mirror of
https://github.com/DS4SD/docling.git
synced 2025-07-27 04:24:45 +00:00
feat: Implement the TesserOcrModel. Introduce the test_e2e_ocr_conversion.py unit test.
Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com>
This commit is contained in:
parent
a0e72655f7
commit
c28846a866
@ -32,8 +32,10 @@ class TesseractOcrOptions(OcrOptions):
|
|||||||
kind: Literal["tesseract"] = "tesseract"
|
kind: Literal["tesseract"] = "tesseract"
|
||||||
lang: List[str] = ["fr", "de", "es", "en"]
|
lang: List[str] = ["fr", "de", "es", "en"]
|
||||||
|
|
||||||
|
|
||||||
class TesserOcrOptions(OcrOptions):
|
class TesserOcrOptions(OcrOptions):
|
||||||
kind: Literal["tesserocr"] = "tesserocr"
|
kind: Literal["tesserocr"] = "tesserocr"
|
||||||
|
lang: List[str] = ["fra", "deu", "spa", "eng"]
|
||||||
|
|
||||||
|
|
||||||
class PipelineOptions(BaseModel):
|
class PipelineOptions(BaseModel):
|
||||||
|
@ -1,7 +1,6 @@
|
|||||||
import logging
|
|
||||||
import io
|
import io
|
||||||
|
import logging
|
||||||
import os
|
import os
|
||||||
|
|
||||||
from subprocess import PIPE, Popen
|
from subprocess import PIPE, Popen
|
||||||
from typing import Iterable, Tuple
|
from typing import Iterable, Tuple
|
||||||
|
|
||||||
@ -13,6 +12,7 @@ from docling.models.base_ocr_model import BaseOcrModel
|
|||||||
|
|
||||||
_log = logging.getLogger(__name__)
|
_log = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class TesseractOcrModel(BaseOcrModel):
|
class TesseractOcrModel(BaseOcrModel):
|
||||||
|
|
||||||
def __init__(self, enabled: bool, options: TesseractOcrOptions):
|
def __init__(self, enabled: bool, options: TesseractOcrOptions):
|
||||||
@ -79,7 +79,7 @@ class TesseractOcrModel(BaseOcrModel):
|
|||||||
# _log.info(output)
|
# _log.info(output)
|
||||||
|
|
||||||
# Decode the byte string to a regular string
|
# Decode the byte string to a regular string
|
||||||
decoded_data = output.decode('utf-8')
|
decoded_data = output.decode("utf-8")
|
||||||
# _log.info(decoded_data)
|
# _log.info(decoded_data)
|
||||||
|
|
||||||
# Read the TSV file generated by Tesseract
|
# Read the TSV file generated by Tesseract
|
||||||
@ -138,7 +138,7 @@ class TesseractOcrModel(BaseOcrModel):
|
|||||||
cell = OcrCell(
|
cell = OcrCell(
|
||||||
id=ix,
|
id=ix,
|
||||||
text=text,
|
text=text,
|
||||||
confidence=conf/100.,
|
confidence=conf / 100.0,
|
||||||
bbox=BoundingBox.from_tuple(
|
bbox=BoundingBox.from_tuple(
|
||||||
coord=(
|
coord=(
|
||||||
(l / self.scale) + ocr_rect.l,
|
(l / self.scale) + ocr_rect.l,
|
||||||
|
@ -2,6 +2,8 @@ import logging
|
|||||||
from typing import Iterable
|
from typing import Iterable
|
||||||
|
|
||||||
import numpy
|
import numpy
|
||||||
|
import tesserocr
|
||||||
|
from tesserocr import OEM, PSM, RIL, PyTessBaseAPI
|
||||||
|
|
||||||
from docling.datamodel.base_models import BoundingBox, CoordOrigin, OcrCell, Page
|
from docling.datamodel.base_models import BoundingBox, CoordOrigin, OcrCell, Page
|
||||||
from docling.datamodel.pipeline_options import TesseractOcrOptions
|
from docling.datamodel.pipeline_options import TesseractOcrOptions
|
||||||
@ -16,11 +18,21 @@ class TesserOcrModel(BaseOcrModel):
|
|||||||
self.options: TesseractOcrOptions
|
self.options: TesseractOcrOptions
|
||||||
|
|
||||||
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
|
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
|
||||||
|
self.reader = None
|
||||||
|
|
||||||
if self.enabled:
|
if self.enabled:
|
||||||
import tesserocr
|
# Initialize the tesseractAPI
|
||||||
|
lang = "+".join(self.options.lang)
|
||||||
|
_log.debug("Initializing TesserOCR: %s", tesserocr.tesseract_version())
|
||||||
|
self.reader = PyTessBaseAPI(
|
||||||
|
lang=lang, psm=PSM.AUTO, init=True, oem=OEM.DEFAULT
|
||||||
|
)
|
||||||
|
|
||||||
self.reader = easyocr.Reader(lang_list=self.options.lang)
|
def __del__(self):
|
||||||
|
if self.reader is not None:
|
||||||
|
# Finalize the tesseractAPI
|
||||||
|
_log.debug("Finalize TesserOCR")
|
||||||
|
self.reader.End()
|
||||||
|
|
||||||
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||||
|
|
||||||
@ -36,29 +48,38 @@ class TesserOcrModel(BaseOcrModel):
|
|||||||
high_res_image = page._backend.get_page_image(
|
high_res_image = page._backend.get_page_image(
|
||||||
scale=self.scale, cropbox=ocr_rect
|
scale=self.scale, cropbox=ocr_rect
|
||||||
)
|
)
|
||||||
im = numpy.array(high_res_image)
|
|
||||||
result = self.reader.readtext(im)
|
|
||||||
|
|
||||||
del high_res_image
|
# Retrieve text snippets with their bounding boxes
|
||||||
del im
|
self.reader.SetImage(high_res_image)
|
||||||
|
boxes = self.reader.GetComponentImages(RIL.TEXTLINE, True)
|
||||||
|
|
||||||
cells = [
|
cells = []
|
||||||
|
for ix, (im, box, _, _) in enumerate(boxes):
|
||||||
|
# Set the area of interest. Tesseract uses Bottom-Left for the origin
|
||||||
|
self.reader.SetRectangle(box["x"], box["y"], box["w"], box["h"])
|
||||||
|
|
||||||
|
# Extract text within the bounding box
|
||||||
|
text = self.reader.GetUTF8Text().strip()
|
||||||
|
confidence = self.reader.MeanTextConf()
|
||||||
|
left = box["x"] / self.scale
|
||||||
|
bottom = box["y"] / self.scale
|
||||||
|
right = (box["x"] + box["w"]) / self.scale
|
||||||
|
top = (box["y"] + box["h"]) / self.scale
|
||||||
|
|
||||||
|
cells.append(
|
||||||
OcrCell(
|
OcrCell(
|
||||||
id=ix,
|
id=ix,
|
||||||
text=line[1],
|
text=text,
|
||||||
confidence=line[2],
|
confidence=confidence,
|
||||||
bbox=BoundingBox.from_tuple(
|
bbox=BoundingBox.from_tuple(
|
||||||
coord=(
|
# l, b, r, t = coord[0], coord[1], coord[2], coord[3]
|
||||||
(line[0][0][0] / self.scale) + ocr_rect.l,
|
coord=(left, bottom, right, top),
|
||||||
(line[0][0][1] / self.scale) + ocr_rect.t,
|
origin=CoordOrigin.BOTTOMLEFT,
|
||||||
(line[0][2][0] / self.scale) + ocr_rect.l,
|
|
||||||
(line[0][2][1] / self.scale) + ocr_rect.t,
|
|
||||||
),
|
|
||||||
origin=CoordOrigin.TOPLEFT,
|
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
for ix, line in enumerate(result)
|
)
|
||||||
]
|
|
||||||
|
# del high_res_image
|
||||||
all_ocr_cells.extend(cells)
|
all_ocr_cells.extend(cells)
|
||||||
|
|
||||||
## Remove OCR cells which overlap with programmatic cells.
|
## Remove OCR cells which overlap with programmatic cells.
|
||||||
|
@ -11,6 +11,7 @@ from docling.models.easyocr_model import EasyOcrModel
|
|||||||
from docling.models.layout_model import LayoutModel
|
from docling.models.layout_model import LayoutModel
|
||||||
from docling.models.table_structure_model import TableStructureModel
|
from docling.models.table_structure_model import TableStructureModel
|
||||||
from docling.models.tesseract_model import TesseractOcrModel
|
from docling.models.tesseract_model import TesseractOcrModel
|
||||||
|
from docling.models.tesserocr_model import TesserOcrModel
|
||||||
from docling.pipeline.base_model_pipeline import BaseModelPipeline
|
from docling.pipeline.base_model_pipeline import BaseModelPipeline
|
||||||
|
|
||||||
|
|
||||||
@ -33,12 +34,10 @@ class StandardModelPipeline(BaseModelPipeline):
|
|||||||
options=pipeline_options.ocr_options,
|
options=pipeline_options.ocr_options,
|
||||||
)
|
)
|
||||||
elif isinstance(pipeline_options.ocr_options, TesserOcrOptions):
|
elif isinstance(pipeline_options.ocr_options, TesserOcrOptions):
|
||||||
raise NotImplemented()
|
ocr_model = TesserOcrModel(
|
||||||
# TODO
|
enabled=pipeline_options.do_ocr,
|
||||||
# ocr_model = TesseractOcrModel(
|
options=pipeline_options.ocr_options,
|
||||||
# enabled=pipeline_options.do_ocr,
|
)
|
||||||
# options=pipeline_options.ocr_options,
|
|
||||||
# )
|
|
||||||
else:
|
else:
|
||||||
raise RuntimeError(
|
raise RuntimeError(
|
||||||
f"The specified OCR kind is not supported: {pipeline_options.ocr_options.kind}."
|
f"The specified OCR kind is not supported: {pipeline_options.ocr_options.kind}."
|
||||||
|
@ -1,65 +1,62 @@
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
from pydantic import Field
|
||||||
|
|
||||||
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
|
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
|
||||||
from docling.datamodel.document import ConversionResult
|
from docling.datamodel.document import ConversionResult
|
||||||
from docling.datamodel.pipeline_options import PipelineOptions
|
from docling.datamodel.pipeline_options import PipelineOptions, TesseractOcrOptions
|
||||||
from docling.document_converter import DocumentConverter
|
from docling.document_converter import DocumentConverter
|
||||||
|
|
||||||
from .verify_utils import verify_conversion_result
|
from .verify_utils import verify_conversion_result
|
||||||
|
|
||||||
|
# from tests.verify_utils import verify_conversion_result
|
||||||
|
|
||||||
|
|
||||||
GENERATE = False
|
GENERATE = False
|
||||||
|
|
||||||
|
|
||||||
# Debug
|
# Debug
|
||||||
def save_output(pdf_path: Path, doc_result: ConversionResult):
|
def save_output(pdf_path: Path, doc_result: ConversionResult, engine: str):
|
||||||
r""" """
|
r""" """
|
||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
|
|
||||||
parent = pdf_path.parent
|
parent = pdf_path.parent
|
||||||
|
|
||||||
dict_fn = os.path.join(parent, f"{pdf_path.stem}.json")
|
dict_fn = os.path.join(parent, f"{pdf_path.stem}.{engine}.json")
|
||||||
with open(dict_fn, "w") as fd:
|
with open(dict_fn, "w") as fd:
|
||||||
json.dump(doc_result.render_as_dict(), fd)
|
json.dump(doc_result.render_as_dict(), fd)
|
||||||
|
|
||||||
pages_fn = os.path.join(parent, f"{pdf_path.stem}.pages.json")
|
pages_fn = os.path.join(parent, f"{pdf_path.stem}.{engine}.pages.json")
|
||||||
pages = [p.model_dump() for p in doc_result.pages]
|
pages = [p.model_dump() for p in doc_result.pages]
|
||||||
with open(pages_fn, "w") as fd:
|
with open(pages_fn, "w") as fd:
|
||||||
json.dump(pages, fd)
|
json.dump(pages, fd)
|
||||||
|
|
||||||
doctags_fn = os.path.join(parent, f"{pdf_path.stem}.doctags.txt")
|
doctags_fn = os.path.join(parent, f"{pdf_path.stem}.{engine}.doctags.txt")
|
||||||
with open(doctags_fn, "w") as fd:
|
with open(doctags_fn, "w") as fd:
|
||||||
fd.write(doc_result.render_as_doctags())
|
fd.write(doc_result.render_as_doctags())
|
||||||
|
|
||||||
md_fn = os.path.join(parent, f"{pdf_path.stem}.md")
|
md_fn = os.path.join(parent, f"{pdf_path.stem}.{engine}.md")
|
||||||
with open(md_fn, "w") as fd:
|
with open(md_fn, "w") as fd:
|
||||||
fd.write(doc_result.render_as_markdown())
|
fd.write(doc_result.render_as_markdown())
|
||||||
|
|
||||||
|
|
||||||
def get_pdf_paths():
|
def get_pdf_paths():
|
||||||
# TODO: Debug
|
|
||||||
# Define the directory you want to search
|
# Define the directory you want to search
|
||||||
# directory = Path("./tests/data")
|
directory = Path("./tests/data_scanned")
|
||||||
directory = Path("./tests/data/scanned")
|
|
||||||
|
|
||||||
# List all PDF files in the directory and its subdirectories
|
# List all PDF files in the directory and its subdirectories
|
||||||
pdf_files = sorted(directory.rglob("*.pdf"))
|
pdf_files = sorted(directory.rglob("*.pdf"))
|
||||||
return pdf_files
|
return pdf_files
|
||||||
|
|
||||||
|
|
||||||
def get_easyocr_converter():
|
def get_converter(engine: str):
|
||||||
|
|
||||||
ocr_options = EasyOcrOptions(
|
|
||||||
|
|
||||||
)
|
|
||||||
|
|
||||||
pipeline_options = PipelineOptions()
|
pipeline_options = PipelineOptions()
|
||||||
# Debug
|
|
||||||
pipeline_options.do_ocr = True
|
pipeline_options.do_ocr = True
|
||||||
pipeline_options.do_table_structure = True
|
pipeline_options.do_table_structure = True
|
||||||
pipeline_options.table_structure_options.do_cell_matching = True
|
pipeline_options.table_structure_options.do_cell_matching = True
|
||||||
|
if engine == "tesserocr":
|
||||||
|
pipeline_options.ocr_options = TesseractOcrOptions()
|
||||||
|
|
||||||
converter = DocumentConverter(
|
converter = DocumentConverter(
|
||||||
pipeline_options=pipeline_options,
|
pipeline_options=pipeline_options,
|
||||||
@ -68,34 +65,30 @@ def get_easyocr_converter():
|
|||||||
|
|
||||||
return converter
|
return converter
|
||||||
|
|
||||||
def get_tesseract_converter():
|
|
||||||
|
|
||||||
pipeline_options = PipelineOptions()
|
|
||||||
# Debug
|
|
||||||
pipeline_options.do_ocr = True
|
|
||||||
pipeline_options.do_table_structure = True
|
|
||||||
pipeline_options.table_structure_options.do_cell_matching = True
|
|
||||||
|
|
||||||
converter = DocumentConverter(
|
|
||||||
pipeline_options=pipeline_options,
|
|
||||||
pdf_backend=DoclingParseDocumentBackend,
|
|
||||||
)
|
|
||||||
|
|
||||||
return converter
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def test_e2e_conversions():
|
def test_e2e_conversions():
|
||||||
|
|
||||||
pdf_paths = get_pdf_paths()
|
pdf_paths = get_pdf_paths()
|
||||||
converter = get_converter()
|
|
||||||
|
|
||||||
|
for engine in ["easyocr", "tesserocr"]:
|
||||||
|
print(f"Converting with ocr_engine: {engine}")
|
||||||
|
converter = get_converter(engine)
|
||||||
for pdf_path in pdf_paths:
|
for pdf_path in pdf_paths:
|
||||||
print(f"converting {pdf_path}")
|
print(f"converting {pdf_path}")
|
||||||
|
|
||||||
doc_result: ConversionResult = converter.convert_single(pdf_path)
|
doc_result: ConversionResult = converter.convert_single(pdf_path)
|
||||||
|
|
||||||
|
# # Save conversions
|
||||||
|
# save_output(pdf_path, doc_result, engine)
|
||||||
|
|
||||||
# Debug
|
# Debug
|
||||||
verify_conversion_result(
|
verify_conversion_result(
|
||||||
input_path=pdf_path, doc_result=doc_result, generate=GENERATE
|
input_path=pdf_path,
|
||||||
|
doc_result=doc_result,
|
||||||
|
generate=GENERATE,
|
||||||
|
ocr_engine=engine,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# if __name__ == "__main__":
|
||||||
|
# test_e2e_conversions()
|
||||||
|
@ -127,7 +127,10 @@ def verify_dt(doc_pred_dt, doc_true_dt):
|
|||||||
|
|
||||||
|
|
||||||
def verify_conversion_result(
|
def verify_conversion_result(
|
||||||
input_path: Path, doc_result: ConversionResult, generate=False
|
input_path: Path,
|
||||||
|
doc_result: ConversionResult,
|
||||||
|
generate=False,
|
||||||
|
ocr_engine=None,
|
||||||
):
|
):
|
||||||
PageList = TypeAdapter(List[Page])
|
PageList = TypeAdapter(List[Page])
|
||||||
|
|
||||||
@ -140,10 +143,16 @@ def verify_conversion_result(
|
|||||||
doc_pred_md = doc_result.render_as_markdown()
|
doc_pred_md = doc_result.render_as_markdown()
|
||||||
doc_pred_dt = doc_result.render_as_doctags()
|
doc_pred_dt = doc_result.render_as_doctags()
|
||||||
|
|
||||||
pages_path = input_path.with_suffix(".pages.json")
|
# pages_path = input_path.with_suffix(".pages.json")
|
||||||
json_path = input_path.with_suffix(".json")
|
# json_path = input_path.with_suffix(".json")
|
||||||
md_path = input_path.with_suffix(".md")
|
# md_path = input_path.with_suffix(".md")
|
||||||
dt_path = input_path.with_suffix(".doctags.txt")
|
# dt_path = input_path.with_suffix(".doctags.txt")
|
||||||
|
|
||||||
|
engine_suffix = "" if ocr_engine is None else f".{ocr_engine}"
|
||||||
|
pages_path = input_path.with_suffix(f"{engine_suffix}.pages.json")
|
||||||
|
json_path = input_path.with_suffix(f"{engine_suffix}.json")
|
||||||
|
md_path = input_path.with_suffix(f"{engine_suffix}.md")
|
||||||
|
dt_path = input_path.with_suffix(f"{engine_suffix}.doctags.txt")
|
||||||
|
|
||||||
if generate: # only used when re-generating truth
|
if generate: # only used when re-generating truth
|
||||||
with open(pages_path, "w") as fw:
|
with open(pages_path, "w") as fw:
|
||||||
|
Loading…
Reference in New Issue
Block a user