4e85af74b8ead1b67b79a775993ac2207860d349eb70270b03"}, + {file = "docling_core-2.5.0.tar.gz", hash = "sha256:41e9e24afc749bc4dd8751d845b1ad2dd699432c1af0513f3ed888c5d59114af"}, ] [package.dependencies] @@ -911,6 +911,7 @@ jsonschema = ">=4.16.0,<5.0.0" pandas = ">=2.1.4,<3.0.0" pillow = ">=10.3.0,<11.0.0" pydantic = ">=2.6.0,<2.10" +pyyaml = ">=5.1,<7.0.0" tabulate = ">=0.9.0,<0.10.0" [[package]] @@ -1034,27 +1035,6 @@ Shapely = "*" torch = "*" torchvision = ">=0.5" -[[package]] -name = "environs" -version = "9.5.0" -description = "simplified environment variable parsing" -optional = false -python-versions = ">=3.6" -files = [ - {file = "environs-9.5.0-py2.py3-none-any.whl", hash = "sha256:1e549569a3de49c05f856f40bce86979e7d5ffbbc4398e7f338574c220189124"}, - {file = "environs-9.5.0.tar.gz", hash = "sha256:a76307b36fbe856bdca7ee9161e6c466fd7fcffc297109a118c59b54e27e30c9"}, -] - -[package.dependencies] -marshmallow = ">=3.0.0" -python-dotenv = "*" - -[package.extras] -dev = ["dj-database-url", "dj-email-url", "django-cache-url", "flake8 (==4.0.1)", "flake8-bugbear (==21.9.2)", "mypy (==0.910)", "pre-commit (>=2.4,<3.0)", "pytest", "tox"] -django = ["dj-database-url", "dj-email-url", "django-cache-url"] -lint = ["flake8 (==4.0.1)", "flake8-bugbear (==21.9.2)", "mypy (==0.910)", "pre-commit (>=2.4,<3.0)"] -tests = ["dj-database-url", "dj-email-url", "django-cache-url", "pytest"] - [[package]] name = "et-xmlfile" version = "2.0.0" @@ -1387,70 +1367,70 @@ test = ["coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", [[package]] name = "grpcio" -version = "1.68.0" +version = "1.67.1" description = "HTTP/2-based RPC framework" optional = false python-versions = ">=3.8" files = [ - {file = "grpcio-1.68.0-cp310-cp310-linux_armv7l.whl", hash = "sha256:619b5d0f29f4f5351440e9343224c3e19912c21aeda44e0c49d0d147a8d01544"}, - {file = "grpcio-1.68.0-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:a59f5822f9459bed098ffbceb2713abbf7c6fd13f2b9243461da5c338d0cd6c3"}, - {file = "grpcio-1.68.0-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:c03d89df516128febc5a7e760d675b478ba25802447624edf7aa13b1e7b11e2a"}, - {file = "grpcio-1.68.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:44bcbebb24363d587472089b89e2ea0ab2e2b4df0e4856ba4c0b087c82412121"}, - {file = "grpcio-1.68.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:79f81b7fbfb136247b70465bd836fa1733043fdee539cd6031cb499e9608a110"}, - {file = "grpcio-1.68.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:88fb2925789cfe6daa20900260ef0a1d0a61283dfb2d2fffe6194396a354c618"}, - {file = "grpcio-1.68.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:99f06232b5c9138593ae6f2e355054318717d32a9c09cdc5a2885540835067a1"}, - {file = "grpcio-1.68.0-cp310-cp310-win32.whl", hash = "sha256:a6213d2f7a22c3c30a479fb5e249b6b7e648e17f364598ff64d08a5136fe488b"}, - {file = "grpcio-1.68.0-cp310-cp310-win_amd64.whl", hash = "sha256:15327ab81131ef9b94cb9f45b5bd98803a179c7c61205c8c0ac9aff9d6c4e82a"}, - {file = "grpcio-1.68.0-cp311-cp311-linux_armv7l.whl", hash = "sha256:3b2b559beb2d433129441783e5f42e3be40a9e1a89ec906efabf26591c5cd415"}, - {file = "grpcio-1.68.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e46541de8425a4d6829ac6c5d9b16c03c292105fe9ebf78cb1c31e8d242f9155"}, - {file = "grpcio-1.68.0-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:c1245651f3c9ea92a2db4f95d37b7597db6b246d5892bca6ee8c0e90d76fb73c"}, - {file = "grpcio-1.68.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f1931c7aa85be0fa6cea6af388e576f3bf6baee9e5d481c586980c774debcb4"}, - {file = "grpcio-1.68.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b0ff09c81e3aded7a183bc6473639b46b6caa9c1901d6f5e2cba24b95e59e30"}, - {file = "grpcio-1.68.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8c73f9fbbaee1a132487e31585aa83987ddf626426d703ebcb9a528cf231c9b1"}, - {file = "grpcio-1.68.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6b2f98165ea2790ea159393a2246b56f580d24d7da0d0342c18a085299c40a75"}, - {file = "grpcio-1.68.0-cp311-cp311-win32.whl", hash = "sha256:e1e7ed311afb351ff0d0e583a66fcb39675be112d61e7cfd6c8269884a98afbc"}, - {file = "grpcio-1.68.0-cp311-cp311-win_amd64.whl", hash = "sha256:e0d2f68eaa0a755edd9a47d40e50dba6df2bceda66960dee1218da81a2834d27"}, - {file = "grpcio-1.68.0-cp312-cp312-linux_armv7l.whl", hash = "sha256:8af6137cc4ae8e421690d276e7627cfc726d4293f6607acf9ea7260bd8fc3d7d"}, - {file = "grpcio-1.68.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:4028b8e9a3bff6f377698587d642e24bd221810c06579a18420a17688e421af7"}, - {file = "grpcio-1.68.0-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:f60fa2adf281fd73ae3a50677572521edca34ba373a45b457b5ebe87c2d01e1d"}, - {file = "grpcio-1.68.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e18589e747c1e70b60fab6767ff99b2d0c359ea1db8a2cb524477f93cdbedf5b"}, - {file = "grpcio-1.68.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e0d30f3fee9372796f54d3100b31ee70972eaadcc87314be369360248a3dcffe"}, - {file = "grpcio-1.68.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:7e0a3e72c0e9a1acab77bef14a73a416630b7fd2cbd893c0a873edc47c42c8cd"}, - {file = "grpcio-1.68.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a831dcc343440969aaa812004685ed322cdb526cd197112d0db303b0da1e8659"}, - {file = "grpcio-1.68.0-cp312-cp312-win32.whl", hash = "sha256:5a180328e92b9a0050958ced34dddcb86fec5a8b332f5a229e353dafc16cd332"}, - {file = "grpcio-1.68.0-cp312-cp312-win_amd64.whl", hash = "sha256:2bddd04a790b69f7a7385f6a112f46ea0b34c4746f361ebafe9ca0be567c78e9"}, - {file = "grpcio-1.68.0-cp313-cp313-linux_armv7l.whl", hash = "sha256:fc05759ffbd7875e0ff2bd877be1438dfe97c9312bbc558c8284a9afa1d0f40e"}, - {file = "grpcio-1.68.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:15fa1fe25d365a13bc6d52fcac0e3ee1f9baebdde2c9b3b2425f8a4979fccea1"}, - {file = "grpcio-1.68.0-cp313-cp313-manylinux_2_17_aarch64.whl", hash = "sha256:32a9cb4686eb2e89d97022ecb9e1606d132f85c444354c17a7dbde4a455e4a3b"}, - {file = "grpcio-1.68.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dba037ff8d284c8e7ea9a510c8ae0f5b016004f13c3648f72411c464b67ff2fb"}, - {file = "grpcio-1.68.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0efbbd849867e0e569af09e165363ade75cf84f5229b2698d53cf22c7a4f9e21"}, - {file = "grpcio-1.68.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:4e300e6978df0b65cc2d100c54e097c10dfc7018b9bd890bbbf08022d47f766d"}, - {file = "grpcio-1.68.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:6f9c7ad1a23e1047f827385f4713b5b8c6c7d325705be1dd3e31fb00dcb2f665"}, - {file = "grpcio-1.68.0-cp313-cp313-win32.whl", hash = "sha256:3ac7f10850fd0487fcce169c3c55509101c3bde2a3b454869639df2176b60a03"}, - {file = "grpcio-1.68.0-cp313-cp313-win_amd64.whl", hash = "sha256:afbf45a62ba85a720491bfe9b2642f8761ff348006f5ef67e4622621f116b04a"}, - {file = "grpcio-1.68.0-cp38-cp38-linux_armv7l.whl", hash = "sha256:f8f695d9576ce836eab27ba7401c60acaf9ef6cf2f70dfe5462055ba3df02cc3"}, - {file = "grpcio-1.68.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:9fe1b141cda52f2ca73e17d2d3c6a9f3f3a0c255c216b50ce616e9dca7e3441d"}, - {file = "grpcio-1.68.0-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:4df81d78fd1646bf94ced4fb4cd0a7fe2e91608089c522ef17bc7db26e64effd"}, - {file = "grpcio-1.68.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:46a2d74d4dd8993151c6cd585594c082abe74112c8e4175ddda4106f2ceb022f"}, - {file = "grpcio-1.68.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a17278d977746472698460c63abf333e1d806bd41f2224f90dbe9460101c9796"}, - {file = "grpcio-1.68.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:15377bce516b1c861c35e18eaa1c280692bf563264836cece693c0f169b48829"}, - {file = "grpcio-1.68.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:cc5f0a4f5904b8c25729a0498886b797feb817d1fd3812554ffa39551112c161"}, - {file = "grpcio-1.68.0-cp38-cp38-win32.whl", hash = "sha256:def1a60a111d24376e4b753db39705adbe9483ef4ca4761f825639d884d5da78"}, - {file = "grpcio-1.68.0-cp38-cp38-win_amd64.whl", hash = "sha256:55d3b52fd41ec5772a953612db4e70ae741a6d6ed640c4c89a64f017a1ac02b5"}, - {file = "grpcio-1.68.0-cp39-cp39-linux_armv7l.whl", hash = "sha256:0d230852ba97654453d290e98d6aa61cb48fa5fafb474fb4c4298d8721809354"}, - {file = "grpcio-1.68.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:50992f214264e207e07222703c17d9cfdcc2c46ed5a1ea86843d440148ebbe10"}, - {file = "grpcio-1.68.0-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:14331e5c27ed3545360464a139ed279aa09db088f6e9502e95ad4bfa852bb116"}, - {file = "grpcio-1.68.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f84890b205692ea813653ece4ac9afa2139eae136e419231b0eec7c39fdbe4c2"}, - {file = "grpcio-1.68.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b0cf343c6f4f6aa44863e13ec9ddfe299e0be68f87d68e777328bff785897b05"}, - {file = "grpcio-1.68.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:fd2c2d47969daa0e27eadaf15c13b5e92605c5e5953d23c06d0b5239a2f176d3"}, - {file = "grpcio-1.68.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:18668e36e7f4045820f069997834e94e8275910b1f03e078a6020bd464cb2363"}, - {file = "grpcio-1.68.0-cp39-cp39-win32.whl", hash = "sha256:2af76ab7c427aaa26aa9187c3e3c42f38d3771f91a20f99657d992afada2294a"}, - {file = "grpcio-1.68.0-cp39-cp39-win_amd64.whl", hash = "sha256:e694b5928b7b33ca2d3b4d5f9bf8b5888906f181daff6b406f4938f3a997a490"}, - {file = "grpcio-1.68.0.tar.gz", hash = "sha256:7e7483d39b4a4fddb9906671e9ea21aaad4f031cdfc349fec76bdfa1e404543a"}, + {file = "grpcio-1.67.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:8b0341d66a57f8a3119b77ab32207072be60c9bf79760fa609c5609f2deb1f3f"}, + {file = "grpcio-1.67.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:f5a27dddefe0e2357d3e617b9079b4bfdc91341a91565111a21ed6ebbc51b22d"}, + {file = "grpcio-1.67.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:43112046864317498a33bdc4797ae6a268c36345a910de9b9c17159d8346602f"}, + {file = "grpcio-1.67.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c9b929f13677b10f63124c1a410994a401cdd85214ad83ab67cc077fc7e480f0"}, + {file = "grpcio-1.67.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7d1797a8a3845437d327145959a2c0c47c05947c9eef5ff1a4c80e499dcc6fa"}, + {file = "grpcio-1.67.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:0489063974d1452436139501bf6b180f63d4977223ee87488fe36858c5725292"}, + {file = "grpcio-1.67.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9fd042de4a82e3e7aca44008ee2fb5da01b3e5adb316348c21980f7f58adc311"}, + {file = "grpcio-1.67.1-cp310-cp310-win32.whl", hash = "sha256:638354e698fd0c6c76b04540a850bf1db27b4d2515a19fcd5cf645c48d3eb1ed"}, + {file = "grpcio-1.67.1-cp310-cp310-win_amd64.whl", hash = "sha256:608d87d1bdabf9e2868b12338cd38a79969eaf920c89d698ead08f48de9c0f9e"}, + {file = "grpcio-1.67.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:7818c0454027ae3384235a65210bbf5464bd715450e30a3d40385453a85a70cb"}, + {file = "grpcio-1.67.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ea33986b70f83844cd00814cee4451055cd8cab36f00ac64a31f5bb09b31919e"}, + {file = "grpcio-1.67.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:c7a01337407dd89005527623a4a72c5c8e2894d22bead0895306b23c6695698f"}, + {file = "grpcio-1.67.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:80b866f73224b0634f4312a4674c1be21b2b4afa73cb20953cbbb73a6b36c3cc"}, + {file = "grpcio-1.67.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f9fff78ba10d4250bfc07a01bd6254a6d87dc67f9627adece85c0b2ed754fa96"}, + {file = "grpcio-1.67.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8a23cbcc5bb11ea7dc6163078be36c065db68d915c24f5faa4f872c573bb400f"}, + {file = "grpcio-1.67.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1a65b503d008f066e994f34f456e0647e5ceb34cfcec5ad180b1b44020ad4970"}, + {file = "grpcio-1.67.1-cp311-cp311-win32.whl", hash = "sha256:e29ca27bec8e163dca0c98084040edec3bc49afd10f18b412f483cc68c712744"}, + {file = "grpcio-1.67.1-cp311-cp311-win_amd64.whl", hash = "sha256:786a5b18544622bfb1e25cc08402bd44ea83edfb04b93798d85dca4d1a0b5be5"}, + {file = "grpcio-1.67.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:267d1745894200e4c604958da5f856da6293f063327cb049a51fe67348e4f953"}, + {file = "grpcio-1.67.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:85f69fdc1d28ce7cff8de3f9c67db2b0ca9ba4449644488c1e0303c146135ddb"}, + {file = "grpcio-1.67.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:f26b0b547eb8d00e195274cdfc63ce64c8fc2d3e2d00b12bf468ece41a0423a0"}, + {file = "grpcio-1.67.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4422581cdc628f77302270ff839a44f4c24fdc57887dc2a45b7e53d8fc2376af"}, + {file = "grpcio-1.67.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d7616d2ded471231c701489190379e0c311ee0a6c756f3c03e6a62b95a7146e"}, + {file = "grpcio-1.67.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8a00efecde9d6fcc3ab00c13f816313c040a28450e5e25739c24f432fc6d3c75"}, + {file = "grpcio-1.67.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:699e964923b70f3101393710793289e42845791ea07565654ada0969522d0a38"}, + {file = "grpcio-1.67.1-cp312-cp312-win32.whl", hash = "sha256:4e7b904484a634a0fff132958dabdb10d63e0927398273917da3ee103e8d1f78"}, + {file = "grpcio-1.67.1-cp312-cp312-win_amd64.whl", hash = "sha256:5721e66a594a6c4204458004852719b38f3d5522082be9061d6510b455c90afc"}, + {file = "grpcio-1.67.1-cp313-cp313-linux_armv7l.whl", hash = "sha256:aa0162e56fd10a5547fac8774c4899fc3e18c1aa4a4759d0ce2cd00d3696ea6b"}, + {file = "grpcio-1.67.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:beee96c8c0b1a75d556fe57b92b58b4347c77a65781ee2ac749d550f2a365dc1"}, + {file = "grpcio-1.67.1-cp313-cp313-manylinux_2_17_aarch64.whl", hash = "sha256:a93deda571a1bf94ec1f6fcda2872dad3ae538700d94dc283c672a3b508ba3af"}, + {file = "grpcio-1.67.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0e6f255980afef598a9e64a24efce87b625e3e3c80a45162d111a461a9f92955"}, + {file = "grpcio-1.67.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e838cad2176ebd5d4a8bb03955138d6589ce9e2ce5d51c3ada34396dbd2dba8"}, + {file = "grpcio-1.67.1-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a6703916c43b1d468d0756c8077b12017a9fcb6a1ef13faf49e67d20d7ebda62"}, + {file = "grpcio-1.67.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:917e8d8994eed1d86b907ba2a61b9f0aef27a2155bca6cbb322430fc7135b7bb"}, + {file = "grpcio-1.67.1-cp313-cp313-win32.whl", hash = "sha256:e279330bef1744040db8fc432becc8a727b84f456ab62b744d3fdb83f327e121"}, + {file = "grpcio-1.67.1-cp313-cp313-win_amd64.whl", hash = "sha256:fa0c739ad8b1996bd24823950e3cb5152ae91fca1c09cc791190bf1627ffefba"}, + {file = "grpcio-1.67.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:178f5db771c4f9a9facb2ab37a434c46cb9be1a75e820f187ee3d1e7805c4f65"}, + {file = "grpcio-1.67.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:0f3e49c738396e93b7ba9016e153eb09e0778e776df6090c1b8c91877cc1c426"}, + {file = "grpcio-1.67.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:24e8a26dbfc5274d7474c27759b54486b8de23c709d76695237515bc8b5baeab"}, + {file = "grpcio-1.67.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3b6c16489326d79ead41689c4b84bc40d522c9a7617219f4ad94bc7f448c5085"}, + {file = "grpcio-1.67.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60e6a4dcf5af7bbc36fd9f81c9f372e8ae580870a9e4b6eafe948cd334b81cf3"}, + {file = "grpcio-1.67.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:95b5f2b857856ed78d72da93cd7d09b6db8ef30102e5e7fe0961fe4d9f7d48e8"}, + {file = "grpcio-1.67.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b49359977c6ec9f5d0573ea4e0071ad278ef905aa74e420acc73fd28ce39e9ce"}, + {file = "grpcio-1.67.1-cp38-cp38-win32.whl", hash = "sha256:f5b76ff64aaac53fede0cc93abf57894ab2a7362986ba22243d06218b93efe46"}, + {file = "grpcio-1.67.1-cp38-cp38-win_amd64.whl", hash = "sha256:804c6457c3cd3ec04fe6006c739579b8d35c86ae3298ffca8de57b493524b771"}, + {file = "grpcio-1.67.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:a25bdea92b13ff4d7790962190bf6bf5c4639876e01c0f3dda70fc2769616335"}, + {file = "grpcio-1.67.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:cdc491ae35a13535fd9196acb5afe1af37c8237df2e54427be3eecda3653127e"}, + {file = "grpcio-1.67.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:85f862069b86a305497e74d0dc43c02de3d1d184fc2c180993aa8aa86fbd19b8"}, + {file = "grpcio-1.67.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ec74ef02010186185de82cc594058a3ccd8d86821842bbac9873fd4a2cf8be8d"}, + {file = "grpcio-1.67.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01f616a964e540638af5130469451cf580ba8c7329f45ca998ab66e0c7dcdb04"}, + {file = "grpcio-1.67.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:299b3d8c4f790c6bcca485f9963b4846dd92cf6f1b65d3697145d005c80f9fe8"}, + {file = "grpcio-1.67.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:60336bff760fbb47d7e86165408126f1dded184448e9a4c892189eb7c9d3f90f"}, + {file = "grpcio-1.67.1-cp39-cp39-win32.whl", hash = "sha256:5ed601c4c6008429e3d247ddb367fe8c7259c355757448d7c1ef7bd4a6739e8e"}, + {file = "grpcio-1.67.1-cp39-cp39-win_amd64.whl", hash = "sha256:5db70d32d6703b89912af16d6d45d78406374a8b8ef0d28140351dd0ec610e98"}, + {file = "grpcio-1.67.1.tar.gz", hash = "sha256:3dc2ed4cabea4dc14d5e708c2b426205956077cc5de419b4d4079315017e9732"}, ] [package.extras] -protobuf = ["grpcio-tools (>=1.68.0)"] +protobuf = ["grpcio-tools (>=1.67.1)"] [[package]] name = "h11" @@ -1559,13 +1539,13 @@ pyreadline3 = {version = "*", markers = "sys_platform == \"win32\" and python_ve [[package]] name = "identify" -version = "2.6.2" +version = "2.6.3" description = "File identification library for Python" optional = false python-versions = ">=3.9" files = [ - {file = "identify-2.6.2-py2.py3-none-any.whl", hash = "sha256:c097384259f49e372f4ea00a19719d95ae27dd5ff0fd77ad630aa891306b82f3"}, - {file = "identify-2.6.2.tar.gz", hash = "sha256:fab5c716c24d7a789775228823797296a2994b075fb6080ac83a102772a98cbd"}, + {file = "identify-2.6.3-py2.py3-none-any.whl", hash = "sha256:9edba65473324c2ea9684b1f944fe3191db3345e50b6d04571d10ed164f8d7bd"}, + {file = "identify-2.6.3.tar.gz", hash = "sha256:62f5dae9b5fef52c84cc188514e9ea4f3f636b1d8799ab5ebc475471f9e47a02"}, ] [package.extras] @@ -2168,13 +2148,13 @@ langchain-core = ">=0.2.38,<0.3.0" [[package]] name = "langsmith" -version = "0.1.145" +version = "0.1.146" description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform." optional = false python-versions = "<4.0,>=3.8.1" files = [ - {file = "langsmith-0.1.145-py3-none-any.whl", hash = "sha256:bd3001fc6738ad9061a2709d60f62a6bdf4892a17e63c7751f73a6f32a100729"}, - {file = "langsmith-0.1.145.tar.gz", hash = "sha256:b6e53f7b1624846f03769a1fce673baf2a0a262b4f4129b1f6bd127a1f44f8fd"}, + {file = "langsmith-0.1.146-py3-none-any.whl", hash = "sha256:9d062222f1a32c9b047dab0149b24958f988989cd8d4a5f9139ff959a51e59d8"}, + {file = "langsmith-0.1.146.tar.gz", hash = "sha256:ead8b0b9d5b6cd3ac42937ec48bdf09d4afe7ca1bba22dc05eb65591a18106f8"}, ] [package.dependencies] @@ -2534,25 +2514,6 @@ files = [ {file = "markupsafe-3.0.2.tar.gz", hash = "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0"}, ] -[[package]] -name = "marshmallow" -version = "3.23.1" -description = "A lightweight library for converting complex datatypes to and from native Python datatypes." -optional = false -python-versions = ">=3.9" -files = [ - {file = "marshmallow-3.23.1-py3-none-any.whl", hash = "sha256:fece2eb2c941180ea1b7fcbd4a83c51bfdd50093fdd3ad2585ee5e1df2508491"}, - {file = "marshmallow-3.23.1.tar.gz", hash = "sha256:3a8dfda6edd8dcdbf216c0ede1d1e78d230a6dc9c5a088f58c4083b974a0d468"}, -] - -[package.dependencies] -packaging = ">=17.0" - -[package.extras] -dev = ["marshmallow[tests]", "pre-commit (>=3.5,<5.0)", "tox"] -docs = ["alabaster (==1.0.0)", "autodocsumm (==0.2.14)", "sphinx (==8.1.3)", "sphinx-issues (==5.0.0)", "sphinx-version-warning (==1.1.2)"] -tests = ["pytest", "simplejson"] - [[package]] name = "matplotlib-inline" version = "0.1.7" @@ -2730,13 +2691,13 @@ pygments = ">2.12.0" [[package]] name = "mkdocs-material" -version = "9.5.45" +version = "9.5.46" description = "Documentation that simply works" optional = false python-versions = ">=3.8" files = [ - {file = "mkdocs_material-9.5.45-py3-none-any.whl", hash = "sha256:a9be237cfd0be14be75f40f1726d83aa3a81ce44808dc3594d47a7a592f44547"}, - {file = "mkdocs_material-9.5.45.tar.gz", hash = "sha256:286489cf0beca4a129d91d59d6417419c63bceed1ce5cd0ec1fc7e1ebffb8189"}, + {file = "mkdocs_material-9.5.46-py3-none-any.whl", hash = "sha256:98f0a2039c62e551a68aad0791a8d41324ff90c03a6e6cea381a384b84908b83"}, + {file = "mkdocs_material-9.5.46.tar.gz", hash = "sha256:ae2043f4238e572f9a40e0b577f50400d6fc31e2fef8ea141800aebf3bd273d7"}, ] [package.dependencies] @@ -3303,6 +3264,18 @@ files = [ {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906"}, ] +[[package]] +name = "nvidia-cublas-cu12" +version = "12.4.5.8" +description = "CUBLAS native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0f8aa1706812e00b9f19dfe0cdb3999b092ccb8ca168c0db5b8ea712456fd9b3"}, + {file = "nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl", hash = "sha256:2fc8da60df463fdefa81e323eef2e36489e1c94335b5358bcb38360adf75ac9b"}, + {file = "nvidia_cublas_cu12-12.4.5.8-py3-none-win_amd64.whl", hash = "sha256:5a796786da89203a0657eda402bcdcec6180254a8ac22d72213abc42069522dc"}, +] + [[package]] name = "nvidia-cuda-cupti-cu12" version = "12.1.105" @@ -3314,6 +3287,18 @@ files = [ {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4"}, ] +[[package]] +name = "nvidia-cuda-cupti-cu12" +version = "12.4.127" +description = "CUDA profiling tools runtime libs." +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:79279b35cf6f91da114182a5ce1864997fd52294a87a16179ce275773799458a"}, + {file = "nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:9dec60f5ac126f7bb551c055072b69d85392b13311fcc1bcda2202d172df30fb"}, + {file = "nvidia_cuda_cupti_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:5688d203301ab051449a2b1cb6690fbe90d2b372f411521c86018b950f3d7922"}, +] + [[package]] name = "nvidia-cuda-nvrtc-cu12" version = "12.1.105" @@ -3325,6 +3310,18 @@ files = [ {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed"}, ] +[[package]] +name = "nvidia-cuda-nvrtc-cu12" +version = "12.4.127" +description = "NVRTC native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0eedf14185e04b76aa05b1fea04133e59f465b6f960c0cbf4e37c3cb6b0ea198"}, + {file = "nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:a178759ebb095827bd30ef56598ec182b85547f1508941a3d560eb7ea1fbf338"}, + {file = "nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:a961b2f1d5f17b14867c619ceb99ef6fcec12e46612711bcec78eb05068a60ec"}, +] + [[package]] name = "nvidia-cuda-runtime-cu12" version = "12.1.105" @@ -3336,6 +3333,18 @@ files = [ {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344"}, ] +[[package]] +name = "nvidia-cuda-runtime-cu12" +version = "12.4.127" +description = "CUDA Runtime native Libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:961fe0e2e716a2a1d967aab7caee97512f71767f852f67432d572e36cb3a11f3"}, + {file = "nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:64403288fa2136ee8e467cdc9c9427e0434110899d07c779f25b5c068934faa5"}, + {file = "nvidia_cuda_runtime_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:09c2e35f48359752dfa822c09918211844a3d93c100a715d79b59591130c5e1e"}, +] + [[package]] name = "nvidia-cudnn-cu12" version = "8.9.2.26" @@ -3374,6 +3383,21 @@ files = [ {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253"}, ] +[[package]] +name = "nvidia-cufft-cu12" +version = "11.2.1.3" +description = "CUFFT native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5dad8008fc7f92f5ddfa2101430917ce2ffacd86824914c82e28990ad7f00399"}, + {file = "nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f083fc24912aa410be21fa16d157fed2055dab1cc4b6934a0e03cba69eb242b9"}, + {file = "nvidia_cufft_cu12-11.2.1.3-py3-none-win_amd64.whl", hash = "sha256:d802f4954291101186078ccbe22fc285a902136f974d369540fd4a5333d1440b"}, +] + +[package.dependencies] +nvidia-nvjitlink-cu12 = "*" + [[package]] name = "nvidia-curand-cu12" version = "10.3.2.106" @@ -3385,6 +3409,18 @@ files = [ {file = "nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a"}, ] +[[package]] +name = "nvidia-curand-cu12" +version = "10.3.5.147" +description = "CURAND native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_aarch64.whl", hash = "sha256:1f173f09e3e3c76ab084aba0de819c49e56614feae5c12f69883f4ae9bb5fad9"}, + {file = "nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl", hash = "sha256:a88f583d4e0bb643c49743469964103aa59f7f708d862c3ddb0fc07f851e3b8b"}, + {file = "nvidia_curand_cu12-10.3.5.147-py3-none-win_amd64.whl", hash = "sha256:f307cc191f96efe9e8f05a87096abc20d08845a841889ef78cb06924437f6771"}, +] + [[package]] name = "nvidia-cusolver-cu12" version = "11.4.5.107" @@ -3401,6 +3437,23 @@ nvidia-cublas-cu12 = "*" nvidia-cusparse-cu12 = "*" nvidia-nvjitlink-cu12 = "*" +[[package]] +name = "nvidia-cusolver-cu12" +version = "11.6.1.9" +description = "CUDA solver native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_aarch64.whl", hash = "sha256:d338f155f174f90724bbde3758b7ac375a70ce8e706d70b018dd3375545fc84e"}, + {file = "nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl", hash = "sha256:19e33fa442bcfd085b3086c4ebf7e8debc07cfe01e11513cc6d332fd918ac260"}, + {file = "nvidia_cusolver_cu12-11.6.1.9-py3-none-win_amd64.whl", hash = "sha256:e77314c9d7b694fcebc84f58989f3aa4fb4cb442f12ca1a9bde50f5e8f6d1b9c"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" +nvidia-cusparse-cu12 = "*" +nvidia-nvjitlink-cu12 = "*" + [[package]] name = "nvidia-cusparse-cu12" version = "12.1.0.106" @@ -3415,6 +3468,21 @@ files = [ [package.dependencies] nvidia-nvjitlink-cu12 = "*" +[[package]] +name = "nvidia-cusparse-cu12" +version = "12.3.1.170" +description = "CUSPARSE native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_aarch64.whl", hash = "sha256:9d32f62896231ebe0480efd8a7f702e143c98cfaa0e8a76df3386c1ba2b54df3"}, + {file = "nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl", hash = "sha256:ea4f11a2904e2a8dc4b1833cc1b5181cde564edd0d5cd33e3c168eff2d1863f1"}, + {file = "nvidia_cusparse_cu12-12.3.1.170-py3-none-win_amd64.whl", hash = "sha256:9bc90fb087bc7b4c15641521f31c0371e9a612fc2ba12c338d3ae032e6b6797f"}, +] + +[package.dependencies] +nvidia-nvjitlink-cu12 = "*" + [[package]] name = "nvidia-nccl-cu12" version = "2.19.3" @@ -3427,13 +3495,24 @@ files = [ [[package]] name = "nvidia-nccl-cu12" -version = "2.20.5" +version = "2.21.5" description = "NVIDIA Collective Communication Library (NCCL) Runtime" optional = false python-versions = ">=3" files = [ - {file = "nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_aarch64.whl", hash = "sha256:1fc150d5c3250b170b29410ba682384b14581db722b2531b0d8d33c595f33d01"}, - {file = "nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl", hash = "sha256:057f6bf9685f75215d0c53bf3ac4a10b3e6578351de307abad9e18a99182af56"}, + {file = "nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl", hash = "sha256:8579076d30a8c24988834445f8d633c697d42397e92ffc3f63fa26766d25e0a0"}, +] + +[[package]] +name = "nvidia-nvjitlink-cu12" +version = "12.4.127" +description = "Nvidia JIT LTO Library" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:4abe7fef64914ccfa909bc2ba39739670ecc9e820c83ccc7a6ed414122599b83"}, + {file = "nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:06b3b9b25bf3f8af351d664978ca26a16d2c5127dbd53c0497e28d1fb9611d57"}, + {file = "nvidia_nvjitlink_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:fd9020c501d27d135f983c6d3e244b197a7ccad769e34df53a42e276b0e25fa1"}, ] [[package]] @@ -3459,6 +3538,18 @@ files = [ {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, ] +[[package]] +name = "nvidia-nvtx-cu12" +version = "12.4.127" +description = "NVIDIA Tools Extension" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:7959ad635db13edf4fc65c06a6e9f9e55fc2f92596db928d169c0bb031e88ef3"}, + {file = "nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:781e950d9b9f60d8241ccea575b32f5105a5baf4c2351cab5256a24869f12a1a"}, + {file = "nvidia_nvtx_cu12-12.4.127-py3-none-win_amd64.whl", hash = "sha256:641dccaaa1139f3ffb0d3164b4b84f9d253397e38246a4f2f36728b48566d485"}, +] + [[package]] name = "ocrmac" version = "1.0.0" @@ -3576,9 +3667,9 @@ numpy = [ {version = ">=1.21.0", markers = "python_version == \"3.9\" and platform_system == \"Darwin\" and platform_machine == \"arm64\""}, {version = ">=1.19.3", markers = "platform_system == \"Linux\" and platform_machine == \"aarch64\" and python_version >= \"3.8\" and python_version < \"3.10\" or python_version > \"3.9\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_system != \"Darwin\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_machine != \"arm64\" and python_version < \"3.10\""}, {version = ">=1.26.0", markers = "python_version >= \"3.12\""}, + {version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""}, {version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""}, {version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""}, - {version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""}, ] [[package]] @@ -3602,9 +3693,9 @@ numpy = [ {version = ">=1.21.0", markers = "python_version == \"3.9\" and platform_system == \"Darwin\" and platform_machine == \"arm64\""}, {version = ">=1.19.3", markers = "platform_system == \"Linux\" and platform_machine == \"aarch64\" and python_version >= \"3.8\" and python_version < \"3.10\" or python_version > \"3.9\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_system != \"Darwin\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_machine != \"arm64\" and python_version < \"3.10\""}, {version = ">=1.26.0", markers = "python_version >= \"3.12\""}, + {version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""}, {version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""}, {version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""}, - {version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""}, ] [[package]] @@ -4586,21 +4677,21 @@ extra = ["pygments (>=2.12)"] [[package]] name = "pymilvus" -version = "2.4.9" +version = "2.5.0" description = "Python Sdk for Milvus" optional = false python-versions = ">=3.8" files = [ - {file = "pymilvus-2.4.9-py3-none-any.whl", hash = "sha256:45313607d2c164064bdc44e0f933cb6d6afa92e9efcc7f357c5240c57db58fbe"}, - {file = "pymilvus-2.4.9.tar.gz", hash = "sha256:0937663700007c23a84cfc0656160b301f6ff9247aaec4c96d599a6b43572136"}, + {file = "pymilvus-2.5.0-py3-none-any.whl", hash = "sha256:a0e8653d8fe78019abfda79b3404ef7423f312501e8cbd7dc728051ce8732652"}, + {file = "pymilvus-2.5.0.tar.gz", hash = "sha256:4da14a3bd957a4921166f9355fd1f1ac5c5e4e80b46f12f64d9c9a6dcb8cb395"}, ] [package.dependencies] -environs = "<=9.5.0" -grpcio = ">=1.49.1" -milvus-lite = {version = ">=2.4.0,<2.5.0", markers = "sys_platform != \"win32\""} +grpcio = ">=1.49.1,<=1.67.1" +milvus-lite = {version = ">=2.4.0", markers = "sys_platform != \"win32\""} pandas = ">=1.2.4" protobuf = ">=3.20.0" +python-dotenv = ">=1.0.1,<2.0.0" setuptools = ">69" ujson = ">=2.0.0" @@ -6103,6 +6194,23 @@ pure-eval = "*" [package.extras] tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] +[[package]] +name = "sympy" +version = "1.13.1" +description = "Computer algebra system (CAS) in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "sympy-1.13.1-py3-none-any.whl", hash = "sha256:db36cdc64bf61b9b24578b6f7bab1ecdd2452cf008f34faa33776680c26d66f8"}, + {file = "sympy-1.13.1.tar.gz", hash = "sha256:9cebf7e04ff162015ce31c9c6c9144daa34a93bd082f54fd8f12deca4f47515f"}, +] + +[package.dependencies] +mpmath = ">=1.1.0,<1.4" + +[package.extras] +dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"] + [[package]] name = "sympy" version = "1.13.3" @@ -6248,123 +6356,26 @@ files = [ [[package]] name = "tokenizers" -version = "0.20.3" +version = "0.20.4" description = "" optional = false python-versions = ">=3.7" files = [ - {file = "tokenizers-0.20.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:31ccab28dbb1a9fe539787210b0026e22debeab1662970f61c2d921f7557f7e4"}, - {file = "tokenizers-0.20.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c6361191f762bda98c773da418cf511cbaa0cb8d0a1196f16f8c0119bde68ff8"}, - {file = "tokenizers-0.20.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f128d5da1202b78fa0a10d8d938610472487da01b57098d48f7e944384362514"}, - {file = "tokenizers-0.20.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:79c4121a2e9433ad7ef0769b9ca1f7dd7fa4c0cd501763d0a030afcbc6384481"}, - {file = "tokenizers-0.20.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7850fde24197fe5cd6556e2fdba53a6d3bae67c531ea33a3d7c420b90904141"}, - {file = "tokenizers-0.20.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b357970c095dc134978a68c67d845a1e3803ab7c4fbb39195bde914e7e13cf8b"}, - {file = "tokenizers-0.20.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a333d878c4970b72d6c07848b90c05f6b045cf9273fc2bc04a27211721ad6118"}, - {file = "tokenizers-0.20.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1fd9fee817f655a8f50049f685e224828abfadd436b8ff67979fc1d054b435f1"}, - {file = "tokenizers-0.20.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9e7816808b402129393a435ea2a509679b41246175d6e5e9f25b8692bfaa272b"}, - {file = "tokenizers-0.20.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ba96367db9d8a730d3a1d5996b4b7babb846c3994b8ef14008cd8660f55db59d"}, - {file = "tokenizers-0.20.3-cp310-none-win32.whl", hash = "sha256:ee31ba9d7df6a98619426283e80c6359f167e2e9882d9ce1b0254937dbd32f3f"}, - {file = "tokenizers-0.20.3-cp310-none-win_amd64.whl", hash = "sha256:a845c08fdad554fe0871d1255df85772f91236e5fd6b9287ef8b64f5807dbd0c"}, - {file = "tokenizers-0.20.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:585b51e06ca1f4839ce7759941e66766d7b060dccfdc57c4ca1e5b9a33013a90"}, - {file = "tokenizers-0.20.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:61cbf11954f3b481d08723ebd048ba4b11e582986f9be74d2c3bdd9293a4538d"}, - {file = "tokenizers-0.20.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ef820880d5e4e8484e2fa54ff8d297bb32519eaa7815694dc835ace9130a3eea"}, - {file = "tokenizers-0.20.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:67ef4dcb8841a4988cd00dd288fb95dfc8e22ed021f01f37348fd51c2b055ba9"}, - {file = "tokenizers-0.20.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ff1ef8bd47a02b0dc191688ccb4da53600df5d4c9a05a4b68e1e3de4823e78eb"}, - {file = "tokenizers-0.20.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:444d188186eab3148baf0615b522461b41b1f0cd58cd57b862ec94b6ac9780f1"}, - {file = "tokenizers-0.20.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:37c04c032c1442740b2c2d925f1857885c07619224a533123ac7ea71ca5713da"}, - {file = "tokenizers-0.20.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:453c7769d22231960ee0e883d1005c93c68015025a5e4ae56275406d94a3c907"}, - {file = "tokenizers-0.20.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:4bb31f7b2847e439766aaa9cc7bccf7ac7088052deccdb2275c952d96f691c6a"}, - {file = "tokenizers-0.20.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:843729bf0f991b29655a069a2ff58a4c24375a553c70955e15e37a90dd4e045c"}, - {file = "tokenizers-0.20.3-cp311-none-win32.whl", hash = "sha256:efcce3a927b1e20ca694ba13f7a68c59b0bd859ef71e441db68ee42cf20c2442"}, - {file = "tokenizers-0.20.3-cp311-none-win_amd64.whl", hash = "sha256:88301aa0801f225725b6df5dea3d77c80365ff2362ca7e252583f2b4809c4cc0"}, - {file = "tokenizers-0.20.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:49d12a32e190fad0e79e5bdb788d05da2f20d8e006b13a70859ac47fecf6ab2f"}, - {file = "tokenizers-0.20.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:282848cacfb9c06d5e51489f38ec5aa0b3cd1e247a023061945f71f41d949d73"}, - {file = "tokenizers-0.20.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:abe4e08c7d0cd6154c795deb5bf81d2122f36daf075e0c12a8b050d824ef0a64"}, - {file = "tokenizers-0.20.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ca94fc1b73b3883c98f0c88c77700b13d55b49f1071dfd57df2b06f3ff7afd64"}, - {file = "tokenizers-0.20.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef279c7e239f95c8bdd6ff319d9870f30f0d24915b04895f55b1adcf96d6c60d"}, - {file = "tokenizers-0.20.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16384073973f6ccbde9852157a4fdfe632bb65208139c9d0c0bd0176a71fd67f"}, - {file = "tokenizers-0.20.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:312d522caeb8a1a42ebdec87118d99b22667782b67898a76c963c058a7e41d4f"}, - {file = "tokenizers-0.20.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2b7cb962564785a83dafbba0144ecb7f579f1d57d8c406cdaa7f32fe32f18ad"}, - {file = "tokenizers-0.20.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:124c5882ebb88dadae1fc788a582299fcd3a8bd84fc3e260b9918cf28b8751f5"}, - {file = "tokenizers-0.20.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2b6e54e71f84c4202111a489879005cb14b92616a87417f6c102c833af961ea2"}, - {file = "tokenizers-0.20.3-cp312-none-win32.whl", hash = "sha256:83d9bfbe9af86f2d9df4833c22e94d94750f1d0cd9bfb22a7bb90a86f61cdb1c"}, - {file = "tokenizers-0.20.3-cp312-none-win_amd64.whl", hash = "sha256:44def74cee574d609a36e17c8914311d1b5dbcfe37c55fd29369d42591b91cf2"}, - {file = "tokenizers-0.20.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:e0b630e0b536ef0e3c8b42c685c1bc93bd19e98c0f1543db52911f8ede42cf84"}, - {file = "tokenizers-0.20.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:a02d160d2b19bcbfdf28bd9a4bf11be4cb97d0499c000d95d4c4b1a4312740b6"}, - {file = "tokenizers-0.20.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e3d80d89b068bc30034034b5319218c7c0a91b00af19679833f55f3becb6945"}, - {file = "tokenizers-0.20.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:174a54910bed1b089226512b4458ea60d6d6fd93060254734d3bc3540953c51c"}, - {file = "tokenizers-0.20.3-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:098b8a632b8656aa5802c46689462c5c48f02510f24029d71c208ec2c822e771"}, - {file = "tokenizers-0.20.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:78c8c143e3ae41e718588281eb3e212c2b31623c9d6d40410ec464d7d6221fb5"}, - {file = "tokenizers-0.20.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2b26b0aadb18cd8701077362ba359a06683662d5cafe3e8e8aba10eb05c037f1"}, - {file = "tokenizers-0.20.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07d7851a72717321022f3774e84aa9d595a041d643fafa2e87fbc9b18711dac0"}, - {file = "tokenizers-0.20.3-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:bd44e48a430ada902c6266a8245f5036c4fe744fcb51f699999fbe82aa438797"}, - {file = "tokenizers-0.20.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:a4c186bb006ccbe1f5cc4e0380d1ce7806f5955c244074fd96abc55e27b77f01"}, - {file = "tokenizers-0.20.3-cp313-none-win32.whl", hash = "sha256:6e19e0f1d854d6ab7ea0c743d06e764d1d9a546932be0a67f33087645f00fe13"}, - {file = "tokenizers-0.20.3-cp313-none-win_amd64.whl", hash = "sha256:d50ede425c7e60966a9680d41b58b3a0950afa1bb570488e2972fa61662c4273"}, - {file = "tokenizers-0.20.3-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:9adda1ff5fb9dcdf899ceca672a4e2ce9e797adb512a6467305ca3d8bfcfbdd0"}, - {file = "tokenizers-0.20.3-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:6dde2cae6004ba7a3badff4a11911cae03ebf23e97eebfc0e71fef2530e5074f"}, - {file = "tokenizers-0.20.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c4a7fd678b35614fca708579eb95b7587a5e8a6d328171bd2488fd9f27d82be4"}, - {file = "tokenizers-0.20.3-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1b80e3c7283a01a356bd2210f53d1a4a5d32b269c2024389ed0173137708d50e"}, - {file = "tokenizers-0.20.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a8cc0e8176b762973758a77f0d9c4467d310e33165fb74173418ca3734944da4"}, - {file = "tokenizers-0.20.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d5634b2e2f5f3d2b4439d2d74066e22eb4b1f04f3fea05cb2a3c12d89b5a3bcd"}, - {file = "tokenizers-0.20.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b4ba635165bc1ea46f2da8e5d80b5f70f6ec42161e38d96dbef33bb39df73964"}, - {file = "tokenizers-0.20.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18e4c7c64172e7789bd8b07aa3087ea87c4c4de7e90937a2aa036b5d92332536"}, - {file = "tokenizers-0.20.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1f74909ef7675c26d4095a817ec3393d67f3158ca4836c233212e5613ef640c4"}, - {file = "tokenizers-0.20.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:0e9b81321a1e05b16487d312b4264984513f8b4a7556229cafac6e88c2036b09"}, - {file = "tokenizers-0.20.3-cp37-none-win32.whl", hash = "sha256:ab48184cd58b4a03022a2ec75b54c9f600ffea9a733612c02325ed636f353729"}, - {file = "tokenizers-0.20.3-cp37-none-win_amd64.whl", hash = "sha256:60ac483cebee1c12c71878523e768df02fa17e4c54412966cb3ac862c91b36c1"}, - {file = "tokenizers-0.20.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:3229ef103c89583d10b9378afa5d601b91e6337530a0988e17ca8d635329a996"}, - {file = "tokenizers-0.20.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6ac52cc24bad3de865c7e65b1c4e7b70d00938a8ae09a92a453b8f676e714ad5"}, - {file = "tokenizers-0.20.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:04627b7b502fa6a2a005e1bd446fa4247d89abcb1afaa1b81eb90e21aba9a60f"}, - {file = "tokenizers-0.20.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c27ceb887f0e81a3c377eb4605dca7a95a81262761c0fba308d627b2abb98f2b"}, - {file = "tokenizers-0.20.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:65ab780194da4e1fcf5670523a2f377c4838ebf5249efe41fa1eddd2a84fb49d"}, - {file = "tokenizers-0.20.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98d343134f47159e81f7f242264b0eb222e6b802f37173c8d7d7b64d5c9d1388"}, - {file = "tokenizers-0.20.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2475bb004ab2009d29aff13b5047bfdb3d4b474f0aa9d4faa13a7f34dbbbb43"}, - {file = "tokenizers-0.20.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b6583a65c01db1197c1eb36857ceba8ec329d53afadd268b42a6b04f4965724"}, - {file = "tokenizers-0.20.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:62d00ba208358c037eeab7bfc00a905adc67b2d31b68ab40ed09d75881e114ea"}, - {file = "tokenizers-0.20.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0fc7a39e5bedc817bda395a798dfe2d9c5f7c71153c90d381b5135a0328d9520"}, - {file = "tokenizers-0.20.3-cp38-none-win32.whl", hash = "sha256:84d40ee0f8550d64d3ea92dd7d24a8557a9172165bdb986c9fb2503b4fe4e3b6"}, - {file = "tokenizers-0.20.3-cp38-none-win_amd64.whl", hash = "sha256:205a45246ed7f1718cf3785cff88450ba603352412aaf220ace026384aa3f1c0"}, - {file = "tokenizers-0.20.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:93e37f0269a11dc3b1a953f1fca9707f0929ebf8b4063c591c71a0664219988e"}, - {file = "tokenizers-0.20.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f4cb0c614b0135e781de96c2af87e73da0389ac1458e2a97562ed26e29490d8d"}, - {file = "tokenizers-0.20.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7eb2fb1c432f5746b22f8a7f09fc18c4156cb0031c77f53cb19379d82d43297a"}, - {file = "tokenizers-0.20.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bfa8d029bb156181b006643309d6b673615a24e4ed24cf03aa191d599b996f51"}, - {file = "tokenizers-0.20.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6f90549622de3bf476ad9f1dd6f3f952ec3ed6ab8615ae88ef060d0c5bfad55d"}, - {file = "tokenizers-0.20.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a1d469c74eebf5c43fd61cd9b030e271d17198edd7bd45392e03a3c091d7d6d4"}, - {file = "tokenizers-0.20.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bee8f53b2594749f4460d53253bae55d718f04e9b633efa0f5df8938bd98e4f0"}, - {file = "tokenizers-0.20.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:938441babf3e5720e4459e306ef2809fb267680df9d1ff2873458b22aef60248"}, - {file = "tokenizers-0.20.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7310ab23d7b0caebecc0e8be11a1146f320f5f07284000f6ea54793e83de1b75"}, - {file = "tokenizers-0.20.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:16121eb030a2b13094cfec936b0c12e8b4063c5f839591ea7d0212336d8f9921"}, - {file = "tokenizers-0.20.3-cp39-none-win32.whl", hash = "sha256:401cc21ef642ee235985d747f65e18f639464d377c70836c9003df208d582064"}, - {file = "tokenizers-0.20.3-cp39-none-win_amd64.whl", hash = "sha256:7498f3ea7746133335a6adb67a77cf77227a8b82c8483f644a2e5f86fea42b8d"}, - {file = "tokenizers-0.20.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e919f2e3e68bb51dc31de4fcbbeff3bdf9c1cad489044c75e2b982a91059bd3c"}, - {file = "tokenizers-0.20.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:b8e9608f2773996cc272156e305bd79066163a66b0390fe21750aff62df1ac07"}, - {file = "tokenizers-0.20.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39270a7050deaf50f7caff4c532c01b3c48f6608d42b3eacdebdc6795478c8df"}, - {file = "tokenizers-0.20.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e005466632b1c5d2d2120f6de8aa768cc9d36cd1ab7d51d0c27a114c91a1e6ee"}, - {file = "tokenizers-0.20.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a07962340b36189b6c8feda552ea1bfeee6cf067ff922a1d7760662c2ee229e5"}, - {file = "tokenizers-0.20.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:55046ad3dd5f2b3c67501fcc8c9cbe3e901d8355f08a3b745e9b57894855f85b"}, - {file = "tokenizers-0.20.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:efcf0eb939988b627558aaf2b9dc3e56d759cad2e0cfa04fcab378e4b48fc4fd"}, - {file = "tokenizers-0.20.3-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f3558a7ae6a6d38a77dfce12172a1e2e1bf3e8871e744a1861cd7591ea9ebe24"}, - {file = "tokenizers-0.20.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d53029fe44bc70c3ff14ef512460a0cf583495a0f8e2f4b70e26eb9438e38a9"}, - {file = "tokenizers-0.20.3-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57a2a56397b2bec5a629b516b23f0f8a3e4f978c7488d4a299980f8375954b85"}, - {file = "tokenizers-0.20.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1e5bfaae740ef9ece000f8a07e78ac0e2b085c5ce9648f8593ddf0243c9f76d"}, - {file = "tokenizers-0.20.3-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:fbaf3ea28fedfb2283da60e710aff25492e795a7397cad8a50f1e079b65a5a70"}, - {file = "tokenizers-0.20.3-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:c47c037116310dc976eb96b008e41b9cfaba002ed8005848d4d632ee0b7ba9ae"}, - {file = "tokenizers-0.20.3-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c31751f0721f58f5e19bb27c1acc259aeff860d8629c4e1a900b26a1979ada8e"}, - {file = "tokenizers-0.20.3-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:c697cbd3be7a79ea250ea5f380d6f12e534c543cfb137d5c734966b3ee4f34cc"}, - {file = "tokenizers-0.20.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b48971b88ef9130bf35b41b35fd857c3c4dae4a9cd7990ebc7fc03e59cc92438"}, - {file = "tokenizers-0.20.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4e615de179bbe060ab33773f0d98a8a8572b5883dd7dac66c1de8c056c7e748c"}, - {file = "tokenizers-0.20.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da1ec842035ed9999c62e45fbe0ff14b7e8a7e02bb97688cc6313cf65e5cd755"}, - {file = "tokenizers-0.20.3-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:6ee4954c1dd23aadc27958dad759006e71659d497dcb0ef0c7c87ea992c16ebd"}, - {file = "tokenizers-0.20.3-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:3eda46ca402751ec82553a321bf35a617b76bbed7586e768c02ccacbdda94d6d"}, - {file = "tokenizers-0.20.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:de082392a85eb0055cc055c535bff2f0cc15d7a000bdc36fbf601a0f3cf8507a"}, - {file = "tokenizers-0.20.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c3db46cc0647bfd88263afdb739b92017a02a87ee30945cb3e86c7e25c7c9917"}, - {file = "tokenizers-0.20.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a292392f24ab9abac5cfa8197e5a6208f2e43723420217e1ceba0b4ec77816ac"}, - {file = "tokenizers-0.20.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8dcd91f4e60f62b20d83a87a84fe062035a1e3ff49a8c2bbdeb2d441c8e311f4"}, - {file = "tokenizers-0.20.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:900991a2b8ee35961b1095db7e265342e0e42a84c1a594823d5ee9f8fb791958"}, - {file = "tokenizers-0.20.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:5a8d8261ca2133d4f98aa9627c748189502b3787537ba3d7e2beb4f7cfc5d627"}, - {file = "tokenizers-0.20.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:c4fd4d71e6deb6ddf99d8d0eab87d1d16f635898906e631914a9bae8ae9f2cfb"}, - {file = "tokenizers-0.20.3.tar.gz", hash = "sha256:2278b34c5d0dd78e087e1ca7f9b1dcbf129d80211afa645f214bd6e051037539"}, + {file = "tokenizers-0.20.4-cp39-abi3-macosx_10_12_x86_64.whl", hash = "sha256:25f59ebc5b79e7bbafe86bfec62696468016627157d8a9ceba5092486796a156"}, + {file = "tokenizers-0.20.4-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:f41df992797ad0ff9472e8a2c7a3ef7178667935d984639b73da7d19b33ea4e2"}, + {file = "tokenizers-0.20.4-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7786004e180fab72e6e873e982ccd18b3cfa31521d397b6c024cc19175abf91b"}, + {file = "tokenizers-0.20.4-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:075635cd7e6936cc4b3a13901c1a05690d5b533ce3d0f035dee21117dd4f04ae"}, + {file = "tokenizers-0.20.4-cp39-abi3-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aa392bae7f0a36e4c97ad43100390ad84f2a1bfff6742604774210f7d7a4fa13"}, + {file = "tokenizers-0.20.4-cp39-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eee647ccba9cbd36b5ec4e8e73d25dbd586ec06de7a43ff83a3dad9fec466a29"}, + {file = "tokenizers-0.20.4-cp39-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:735ffc9bba65d20f8ab5f82dfbab262bb066afc7dee3684c5e5435e7a5da445d"}, + {file = "tokenizers-0.20.4-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05c2bab579c1f31292b48bb79b6334b5346c1ec87dac81089e6098b8a20b2fd4"}, + {file = "tokenizers-0.20.4-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:3e960ad5c467a95e5665e518151ed9024e7aa111d2c54ff1938162cc7c2b8959"}, + {file = "tokenizers-0.20.4-cp39-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:e59a405459ed31b73426b364752c2e7c73f4a94210a63fd7acd161a774af7bd2"}, + {file = "tokenizers-0.20.4-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:84bf8b4a7bbf1c6bb78775ae309a5c69d08dadf7b88125d6d19ccb4738a87350"}, + {file = "tokenizers-0.20.4-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a6d392a20ca70692aaba8a636677b57f6c67655879773ba2b6be8cb4a19ce6b8"}, + {file = "tokenizers-0.20.4-cp39-abi3-win32.whl", hash = "sha256:60ea37c885a9bb8efa53b7542ea83561cd00eb3ffb47a77f5ae622d9f7f66ffe"}, + {file = "tokenizers-0.20.4-cp39-abi3-win_amd64.whl", hash = "sha256:6cba92b87969ddf5a7e2f2293577c30129d8c22c6f68e8c626d3e76b8d52412c"}, + {file = "tokenizers-0.20.4.tar.gz", hash = "sha256:db50ac15e92981227f499268541306824f49e97dbeec05d118ebdc7c2d22322c"}, ] [package.dependencies] @@ -6457,31 +6468,28 @@ optree = ["optree (>=0.9.1)"] [[package]] name = "torch" -version = "2.4.1" +version = "2.5.1" description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" optional = false python-versions = ">=3.8.0" files = [ - {file = "torch-2.4.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:362f82e23a4cd46341daabb76fba08f04cd646df9bfaf5da50af97cb60ca4971"}, - {file = "torch-2.4.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:e8ac1985c3ff0f60d85b991954cfc2cc25f79c84545aead422763148ed2759e3"}, - {file = "torch-2.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:91e326e2ccfb1496e3bee58f70ef605aeb27bd26be07ba64f37dcaac3d070ada"}, - {file = "torch-2.4.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:d36a8ef100f5bff3e9c3cea934b9e0d7ea277cb8210c7152d34a9a6c5830eadd"}, - {file = "torch-2.4.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:0b5f88afdfa05a335d80351e3cea57d38e578c8689f751d35e0ff36bce872113"}, - {file = "torch-2.4.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:ef503165f2341942bfdf2bd520152f19540d0c0e34961232f134dc59ad435be8"}, - {file = "torch-2.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:092e7c2280c860eff762ac08c4bdcd53d701677851670695e0c22d6d345b269c"}, - {file = "torch-2.4.1-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:ddddbd8b066e743934a4200b3d54267a46db02106876d21cf31f7da7a96f98ea"}, - {file = "torch-2.4.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:fdc4fe11db3eb93c1115d3e973a27ac7c1a8318af8934ffa36b0370efe28e042"}, - {file = "torch-2.4.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:18835374f599207a9e82c262153c20ddf42ea49bc76b6eadad8e5f49729f6e4d"}, - {file = "torch-2.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:ebea70ff30544fc021d441ce6b219a88b67524f01170b1c538d7d3ebb5e7f56c"}, - {file = "torch-2.4.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:72b484d5b6cec1a735bf3fa5a1c4883d01748698c5e9cfdbeb4ffab7c7987e0d"}, - {file = "torch-2.4.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:c99e1db4bf0c5347107845d715b4aa1097e601bdc36343d758963055e9599d93"}, - {file = "torch-2.4.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:b57f07e92858db78c5b72857b4f0b33a65b00dc5d68e7948a8494b0314efb880"}, - {file = "torch-2.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:f18197f3f7c15cde2115892b64f17c80dbf01ed72b008020e7da339902742cf6"}, - {file = "torch-2.4.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:5fc1d4d7ed265ef853579caf272686d1ed87cebdcd04f2a498f800ffc53dab71"}, - {file = "torch-2.4.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:40f6d3fe3bae74efcf08cb7f8295eaddd8a838ce89e9d26929d4edd6d5e4329d"}, - {file = "torch-2.4.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:c9299c16c9743001ecef515536ac45900247f4338ecdf70746f2461f9e4831db"}, - {file = "torch-2.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:6bce130f2cd2d52ba4e2c6ada461808de7e5eccbac692525337cfb4c19421846"}, - {file = "torch-2.4.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:a38de2803ee6050309aac032676536c3d3b6a9804248537e38e098d0e14817ec"}, + {file = "torch-2.5.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:71328e1bbe39d213b8721678f9dcac30dfc452a46d586f1d514a6aa0a99d4744"}, + {file = "torch-2.5.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:34bfa1a852e5714cbfa17f27c49d8ce35e1b7af5608c4bc6e81392c352dbc601"}, + {file = "torch-2.5.1-cp310-cp310-win_amd64.whl", hash = "sha256:32a037bd98a241df6c93e4c789b683335da76a2ac142c0973675b715102dc5fa"}, + {file = "torch-2.5.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:23d062bf70776a3d04dbe74db950db2a5245e1ba4f27208a87f0d743b0d06e86"}, + {file = "torch-2.5.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:de5b7d6740c4b636ef4db92be922f0edc425b65ed78c5076c43c42d362a45457"}, + {file = "torch-2.5.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:340ce0432cad0d37f5a31be666896e16788f1adf8ad7be481196b503dad675b9"}, + {file = "torch-2.5.1-cp311-cp311-win_amd64.whl", hash = "sha256:603c52d2fe06433c18b747d25f5c333f9c1d58615620578c326d66f258686f9a"}, + {file = "torch-2.5.1-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:31f8c39660962f9ae4eeec995e3049b5492eb7360dd4f07377658ef4d728fa4c"}, + {file = "torch-2.5.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:ed231a4b3a5952177fafb661213d690a72caaad97d5824dd4fc17ab9e15cec03"}, + {file = "torch-2.5.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:3f4b7f10a247e0dcd7ea97dc2d3bfbfc90302ed36d7f3952b0008d0df264e697"}, + {file = "torch-2.5.1-cp312-cp312-win_amd64.whl", hash = "sha256:73e58e78f7d220917c5dbfad1a40e09df9929d3b95d25e57d9f8558f84c9a11c"}, + {file = "torch-2.5.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:8c712df61101964eb11910a846514011f0b6f5920c55dbf567bff8a34163d5b1"}, + {file = "torch-2.5.1-cp313-cp313-manylinux1_x86_64.whl", hash = "sha256:9b61edf3b4f6e3b0e0adda8b3960266b9009d02b37555971f4d1c8f7a05afed7"}, + {file = "torch-2.5.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:1f3b7fb3cf7ab97fae52161423f81be8c6b8afac8d9760823fd623994581e1a3"}, + {file = "torch-2.5.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:7974e3dce28b5a21fb554b73e1bc9072c25dde873fa00d54280861e7a009d7dc"}, + {file = "torch-2.5.1-cp39-cp39-win_amd64.whl", hash = "sha256:46c817d3ea33696ad3b9df5e774dba2257e9a4cd3c4a3afbf92f6bb13ac5ce2d"}, + {file = "torch-2.5.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:8046768b7f6d35b85d101b4b38cba8aa2f3cd51952bc4c06a49580f2ce682291"}, ] [package.dependencies] @@ -6489,25 +6497,26 @@ filelock = "*" fsspec = "*" jinja2 = "*" networkx = "*" -nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cublas-cu12 = {version = "12.4.5.8", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-cupti-cu12 = {version = "12.4.127", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-nvrtc-cu12 = {version = "12.4.127", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-runtime-cu12 = {version = "12.4.127", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-cudnn-cu12 = {version = "9.1.0.70", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-nccl-cu12 = {version = "2.20.5", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} -setuptools = "*" -sympy = "*" -triton = {version = "3.0.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.13\""} +nvidia-cufft-cu12 = {version = "11.2.1.3", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-curand-cu12 = {version = "10.3.5.147", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusolver-cu12 = {version = "11.6.1.9", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusparse-cu12 = {version = "12.3.1.170", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nccl-cu12 = {version = "2.21.5", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nvjitlink-cu12 = {version = "12.4.127", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nvtx-cu12 = {version = "12.4.127", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +setuptools = {version = "*", markers = "python_version >= \"3.12\""} +sympy = {version = "1.13.1", markers = "python_version >= \"3.9\""} +triton = {version = "3.1.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.13\""} typing-extensions = ">=4.8.0" [package.extras] opt-einsum = ["opt-einsum (>=3.3)"] -optree = ["optree (>=0.11.0)"] +optree = ["optree (>=0.12.0)"] [[package]] name = "torchvision" @@ -6553,37 +6562,33 @@ scipy = ["scipy"] [[package]] name = "torchvision" -version = "0.19.1" +version = "0.20.1" description = "image and video datasets and models for torch deep learning" optional = false python-versions = ">=3.8" files = [ - {file = "torchvision-0.19.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:54e8513099e6f586356c70f809d34f391af71ad182fe071cc328a28af2c40608"}, - {file = "torchvision-0.19.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:20a1f5e02bfdad7714e55fa3fa698347c11d829fa65e11e5a84df07d93350eed"}, - {file = "torchvision-0.19.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:7b063116164be52fc6deb4762de7f8c90bfa3a65f8d5caf17f8e2d5aadc75a04"}, - {file = "torchvision-0.19.1-cp310-cp310-win_amd64.whl", hash = "sha256:f40b6acabfa886da1bc3768f47679c61feee6bde90deb979d9f300df8c8a0145"}, - {file = "torchvision-0.19.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:40514282b4896d62765b8e26d7091c32e17c35817d00ec4be2362ea3ba3d1787"}, - {file = "torchvision-0.19.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:5a91be061ae5d6d5b95e833b93e57ca4d3c56c5a57444dd15da2e3e7fba96050"}, - {file = "torchvision-0.19.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:d71a6a6fe3a5281ca3487d4c56ad4aad20ff70f82f1d7c79bcb6e7b0c2af00c8"}, - {file = "torchvision-0.19.1-cp311-cp311-win_amd64.whl", hash = "sha256:70dea324174f5e9981b68e4b7cd524512c106ba64aedef560a86a0bbf2fbf62c"}, - {file = "torchvision-0.19.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:27ece277ff0f6cdc7fed0627279c632dcb2e58187da771eca24b0fbcf3f8590d"}, - {file = "torchvision-0.19.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:c659ff92a61f188a1a7baef2850f3c0b6c85685447453c03d0e645ba8f1dcc1c"}, - {file = "torchvision-0.19.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:c07bf43c2a145d792ecd9d0503d6c73577147ece508d45600d8aac77e4cdfcf9"}, - {file = "torchvision-0.19.1-cp312-cp312-win_amd64.whl", hash = "sha256:b4283d283675556bb0eae31d29996f53861b17cbdcdf3509e6bc050414ac9289"}, - {file = "torchvision-0.19.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4c4e4f5b24ea6b087b02ed492ab1e21bba3352c4577e2def14248cfc60732338"}, - {file = "torchvision-0.19.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:9281d63ead929bb19143731154cd1d8bf0b5e9873dff8578a40e90a6bec3c6fa"}, - {file = "torchvision-0.19.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:4d10bc9083c4d5fadd7edd7b729700a7be48dab4f62278df3bc73fa48e48a155"}, - {file = "torchvision-0.19.1-cp38-cp38-win_amd64.whl", hash = "sha256:ccf085ef1824fb9e16f1901285bf89c298c62dfd93267a39e8ee42c71255242f"}, - {file = "torchvision-0.19.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:731f434d91586769e255b5d70ed1a4457e0a1394a95f4aacf0e1e7e21f80c098"}, - {file = "torchvision-0.19.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:febe4f14d4afcb47cc861d8be7760ab6a123cd0817f97faf5771488cb6aa90f4"}, - {file = "torchvision-0.19.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:e328309b8670a2e889b2fe76a1c2744a099c11c984da9a822357bd9debd699a5"}, - {file = "torchvision-0.19.1-cp39-cp39-win_amd64.whl", hash = "sha256:6616f12e00a22e7f3fedbd0fccb0804c05e8fe22871668f10eae65cf3f283614"}, + {file = "torchvision-0.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4878fefb96ef293d06c27210918adc83c399d9faaf34cda5a63e129f772328f1"}, + {file = "torchvision-0.20.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:8ffbdf8bf5b30eade22d459f5a313329eeadb20dc75efa142987b53c007098c3"}, + {file = "torchvision-0.20.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:75f8a4d51a593c4bab6c9bf7d75bdd88691b00a53b07656678bc55a3a753dd73"}, + {file = "torchvision-0.20.1-cp310-cp310-win_amd64.whl", hash = "sha256:22c2fa44e20eb404b85e42b22b453863a14b0927d25e550fd4f84eea97fa5b39"}, + {file = "torchvision-0.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:344b339e15e6bbb59ee0700772616d0afefd209920c762b1604368d8c3458322"}, + {file = "torchvision-0.20.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:86f6523dee420000fe14c3527f6c8e0175139fda7d995b187f54a0b0ebec7eb6"}, + {file = "torchvision-0.20.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:a40d766345927639da322c693934e5f91b1ba2218846c7104b868dea2314ce8e"}, + {file = "torchvision-0.20.1-cp311-cp311-win_amd64.whl", hash = "sha256:5b501d5c04b034d2ecda96a31ed050e383cf8201352e4c9276ca249cbecfded0"}, + {file = "torchvision-0.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1a31256ff945d64f006bb306813a7c95a531fe16bfb2535c837dd4c104533d7a"}, + {file = "torchvision-0.20.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:17cd78adddf81dac57d7dccc9277a4d686425b1c55715f308769770cb26cad5c"}, + {file = "torchvision-0.20.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:9f853ba4497ac4691815ad41b523ee23cf5ba4f87b1ce869d704052e233ca8b7"}, + {file = "torchvision-0.20.1-cp312-cp312-win_amd64.whl", hash = "sha256:4a330422c36dbfc946d3a6c1caec3489db07ecdf3675d83369adb2e5a0ca17c4"}, + {file = "torchvision-0.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2cd58406978b813188cf4e9135b218775b57e0bb86d4a88f0339874b8a224819"}, + {file = "torchvision-0.20.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:408766b2f0ada9e1bc880d12346cec9638535af5df6459ba9ac4ce5c46402f91"}, + {file = "torchvision-0.20.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:abcb8005de8dc393dbd1310ecb669dc68ab664b9107af6d698a6341d1d3f2c3c"}, + {file = "torchvision-0.20.1-cp39-cp39-win_amd64.whl", hash = "sha256:ea9678163bbf19568f4f959d927f3751eeb833cc8eac949de507edde38c1fc9f"}, ] [package.dependencies] numpy = "*" pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" -torch = "2.4.1" +torch = "2.5.1" [package.extras] gdown = ["gdown (>=4.7.3)"] @@ -6739,21 +6744,16 @@ tutorials = ["matplotlib", "pandas", "tabulate", "torch"] [[package]] name = "triton" -version = "3.0.0" +version = "3.1.0" description = "A language and compiler for custom Deep Learning operations" optional = false python-versions = "*" files = [ - {file = "triton-3.0.0-1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e1efef76935b2febc365bfadf74bcb65a6f959a9872e5bddf44cc9e0adce1e1a"}, - {file = "triton-3.0.0-1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:5ce8520437c602fb633f1324cc3871c47bee3b67acf9756c1a66309b60e3216c"}, - {file = "triton-3.0.0-1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:34e509deb77f1c067d8640725ef00c5cbfcb2052a1a3cb6a6d343841f92624eb"}, - {file = "triton-3.0.0-1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:bcbf3b1c48af6a28011a5c40a5b3b9b5330530c3827716b5fbf6d7adcc1e53e9"}, - {file = "triton-3.0.0-1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:6e5727202f7078c56f91ff13ad0c1abab14a0e7f2c87e91b12b6f64f3e8ae609"}, - {file = "triton-3.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39b052da883351fdf6be3d93cedae6db3b8e3988d3b09ed221bccecfa9612230"}, - {file = "triton-3.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cd34f19a8582af96e6291d4afce25dac08cb2a5d218c599163761e8e0827208e"}, - {file = "triton-3.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d5e10de8c011adeb7c878c6ce0dd6073b14367749e34467f1cff2bde1b78253"}, - {file = "triton-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8903767951bf86ec960b4fe4e21bc970055afc65e9d57e916d79ae3c93665e3"}, - {file = "triton-3.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41004fb1ae9a53fcb3e970745feb87f0e3c94c6ce1ba86e95fa3b8537894bef7"}, + {file = "triton-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b0dd10a925263abbe9fa37dcde67a5e9b2383fc269fdf59f5657cac38c5d1d8"}, + {file = "triton-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f34f6e7885d1bf0eaaf7ba875a5f0ce6f3c13ba98f9503651c1e6dc6757ed5c"}, + {file = "triton-3.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c8182f42fd8080a7d39d666814fa36c5e30cc00ea7eeeb1a2983dbb4c99a0fdc"}, + {file = "triton-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6dadaca7fc24de34e180271b5cf864c16755702e9f63a16f62df714a8099126a"}, + {file = "triton-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aafa9a20cd0d9fee523cd4504aa7131807a864cd77dcf6efe7e981f18b8c6c11"}, ] [package.dependencies] @@ -6806,13 +6806,13 @@ typing-extensions = ">=3.7.4.3" [[package]] name = "types-openpyxl" -version = "3.1.5.20241114" +version = "3.1.5.20241126" description = "Typing stubs for openpyxl" optional = false python-versions = ">=3.8" files = [ - {file = "types-openpyxl-3.1.5.20241114.tar.gz", hash = "sha256:caeb9aafed8a5ffabdc74f880b148d90375364a1cfe7915d5065c5d79f3fe6a2"}, - {file = "types_openpyxl-3.1.5.20241114-py3-none-any.whl", hash = "sha256:f2925f595b08f5aef1baa725c9ee40baaf51beb05d98ac150593d3bdd37b1029"}, + {file = "types_openpyxl-3.1.5.20241126-py3-none-any.whl", hash = "sha256:e50ad5c2dec2c92cca521abed5c039975226e8e76389f17ab0ef813595593fbe"}, + {file = "types_openpyxl-3.1.5.20241126.tar.gz", hash = "sha256:f599afab19f87aa11672ee675346401d82a0dac71988df9a5411cdb1e7477377"}, ] [[package]] @@ -6968,13 +6968,13 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "virtualenv" -version = "20.27.1" +version = "20.28.0" description = "Virtual Python Environment builder" optional = false python-versions = ">=3.8" files = [ - {file = "virtualenv-20.27.1-py3-none-any.whl", hash = "sha256:f11f1b8a29525562925f745563bfd48b189450f61fb34c4f9cc79dd5aa32a1f4"}, - {file = "virtualenv-20.27.1.tar.gz", hash = "sha256:142c6be10212543b32c6c45d3d3893dff89112cc588b7d0879ae5a1ec03a47ba"}, + {file = "virtualenv-20.28.0-py3-none-any.whl", hash = "sha256:23eae1b4516ecd610481eda647f3a7c09aea295055337331bb4e6892ecce47b0"}, + {file = "virtualenv-20.28.0.tar.gz", hash = "sha256:2c9c3262bb8e7b87ea801d715fae4495e6032450c71d2309be9550e7364049aa"}, ] [package.dependencies] @@ -7415,4 +7415,4 @@ tesserocr = ["tesserocr"] [metadata] lock-version = "2.0" python-versions = "^3.9" -content-hash = "eddea0c7af1ce850730e7f0c1b8eb7581651ccc233805ce1fb719a7f3d572612" +content-hash = "37aeaba10d70b728cffd5e0403ae02bdc9a34d0c3a9781cebad920233336988d" diff --git a/pyproject.toml b/pyproject.toml index 11d46571..814348e1 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "docling" -version = "2.7.0" # DO NOT EDIT, updated automatically +version = "2.7.1" # DO NOT EDIT, updated automatically description = "SDK and CLI for parsing PDF, DOCX, HTML, and more, to a unified document representation for powering downstream workflows such as gen AI applications." authors = ["Christoph Auer ", "Michele Dolfi ", "Maxim Lysak ", "Nikos Livathinos ", "Ahmed Nassar ", "Panos Vagenas ", "Peter Staar "] license = "MIT" @@ -48,6 +48,7 @@ beautifulsoup4 = "^4.12.3" pandas = "^2.1.4" marko = "^2.1.2" openpyxl = "^3.1.5" +lxml = ">=4.0.0,<6.0.0" ocrmac = { version = "^1.0.0", markers = "sys_platform == 'darwin'", optional = true } rapidocr-onnxruntime = { version = "^1.4.0", optional = true, markers = "python_version < '3.13'" } onnxruntime = [ diff --git a/tests/data/docx/test_emf_docx.docx b/tests/data/docx/test_emf_docx.docx new file mode 100644 index 00000000..12ade783 Binary files /dev/null and b/tests/data/docx/test_emf_docx.docx differ diff --git a/tests/data/groundtruth/docling_v2/tablecell.docx.itxt b/tests/data/groundtruth/docling_v2/tablecell.docx.itxt new file mode 100644 index 00000000..f972efcd --- /dev/null +++ b/tests/data/groundtruth/docling_v2/tablecell.docx.itxt @@ -0,0 +1,10 @@ +item-0 at level 0: unspecified: group _root_ + item-1 at level 1: list: group list + item-2 at level 2: list_item: Hello world1 + item-3 at level 2: list_item: Hello2 + item-4 at level 1: paragraph: + item-5 at level 1: paragraph: Some text before + item-6 at level 1: table with [3x3] + item-7 at level 1: paragraph: + item-8 at level 1: paragraph: + item-9 at level 1: paragraph: Some text after \ No newline at end of file diff --git a/tests/data/groundtruth/docling_v2/tablecell.docx.json b/tests/data/groundtruth/docling_v2/tablecell.docx.json new file mode 100644 index 00000000..d811cc86 --- /dev/null +++ b/tests/data/groundtruth/docling_v2/tablecell.docx.json @@ -0,0 +1,392 @@ +{ + "schema_name": "DoclingDocument", + "version": "1.0.0", + "name": "tablecell", + "origin": { + "mimetype": "application/vnd.openxmlformats-officedocument.wordprocessingml.document", + "binary_hash": 1111850039819445035, + "filename": "tablecell.docx" + }, + "furniture": { + "self_ref": "#/furniture", + "children": [], + "name": "_root_", + "label": "unspecified" + }, + "body": { + "self_ref": "#/body", + "children": [ + { + "$ref": "#/groups/0" + }, + { + "$ref": "#/texts/2" + }, + { + "$ref": "#/texts/3" + }, + { + "$ref": "#/tables/0" + }, + { + "$ref": "#/texts/4" + }, + { + "$ref": "#/texts/5" + }, + { + "$ref": "#/texts/6" + } + ], + "name": "_root_", + "label": "unspecified" + }, + "groups": [ + { + "self_ref": "#/groups/0", + "parent": { + "$ref": "#/body" + }, + "children": [ + { + "$ref": "#/texts/0" + }, + { + "$ref": "#/texts/1" + } + ], + "name": "list", + "label": "list" + } + ], + "texts": [ + { + "self_ref": "#/texts/0", + "parent": { + "$ref": "#/groups/0" + }, + "children": [], + "label": "list_item", + "prov": [], + "orig": "Hello world1", + "text": "Hello world1", + "enumerated": false, + "marker": "-" + }, + { + "self_ref": "#/texts/1", + "parent": { + "$ref": "#/groups/0" + }, + "children": [], + "label": "list_item", + "prov": [], + "orig": "Hello2", + "text": "Hello2", + "enumerated": false, + "marker": "-" + }, + { + "self_ref": "#/texts/2", + "parent": { + "$ref": "#/body" + }, + "children": [], + "label": "paragraph", + "prov": [], + "orig": "", + "text": "" + }, + { + "self_ref": "#/texts/3", + "parent": { + "$ref": "#/body" + }, + "children": [], + "label": "paragraph", + "prov": [], + "orig": "Some text before", + "text": "Some text before" + }, + { + "self_ref": "#/texts/4", + "parent": { + "$ref": "#/body" + }, + "children": [], + "label": "paragraph", + "prov": [], + "orig": "", + "text": "" + }, + { + "self_ref": "#/texts/5", + "parent": { + "$ref": "#/body" + }, + "children": [], + "label": "paragraph", + "prov": [], + "orig": "", + "text": "" + }, + { + "self_ref": "#/texts/6", + "parent": { + "$ref": "#/body" + }, + "children": [], + "label": "paragraph", + "prov": [], + "orig": "Some text after", + "text": "Some text after" + } + ], + "pictures": [], + "tables": [ + { + "self_ref": "#/tables/0", + "parent": { + "$ref": "#/body" + }, + "children": [], + "label": "table", + "prov": [], + "captions": [], + "references": [], + "footnotes": [], + "data": { + "table_cells": [ + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 0, + "end_row_offset_idx": 1, + "start_col_offset_idx": 0, + "end_col_offset_idx": 1, + "text": "Tab1", + "column_header": false, + "row_header": false, + "row_section": false + }, + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 0, + "end_row_offset_idx": 1, + "start_col_offset_idx": 1, + "end_col_offset_idx": 2, + "text": "Tab2", + "column_header": false, + "row_header": false, + "row_section": false + }, + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 0, + "end_row_offset_idx": 1, + "start_col_offset_idx": 2, + "end_col_offset_idx": 3, + "text": "Tab3", + "column_header": false, + "row_header": false, + "row_section": false + }, + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 1, + "end_row_offset_idx": 2, + "start_col_offset_idx": 0, + "end_col_offset_idx": 1, + "text": "A", + "column_header": false, + "row_header": false, + "row_section": false + }, + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 1, + "end_row_offset_idx": 2, + "start_col_offset_idx": 1, + "end_col_offset_idx": 2, + "text": "B", + "column_header": false, + "row_header": false, + "row_section": false + }, + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 1, + "end_row_offset_idx": 2, + "start_col_offset_idx": 2, + "end_col_offset_idx": 3, + "text": "C", + "column_header": false, + "row_header": false, + "row_section": false + }, + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 2, + "end_row_offset_idx": 3, + "start_col_offset_idx": 0, + "end_col_offset_idx": 1, + "text": "D", + "column_header": false, + "row_header": false, + "row_section": false + }, + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 2, + "end_row_offset_idx": 3, + "start_col_offset_idx": 1, + "end_col_offset_idx": 2, + "text": "E", + "column_header": false, + "row_header": false, + "row_section": false + }, + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 2, + "end_row_offset_idx": 3, + "start_col_offset_idx": 2, + "end_col_offset_idx": 3, + "text": "F", + "column_header": false, + "row_header": false, + "row_section": false + } + ], + "num_rows": 3, + "num_cols": 3, + "grid": [ + [ + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 0, + "end_row_offset_idx": 1, + "start_col_offset_idx": 0, + "end_col_offset_idx": 1, + "text": "Tab1", + "column_header": false, + "row_header": false, + "row_section": false + }, + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 0, + "end_row_offset_idx": 1, + "start_col_offset_idx": 1, + "end_col_offset_idx": 2, + "text": "Tab2", + "column_header": false, + "row_header": false, + "row_section": false + }, + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 0, + "end_row_offset_idx": 1, + "start_col_offset_idx": 2, + "end_col_offset_idx": 3, + "text": "Tab3", + "column_header": false, + "row_header": false, + "row_section": false + } + ], + [ + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 1, + "end_row_offset_idx": 2, + "start_col_offset_idx": 0, + "end_col_offset_idx": 1, + "text": "A", + "column_header": false, + "row_header": false, + "row_section": false + }, + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 1, + "end_row_offset_idx": 2, + "start_col_offset_idx": 1, + "end_col_offset_idx": 2, + "text": "B", + "column_header": false, + "row_header": false, + "row_section": false + }, + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 1, + "end_row_offset_idx": 2, + "start_col_offset_idx": 2, + "end_col_offset_idx": 3, + "text": "C", + "column_header": false, + "row_header": false, + "row_section": false + } + ], + [ + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 2, + "end_row_offset_idx": 3, + "start_col_offset_idx": 0, + "end_col_offset_idx": 1, + "text": "D", + "column_header": false, + "row_header": false, + "row_section": false + }, + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 2, + "end_row_offset_idx": 3, + "start_col_offset_idx": 1, + "end_col_offset_idx": 2, + "text": "E", + "column_header": false, + "row_header": false, + "row_section": false + }, + { + "row_span": 1, + "col_span": 1, + "start_row_offset_idx": 2, + "end_row_offset_idx": 3, + "start_col_offset_idx": 2, + "end_col_offset_idx": 3, + "text": "F", + "column_header": false, + "row_header": false, + "row_section": false + } + ] + ] + } + } + ], + "key_value_items": [], + "pages": {} +} \ No newline at end of file diff --git a/tests/data/groundtruth/docling_v2/tablecell.docx.md b/tests/data/groundtruth/docling_v2/tablecell.docx.md new file mode 100644 index 00000000..f7a3de6c --- /dev/null +++ b/tests/data/groundtruth/docling_v2/tablecell.docx.md @@ -0,0 +1,11 @@ +- Hello world1 +- Hello2 + +Some text before + +| Tab1 | Tab2 | Tab3 | +|--------|--------|--------| +| A | B | C | +| D | E | F | + +Some text after \ No newline at end of file diff --git a/tests/data/groundtruth/docling_v2/test_emf_docx.docx.itxt b/tests/data/groundtruth/docling_v2/test_emf_docx.docx.itxt new file mode 100644 index 00000000..220b5533 --- /dev/null +++ b/tests/data/groundtruth/docling_v2/test_emf_docx.docx.itxt @@ -0,0 +1,8 @@ +item-0 at level 0: unspecified: group _root_ + item-1 at level 1: paragraph: Test with three images in unusual formats + item-2 at level 1: paragraph: Raster in emf: + item-3 at level 1: picture + item-4 at level 1: paragraph: Vector in emf: + item-5 at level 1: picture + item-6 at level 1: paragraph: Raster in webp: + item-7 at level 1: picture \ No newline at end of file diff --git a/tests/data/groundtruth/docling_v2/test_emf_docx.docx.json b/tests/data/groundtruth/docling_v2/test_emf_docx.docx.json new file mode 100644 index 00000000..6418a215 --- /dev/null +++ b/tests/data/groundtruth/docling_v2/test_emf_docx.docx.json @@ -0,0 +1,144 @@ +{ + "schema_name": "DoclingDocument", + "version": "1.0.0", + "name": "test_emf_docx", + "origin": { + "mimetype": "application/vnd.openxmlformats-officedocument.wordprocessingml.document", + "binary_hash": 17745489605737899558, + "filename": "test_emf_docx.docx" + }, + "furniture": { + "self_ref": "#/furniture", + "children": [], + "name": "_root_", + "label": "unspecified" + }, + "body": { + "self_ref": "#/body", + "children": [ + { + "$ref": "#/texts/0" + }, + { + "$ref": "#/texts/1" + }, + { + "$ref": "#/pictures/0" + }, + { + "$ref": "#/texts/2" + }, + { + "$ref": "#/pictures/1" + }, + { + "$ref": "#/texts/3" + }, + { + "$ref": "#/pictures/2" + } + ], + "name": "_root_", + "label": "unspecified" + }, + "groups": [], + "texts": [ + { + "self_ref": "#/texts/0", + "parent": { + "$ref": "#/body" + }, + "children": [], + "label": "paragraph", + "prov": [], + "orig": "Test with three images in unusual formats", + "text": "Test with three images in unusual formats" + }, + { + "self_ref": "#/texts/1", + "parent": { + "$ref": "#/body" + }, + "children": [], + "label": "paragraph", + "prov": [], + "orig": "Raster in emf:", + "text": "Raster in emf:" + }, + { + "self_ref": "#/texts/2", + "parent": { + "$ref": "#/body" + }, + "children": [], + "label": "paragraph", + "prov": [], + "orig": "Vector in emf:", + "text": "Vector in emf:" + }, + { + "self_ref": "#/texts/3", + "parent": { + "$ref": "#/body" + }, + "children": [], + "label": "paragraph", + "prov": [], + "orig": "Raster in webp:", + "text": "Raster in webp:" + } + ], + "pictures": [ + { + "self_ref": "#/pictures/0", + "parent": { + "$ref": "#/body" + }, + "children": [], + "label": "picture", + "prov": [], + "captions": [], + "references": [], + "footnotes": [], + "annotations": [] + }, + { + "self_ref": "#/pictures/1", + "parent": { + "$ref": "#/body" + }, + "children": [], + "label": "picture", + "prov": [], + "captions": [], + "references": [], + "footnotes": [], + "annotations": [] + }, + { + "self_ref": "#/pictures/2", + "parent": { + "$ref": "#/body" + }, + "children": [], + "label": "picture", + "prov": [], + "captions": [], + "references": [], + "footnotes": [], + "image": { + "mimetype": "image/png", + "dpi": 72, + "size": { + "width": 400.0, + "height": 400.0 + }, + "uri": "" + }, + "annotations": [] + } + ], + "tables": [], + "key_value_items": [], + "pages": {} +} \ No newline at end of file diff --git a/tests/data/groundtruth/docling_v2/test_emf_docx.docx.md b/tests/data/groundtruth/docling_v2/test_emf_docx.docx.md new file mode 100644 index 00000000..4ebcbf21 --- /dev/null +++ b/tests/data/groundtruth/docling_v2/test_emf_docx.docx.md @@ -0,0 +1,13 @@ +Test with three images in unusual formats + +Raster in emf: + + + +Vector in emf: + + + +Raster in webp: + + \ No newline at end of file diff --git a/tests/data/groundtruth/docling_v2/word_sample.json b/tests/data/groundtruth/docling_v2/word_sample.json new file mode 100644 index 00000000..42f154f6 --- /dev/null +++ b/tests/data/groundtruth/docling_v2/word_sample.json @@ -0,0 +1 @@ +{"schema_name": "DoclingDocument", "version": "1.0.0", "name": "word_sample", "origin": {"mimetype": "application/vnd.openxmlformats-officedocument.wordprocessingml.document", "binary_hash": 5964280909995938039, "filename": "word_sample.docx"}, "furniture": {"self_ref": "#/furniture", "children": [], "name": "_root_", "label": "unspecified"}, "body": {"self_ref": "#/body", "children": [{"$ref": "#/texts/0"}, {"$ref": "#/texts/1"}], "name": "_root_", "label": "unspecified"}, "groups": [{"self_ref": "#/groups/0", "parent": {"$ref": "#/texts/4"}, "children": [{"$ref": "#/texts/6"}, {"$ref": "#/texts/7"}, {"$ref": "#/texts/8"}], "name": "list", "label": "list"}, {"self_ref": "#/groups/1", "parent": {"$ref": "#/texts/4"}, "children": [{"$ref": "#/texts/10"}, {"$ref": "#/texts/11"}, {"$ref": "#/texts/12"}], "name": "list", "label": "list"}, {"self_ref": "#/groups/2", "parent": {"$ref": "#/texts/14"}, "children": [{"$ref": "#/texts/20"}, {"$ref": "#/texts/21"}, {"$ref": "#/texts/22"}], "name": "list", "label": "list"}], "texts": [{"self_ref": "#/texts/0", "parent": {"$ref": "#/body"}, "children": [], "label": "paragraph", "prov": [], "orig": "Summer activities", "text": "Summer activities"}, {"self_ref": "#/texts/1", "parent": {"$ref": "#/body"}, "children": [{"$ref": "#/texts/2"}, {"$ref": "#/pictures/0"}, {"$ref": "#/texts/3"}, {"$ref": "#/texts/4"}], "label": "title", "prov": [], "orig": "Swimming in the lake", "text": "Swimming in the lake"}, {"self_ref": "#/texts/2", "parent": {"$ref": "#/texts/1"}, "children": [], "label": "paragraph", "prov": [], "orig": "Duck", "text": "Duck"}, {"self_ref": "#/texts/3", "parent": {"$ref": "#/texts/1"}, "children": [], "label": "paragraph", "prov": [], "orig": "Figure 1: This is a cute duckling", "text": "Figure 1: This is a cute duckling"}, {"self_ref": "#/texts/4", "parent": {"$ref": "#/texts/1"}, "children": [{"$ref": "#/texts/5"}, {"$ref": "#/groups/0"}, {"$ref": "#/texts/9"}, {"$ref": "#/groups/1"}, {"$ref": "#/texts/13"}, {"$ref": "#/texts/14"}], "label": "section_header", "prov": [], "orig": "Let\u2019s swim!", "text": "Let\u2019s swim!", "level": 1}, {"self_ref": "#/texts/5", "parent": {"$ref": "#/texts/4"}, "children": [], "label": "paragraph", "prov": [], "orig": "To get started with swimming, first lay down in a water and try not to drown:", "text": "To get started with swimming, first lay down in a water and try not to drown:"}, {"self_ref": "#/texts/6", "parent": {"$ref": "#/groups/0"}, "children": [], "label": "list_item", "prov": [], "orig": "You can relax and look around", "text": "You can relax and look around", "enumerated": false, "marker": "-"}, {"self_ref": "#/texts/7", "parent": {"$ref": "#/groups/0"}, "children": [], "label": "list_item", "prov": [], "orig": "Paddle about", "text": "Paddle about", "enumerated": false, "marker": "-"}, {"self_ref": "#/texts/8", "parent": {"$ref": "#/groups/0"}, "children": [], "label": "list_item", "prov": [], "orig": "Enjoy summer warmth", "text": "Enjoy summer warmth", "enumerated": false, "marker": "-"}, {"self_ref": "#/texts/9", "parent": {"$ref": "#/texts/4"}, "children": [], "label": "paragraph", "prov": [], "orig": "Also, don\u2019t forget:", "text": "Also, don\u2019t forget:"}, {"self_ref": "#/texts/10", "parent": {"$ref": "#/groups/1"}, "children": [], "label": "list_item", "prov": [], "orig": "Wear sunglasses", "text": "Wear sunglasses", "enumerated": false, "marker": "-"}, {"self_ref": "#/texts/11", "parent": {"$ref": "#/groups/1"}, "children": [], "label": "list_item", "prov": [], "orig": "Don\u2019t forget to drink water", "text": "Don\u2019t forget to drink water", "enumerated": false, "marker": "-"}, {"self_ref": "#/texts/12", "parent": {"$ref": "#/groups/1"}, "children": [], "label": "list_item", "prov": [], "orig": "Use sun cream", "text": "Use sun cream", "enumerated": false, "marker": "-"}, {"self_ref": "#/texts/13", "parent": {"$ref": "#/texts/4"}, "children": [], "label": "paragraph", "prov": [], "orig": "Hmm, what else\u2026", "text": "Hmm, what else\u2026"}, {"self_ref": "#/texts/14", "parent": {"$ref": "#/texts/4"}, "children": [{"$ref": "#/texts/15"}, {"$ref": "#/texts/16"}, {"$ref": "#/texts/17"}, {"$ref": "#/tables/0"}, {"$ref": "#/texts/18"}, {"$ref": "#/texts/19"}, {"$ref": "#/groups/2"}], "label": "section_header", "prov": [], "orig": "Let\u2019s eat", "text": "Let\u2019s eat", "level": 2}, {"self_ref": "#/texts/15", "parent": {"$ref": "#/texts/14"}, "children": [], "label": "paragraph", "prov": [], "orig": "After we had a good day of swimming in the lake, it\u2019s important to eat something nice", "text": "After we had a good day of swimming in the lake, it\u2019s important to eat something nice"}, {"self_ref": "#/texts/16", "parent": {"$ref": "#/texts/14"}, "children": [], "label": "paragraph", "prov": [], "orig": "I like to eat leaves", "text": "I like to eat leaves"}, {"self_ref": "#/texts/17", "parent": {"$ref": "#/texts/14"}, "children": [], "label": "paragraph", "prov": [], "orig": "Here are some interesting things a respectful duck could eat:", "text": "Here are some interesting things a respectful duck could eat:"}, {"self_ref": "#/texts/18", "parent": {"$ref": "#/texts/14"}, "children": [], "label": "paragraph", "prov": [], "orig": "", "text": ""}, {"self_ref": "#/texts/19", "parent": {"$ref": "#/texts/14"}, "children": [], "label": "paragraph", "prov": [], "orig": "And let\u2019s add another list in the end:", "text": "And let\u2019s add another list in the end:"}, {"self_ref": "#/texts/20", "parent": {"$ref": "#/groups/2"}, "children": [], "label": "list_item", "prov": [], "orig": "Leaves", "text": "Leaves", "enumerated": false, "marker": "-"}, {"self_ref": "#/texts/21", "parent": {"$ref": "#/groups/2"}, "children": [], "label": "list_item", "prov": [], "orig": "Berries", "text": "Berries", "enumerated": false, "marker": "-"}, {"self_ref": "#/texts/22", "parent": {"$ref": "#/groups/2"}, "children": [], "label": "list_item", "prov": [], "orig": "Grain", "text": "Grain", "enumerated": false, "marker": "-"}], "pictures": [{"self_ref": "#/pictures/0", "parent": {"$ref": "#/texts/1"}, "children": [], "label": "picture", "prov": [], "captions": [], "references": [], "footnotes": [], "image": {"mimetype": "image/png", "dpi": 72, "size": {"width": 397.0, "height": 397.0}, "uri": ""}, "annotations": []}], "tables": [{"self_ref": "#/tables/0", "parent": {"$ref": "#/texts/14"}, "children": [], "label": "table", "prov": [], "captions": [], "references": [], "footnotes": [], "data": {"table_cells": [{"row_span": 1, "col_span": 1, "start_row_offset_idx": 0, "end_row_offset_idx": 1, "start_col_offset_idx": 0, "end_col_offset_idx": 1, "text": "", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 0, "end_row_offset_idx": 1, "start_col_offset_idx": 1, "end_col_offset_idx": 2, "text": "Food", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 0, "end_row_offset_idx": 1, "start_col_offset_idx": 2, "end_col_offset_idx": 3, "text": "Calories per portion", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 1, "end_row_offset_idx": 2, "start_col_offset_idx": 0, "end_col_offset_idx": 1, "text": "Leaves", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 1, "end_row_offset_idx": 2, "start_col_offset_idx": 1, "end_col_offset_idx": 2, "text": "Ash, Elm, Maple", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 1, "end_row_offset_idx": 2, "start_col_offset_idx": 2, "end_col_offset_idx": 3, "text": "50", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 2, "end_row_offset_idx": 3, "start_col_offset_idx": 0, "end_col_offset_idx": 1, "text": "Berries", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 2, "end_row_offset_idx": 3, "start_col_offset_idx": 1, "end_col_offset_idx": 2, "text": "Blueberry, Strawberry, Cranberry", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 2, "end_row_offset_idx": 3, "start_col_offset_idx": 2, "end_col_offset_idx": 3, "text": "150", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 3, "end_row_offset_idx": 4, "start_col_offset_idx": 0, "end_col_offset_idx": 1, "text": "Grain", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 3, "end_row_offset_idx": 4, "start_col_offset_idx": 1, "end_col_offset_idx": 2, "text": "Corn, Buckwheat, Barley", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 3, "end_row_offset_idx": 4, "start_col_offset_idx": 2, "end_col_offset_idx": 3, "text": "200", "column_header": false, "row_header": false, "row_section": false}], "num_rows": 4, "num_cols": 3, "grid": [[{"row_span": 1, "col_span": 1, "start_row_offset_idx": 0, "end_row_offset_idx": 1, "start_col_offset_idx": 0, "end_col_offset_idx": 1, "text": "", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 0, "end_row_offset_idx": 1, "start_col_offset_idx": 1, "end_col_offset_idx": 2, "text": "Food", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 0, "end_row_offset_idx": 1, "start_col_offset_idx": 2, "end_col_offset_idx": 3, "text": "Calories per portion", "column_header": false, "row_header": false, "row_section": false}], [{"row_span": 1, "col_span": 1, "start_row_offset_idx": 1, "end_row_offset_idx": 2, "start_col_offset_idx": 0, "end_col_offset_idx": 1, "text": "Leaves", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 1, "end_row_offset_idx": 2, "start_col_offset_idx": 1, "end_col_offset_idx": 2, "text": "Ash, Elm, Maple", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 1, "end_row_offset_idx": 2, "start_col_offset_idx": 2, "end_col_offset_idx": 3, "text": "50", "column_header": false, "row_header": false, "row_section": false}], [{"row_span": 1, "col_span": 1, "start_row_offset_idx": 2, "end_row_offset_idx": 3, "start_col_offset_idx": 0, "end_col_offset_idx": 1, "text": "Berries", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 2, "end_row_offset_idx": 3, "start_col_offset_idx": 1, "end_col_offset_idx": 2, "text": "Blueberry, Strawberry, Cranberry", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 2, "end_row_offset_idx": 3, "start_col_offset_idx": 2, "end_col_offset_idx": 3, "text": "150", "column_header": false, "row_header": false, "row_section": false}], [{"row_span": 1, "col_span": 1, "start_row_offset_idx": 3, "end_row_offset_idx": 4, "start_col_offset_idx": 0, "end_col_offset_idx": 1, "text": "Grain", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 3, "end_row_offset_idx": 4, "start_col_offset_idx": 1, "end_col_offset_idx": 2, "text": "Corn, Buckwheat, Barley", "column_header": false, "row_header": false, "row_section": false}, {"row_span": 1, "col_span": 1, "start_row_offset_idx": 3, "end_row_offset_idx": 4, "start_col_offset_idx": 2, "end_col_offset_idx": 3, "text": "200", "column_header": false, "row_header": false, "row_section": false}]]}}], "key_value_items": [], "pages": {}} \ No newline at end of file diff --git a/tests/data/groundtruth/docling_v2/word_sample.md b/tests/data/groundtruth/docling_v2/word_sample.md new file mode 100644 index 00000000..9c5a96e0 --- /dev/null +++ b/tests/data/groundtruth/docling_v2/word_sample.md @@ -0,0 +1,45 @@ +Summer activities + +# Swimming in the lake + +Duck + + + +Figure 1: This is a cute duckling + +## Let’s swim! + +To get started with swimming, first lay down in a water and try not to drown: + +- You can relax and look around +- Paddle about +- Enjoy summer warmth + +Also, don’t forget: + +- Wear sunglasses +- Don’t forget to drink water +- Use sun cream + +Hmm, what else… + +### Let’s eat + +After we had a good day of swimming in the lake, it’s important to eat something nice + +I like to eat leaves + +Here are some interesting things a respectful duck could eat: + +| | Food | Calories per portion | +|---------|----------------------------------|------------------------| +| Leaves | Ash, Elm, Maple | 50 | +| Berries | Blueberry, Strawberry, Cranberry | 150 | +| Grain | Corn, Buckwheat, Barley | 200 | + +And let’s add another list in the end: + +- Leaves +- Berries +- Grain \ No newline at end of file diff --git a/tests/data/groundtruth/docling_v2/word_sample.yaml b/tests/data/groundtruth/docling_v2/word_sample.yaml new file mode 100644 index 00000000..b11146e2 --- /dev/null +++ b/tests/data/groundtruth/docling_v2/word_sample.yaml @@ -0,0 +1,546 @@ +body: + children: + - $ref: '#/texts/0' + - $ref: '#/texts/1' + label: unspecified + name: _root_ + self_ref: '#/body' +furniture: + children: [] + label: unspecified + name: _root_ + self_ref: '#/furniture' +groups: +- children: + - $ref: '#/texts/6' + - $ref: '#/texts/7' + - $ref: '#/texts/8' + label: list + name: list + parent: + $ref: '#/texts/4' + self_ref: '#/groups/0' +- children: + - $ref: '#/texts/10' + - $ref: '#/texts/11' + - $ref: '#/texts/12' + label: list + name: list + parent: + $ref: '#/texts/4' + self_ref: '#/groups/1' +- children: + - $ref: '#/texts/20' + - $ref: '#/texts/21' + - $ref: '#/texts/22' + label: list + name: list + parent: + $ref: '#/texts/14' + self_ref: '#/groups/2' +key_value_items: [] +name: word_sample +origin: + binary_hash: 5964280909995938039 + filename: word_sample.docx + mimetype: application/vnd.openxmlformats-officedocument.wordprocessingml.document +pages: {} +pictures: +- annotations: [] + captions: [] + children: [] + footnotes: [] + image: + dpi: 72 + mimetype: image/png + size: + height: 397.0 + width: 397.0 + uri:  + label: picture + parent: + $ref: '#/texts/1' + prov: [] + references: [] + self_ref: '#/pictures/0' +schema_name: DoclingDocument +tables: +- captions: [] + children: [] + data: + grid: + - - col_span: 1 + column_header: false + end_col_offset_idx: 1 + end_row_offset_idx: 1 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 0 + start_row_offset_idx: 0 + text: '' + - col_span: 1 + column_header: false + end_col_offset_idx: 2 + end_row_offset_idx: 1 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 1 + start_row_offset_idx: 0 + text: Food + - col_span: 1 + column_header: false + end_col_offset_idx: 3 + end_row_offset_idx: 1 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 2 + start_row_offset_idx: 0 + text: Calories per portion + - - col_span: 1 + column_header: false + end_col_offset_idx: 1 + end_row_offset_idx: 2 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 0 + start_row_offset_idx: 1 + text: Leaves + - col_span: 1 + column_header: false + end_col_offset_idx: 2 + end_row_offset_idx: 2 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 1 + start_row_offset_idx: 1 + text: Ash, Elm, Maple + - col_span: 1 + column_header: false + end_col_offset_idx: 3 + end_row_offset_idx: 2 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 2 + start_row_offset_idx: 1 + text: '50' + - - col_span: 1 + column_header: false + end_col_offset_idx: 1 + end_row_offset_idx: 3 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 0 + start_row_offset_idx: 2 + text: Berries + - col_span: 1 + column_header: false + end_col_offset_idx: 2 + end_row_offset_idx: 3 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 1 + start_row_offset_idx: 2 + text: Blueberry, Strawberry, Cranberry + - col_span: 1 + column_header: false + end_col_offset_idx: 3 + end_row_offset_idx: 3 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 2 + start_row_offset_idx: 2 + text: '150' + - - col_span: 1 + column_header: false + end_col_offset_idx: 1 + end_row_offset_idx: 4 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 0 + start_row_offset_idx: 3 + text: Grain + - col_span: 1 + column_header: false + end_col_offset_idx: 2 + end_row_offset_idx: 4 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 1 + start_row_offset_idx: 3 + text: Corn, Buckwheat, Barley + - col_span: 1 + column_header: false + end_col_offset_idx: 3 + end_row_offset_idx: 4 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 2 + start_row_offset_idx: 3 + text: '200' + num_cols: 3 + num_rows: 4 + table_cells: + - col_span: 1 + column_header: false + end_col_offset_idx: 1 + end_row_offset_idx: 1 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 0 + start_row_offset_idx: 0 + text: '' + - col_span: 1 + column_header: false + end_col_offset_idx: 2 + end_row_offset_idx: 1 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 1 + start_row_offset_idx: 0 + text: Food + - col_span: 1 + column_header: false + end_col_offset_idx: 3 + end_row_offset_idx: 1 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 2 + start_row_offset_idx: 0 + text: Calories per portion + - col_span: 1 + column_header: false + end_col_offset_idx: 1 + end_row_offset_idx: 2 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 0 + start_row_offset_idx: 1 + text: Leaves + - col_span: 1 + column_header: false + end_col_offset_idx: 2 + end_row_offset_idx: 2 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 1 + start_row_offset_idx: 1 + text: Ash, Elm, Maple + - col_span: 1 + column_header: false + end_col_offset_idx: 3 + end_row_offset_idx: 2 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 2 + start_row_offset_idx: 1 + text: '50' + - col_span: 1 + column_header: false + end_col_offset_idx: 1 + end_row_offset_idx: 3 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 0 + start_row_offset_idx: 2 + text: Berries + - col_span: 1 + column_header: false + end_col_offset_idx: 2 + end_row_offset_idx: 3 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 1 + start_row_offset_idx: 2 + text: Blueberry, Strawberry, Cranberry + - col_span: 1 + column_header: false + end_col_offset_idx: 3 + end_row_offset_idx: 3 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 2 + start_row_offset_idx: 2 + text: '150' + - col_span: 1 + column_header: false + end_col_offset_idx: 1 + end_row_offset_idx: 4 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 0 + start_row_offset_idx: 3 + text: Grain + - col_span: 1 + column_header: false + end_col_offset_idx: 2 + end_row_offset_idx: 4 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 1 + start_row_offset_idx: 3 + text: Corn, Buckwheat, Barley + - col_span: 1 + column_header: false + end_col_offset_idx: 3 + end_row_offset_idx: 4 + row_header: false + row_section: false + row_span: 1 + start_col_offset_idx: 2 + start_row_offset_idx: 3 + text: '200' + footnotes: [] + label: table + parent: + $ref: '#/texts/14' + prov: [] + references: [] + self_ref: '#/tables/0' +texts: +- children: [] + label: paragraph + orig: Summer activities + parent: + $ref: '#/body' + prov: [] + self_ref: '#/texts/0' + text: Summer activities +- children: + - $ref: '#/texts/2' + - $ref: '#/pictures/0' + - $ref: '#/texts/3' + - $ref: '#/texts/4' + label: title + orig: Swimming in the lake + parent: + $ref: '#/body' + prov: [] + self_ref: '#/texts/1' + text: Swimming in the lake +- children: [] + label: paragraph + orig: Duck + parent: + $ref: '#/texts/1' + prov: [] + self_ref: '#/texts/2' + text: Duck +- children: [] + label: paragraph + orig: 'Figure 1: This is a cute duckling' + parent: + $ref: '#/texts/1' + prov: [] + self_ref: '#/texts/3' + text: 'Figure 1: This is a cute duckling' +- children: + - $ref: '#/texts/5' + - $ref: '#/groups/0' + - $ref: '#/texts/9' + - $ref: '#/groups/1' + - $ref: '#/texts/13' + - $ref: '#/texts/14' + label: section_header + level: 1 + orig: "Let\u2019s swim!" + parent: + $ref: '#/texts/1' + prov: [] + self_ref: '#/texts/4' + text: "Let\u2019s swim!" +- children: [] + label: paragraph + orig: 'To get started with swimming, first lay down in a water and try not to drown:' + parent: + $ref: '#/texts/4' + prov: [] + self_ref: '#/texts/5' + text: 'To get started with swimming, first lay down in a water and try not to drown:' +- children: [] + enumerated: false + label: list_item + marker: '-' + orig: You can relax and look around + parent: + $ref: '#/groups/0' + prov: [] + self_ref: '#/texts/6' + text: You can relax and look around +- children: [] + enumerated: false + label: list_item + marker: '-' + orig: Paddle about + parent: + $ref: '#/groups/0' + prov: [] + self_ref: '#/texts/7' + text: Paddle about +- children: [] + enumerated: false + label: list_item + marker: '-' + orig: Enjoy summer warmth + parent: + $ref: '#/groups/0' + prov: [] + self_ref: '#/texts/8' + text: Enjoy summer warmth +- children: [] + label: paragraph + orig: "Also, don\u2019t forget:" + parent: + $ref: '#/texts/4' + prov: [] + self_ref: '#/texts/9' + text: "Also, don\u2019t forget:" +- children: [] + enumerated: false + label: list_item + marker: '-' + orig: Wear sunglasses + parent: + $ref: '#/groups/1' + prov: [] + self_ref: '#/texts/10' + text: Wear sunglasses +- children: [] + enumerated: false + label: list_item + marker: '-' + orig: "Don\u2019t forget to drink water" + parent: + $ref: '#/groups/1' + prov: [] + self_ref: '#/texts/11' + text: "Don\u2019t forget to drink water" +- children: [] + enumerated: false + label: list_item + marker: '-' + orig: Use sun cream + parent: + $ref: '#/groups/1' + prov: [] + self_ref: '#/texts/12' + text: Use sun cream +- children: [] + label: paragraph + orig: "Hmm, what else\u2026" + parent: + $ref: '#/texts/4' + prov: [] + self_ref: '#/texts/13' + text: "Hmm, what else\u2026" +- children: + - $ref: '#/texts/15' + - $ref: '#/texts/16' + - $ref: '#/texts/17' + - $ref: '#/tables/0' + - $ref: '#/texts/18' + - $ref: '#/texts/19' + - $ref: '#/groups/2' + label: section_header + level: 2 + orig: "Let\u2019s eat" + parent: + $ref: '#/texts/4' + prov: [] + self_ref: '#/texts/14' + text: "Let\u2019s eat" +- children: [] + label: paragraph + orig: "After we had a good day of swimming in the lake, it\u2019s important to eat\ + \ something nice" + parent: + $ref: '#/texts/14' + prov: [] + self_ref: '#/texts/15' + text: "After we had a good day of swimming in the lake, it\u2019s important to eat\ + \ something nice" +- children: [] + label: paragraph + orig: I like to eat leaves + parent: + $ref: '#/texts/14' + prov: [] + self_ref: '#/texts/16' + text: I like to eat leaves +- children: [] + label: paragraph + orig: 'Here are some interesting things a respectful duck could eat:' + parent: + $ref: '#/texts/14' + prov: [] + self_ref: '#/texts/17' + text: 'Here are some interesting things a respectful duck could eat:' +- children: [] + label: paragraph + orig: '' + parent: + $ref: '#/texts/14' + prov: [] + self_ref: '#/texts/18' + text: '' +- children: [] + label: paragraph + orig: "And let\u2019s add another list in the end:" + parent: + $ref: '#/texts/14' + prov: [] + self_ref: '#/texts/19' + text: "And let\u2019s add another list in the end:" +- children: [] + enumerated: false + label: list_item + marker: '-' + orig: Leaves + parent: + $ref: '#/groups/2' + prov: [] + self_ref: '#/texts/20' + text: Leaves +- children: [] + enumerated: false + label: list_item + marker: '-' + orig: Berries + parent: + $ref: '#/groups/2' + prov: [] + self_ref: '#/texts/21' + text: Berries +- children: [] + enumerated: false + label: list_item + marker: '-' + orig: Grain + parent: + $ref: '#/groups/2' + prov: [] + self_ref: '#/texts/22' + text: Grain +version: 1.0.0