feat: Implement the TesserOcrModel. Introduce the test_e2e_ocr_conversion.py unit test.

Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com>
This commit is contained in:
Nikos Livathinos 2024-10-02 17:47:01 +02:00
parent a0e72655f7
commit c28846a866
6 changed files with 108 additions and 84 deletions

View File

@ -32,8 +32,10 @@ class TesseractOcrOptions(OcrOptions):
kind: Literal["tesseract"] = "tesseract"
lang: List[str] = ["fr", "de", "es", "en"]
class TesserOcrOptions(OcrOptions):
kind: Literal["tesserocr"] = "tesserocr"
lang: List[str] = ["fra", "deu", "spa", "eng"]
class PipelineOptions(BaseModel):

View File

@ -1,7 +1,6 @@
import logging
import io
import logging
import os
from subprocess import PIPE, Popen
from typing import Iterable, Tuple
@ -13,6 +12,7 @@ from docling.models.base_ocr_model import BaseOcrModel
_log = logging.getLogger(__name__)
class TesseractOcrModel(BaseOcrModel):
def __init__(self, enabled: bool, options: TesseractOcrOptions):
@ -76,10 +76,10 @@ class TesseractOcrModel(BaseOcrModel):
proc = Popen(cmd, stdout=PIPE)
output, _ = proc.communicate()
#_log.info(output)
# _log.info(output)
# Decode the byte string to a regular string
decoded_data = output.decode('utf-8')
decoded_data = output.decode("utf-8")
# _log.info(decoded_data)
# Read the TSV file generated by Tesseract
@ -112,7 +112,7 @@ class TesseractOcrModel(BaseOcrModel):
fname = "temporary-file.png"
high_res_image.save(fname)
df=None
df = None
if os.path.exists(fname):
df = self._run_tesseract(fname)
os.remove(fname)
@ -138,7 +138,7 @@ class TesseractOcrModel(BaseOcrModel):
cell = OcrCell(
id=ix,
text=text,
confidence=conf/100.,
confidence=conf / 100.0,
bbox=BoundingBox.from_tuple(
coord=(
(l / self.scale) + ocr_rect.l,

View File

@ -2,6 +2,8 @@ import logging
from typing import Iterable
import numpy
import tesserocr
from tesserocr import OEM, PSM, RIL, PyTessBaseAPI
from docling.datamodel.base_models import BoundingBox, CoordOrigin, OcrCell, Page
from docling.datamodel.pipeline_options import TesseractOcrOptions
@ -16,11 +18,21 @@ class TesserOcrModel(BaseOcrModel):
self.options: TesseractOcrOptions
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
self.reader = None
if self.enabled:
import tesserocr
# Initialize the tesseractAPI
lang = "+".join(self.options.lang)
_log.debug("Initializing TesserOCR: %s", tesserocr.tesseract_version())
self.reader = PyTessBaseAPI(
lang=lang, psm=PSM.AUTO, init=True, oem=OEM.DEFAULT
)
self.reader = easyocr.Reader(lang_list=self.options.lang)
def __del__(self):
if self.reader is not None:
# Finalize the tesseractAPI
_log.debug("Finalize TesserOCR")
self.reader.End()
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
@ -36,29 +48,38 @@ class TesserOcrModel(BaseOcrModel):
high_res_image = page._backend.get_page_image(
scale=self.scale, cropbox=ocr_rect
)
im = numpy.array(high_res_image)
result = self.reader.readtext(im)
del high_res_image
del im
# Retrieve text snippets with their bounding boxes
self.reader.SetImage(high_res_image)
boxes = self.reader.GetComponentImages(RIL.TEXTLINE, True)
cells = [
OcrCell(
id=ix,
text=line[1],
confidence=line[2],
bbox=BoundingBox.from_tuple(
coord=(
(line[0][0][0] / self.scale) + ocr_rect.l,
(line[0][0][1] / self.scale) + ocr_rect.t,
(line[0][2][0] / self.scale) + ocr_rect.l,
(line[0][2][1] / self.scale) + ocr_rect.t,
cells = []
for ix, (im, box, _, _) in enumerate(boxes):
# Set the area of interest. Tesseract uses Bottom-Left for the origin
self.reader.SetRectangle(box["x"], box["y"], box["w"], box["h"])
# Extract text within the bounding box
text = self.reader.GetUTF8Text().strip()
confidence = self.reader.MeanTextConf()
left = box["x"] / self.scale
bottom = box["y"] / self.scale
right = (box["x"] + box["w"]) / self.scale
top = (box["y"] + box["h"]) / self.scale
cells.append(
OcrCell(
id=ix,
text=text,
confidence=confidence,
bbox=BoundingBox.from_tuple(
# l, b, r, t = coord[0], coord[1], coord[2], coord[3]
coord=(left, bottom, right, top),
origin=CoordOrigin.BOTTOMLEFT,
),
origin=CoordOrigin.TOPLEFT,
),
)
)
for ix, line in enumerate(result)
]
# del high_res_image
all_ocr_cells.extend(cells)
## Remove OCR cells which overlap with programmatic cells.

View File

@ -11,6 +11,7 @@ from docling.models.easyocr_model import EasyOcrModel
from docling.models.layout_model import LayoutModel
from docling.models.table_structure_model import TableStructureModel
from docling.models.tesseract_model import TesseractOcrModel
from docling.models.tesserocr_model import TesserOcrModel
from docling.pipeline.base_model_pipeline import BaseModelPipeline
@ -33,12 +34,10 @@ class StandardModelPipeline(BaseModelPipeline):
options=pipeline_options.ocr_options,
)
elif isinstance(pipeline_options.ocr_options, TesserOcrOptions):
raise NotImplemented()
# TODO
# ocr_model = TesseractOcrModel(
# enabled=pipeline_options.do_ocr,
# options=pipeline_options.ocr_options,
# )
ocr_model = TesserOcrModel(
enabled=pipeline_options.do_ocr,
options=pipeline_options.ocr_options,
)
else:
raise RuntimeError(
f"The specified OCR kind is not supported: {pipeline_options.ocr_options.kind}."

View File

@ -1,65 +1,62 @@
from pathlib import Path
from pydantic import Field
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import PipelineOptions
from docling.datamodel.pipeline_options import PipelineOptions, TesseractOcrOptions
from docling.document_converter import DocumentConverter
from .verify_utils import verify_conversion_result
# from tests.verify_utils import verify_conversion_result
GENERATE = False
# Debug
def save_output(pdf_path: Path, doc_result: ConversionResult):
def save_output(pdf_path: Path, doc_result: ConversionResult, engine: str):
r""" """
import json
import os
parent = pdf_path.parent
dict_fn = os.path.join(parent, f"{pdf_path.stem}.json")
dict_fn = os.path.join(parent, f"{pdf_path.stem}.{engine}.json")
with open(dict_fn, "w") as fd:
json.dump(doc_result.render_as_dict(), fd)
pages_fn = os.path.join(parent, f"{pdf_path.stem}.pages.json")
pages_fn = os.path.join(parent, f"{pdf_path.stem}.{engine}.pages.json")
pages = [p.model_dump() for p in doc_result.pages]
with open(pages_fn, "w") as fd:
json.dump(pages, fd)
doctags_fn = os.path.join(parent, f"{pdf_path.stem}.doctags.txt")
doctags_fn = os.path.join(parent, f"{pdf_path.stem}.{engine}.doctags.txt")
with open(doctags_fn, "w") as fd:
fd.write(doc_result.render_as_doctags())
md_fn = os.path.join(parent, f"{pdf_path.stem}.md")
md_fn = os.path.join(parent, f"{pdf_path.stem}.{engine}.md")
with open(md_fn, "w") as fd:
fd.write(doc_result.render_as_markdown())
def get_pdf_paths():
# TODO: Debug
# Define the directory you want to search
# directory = Path("./tests/data")
directory = Path("./tests/data/scanned")
directory = Path("./tests/data_scanned")
# List all PDF files in the directory and its subdirectories
pdf_files = sorted(directory.rglob("*.pdf"))
return pdf_files
def get_easyocr_converter():
ocr_options = EasyOcrOptions(
)
def get_converter(engine: str):
pipeline_options = PipelineOptions()
# Debug
pipeline_options.do_ocr = True
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
if engine == "tesserocr":
pipeline_options.ocr_options = TesseractOcrOptions()
converter = DocumentConverter(
pipeline_options=pipeline_options,
@ -68,34 +65,30 @@ def get_easyocr_converter():
return converter
def get_tesseract_converter():
pipeline_options = PipelineOptions()
# Debug
pipeline_options.do_ocr = True
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
converter = DocumentConverter(
pipeline_options=pipeline_options,
pdf_backend=DoclingParseDocumentBackend,
)
return converter
def test_e2e_conversions():
pdf_paths = get_pdf_paths()
converter = get_converter()
for pdf_path in pdf_paths:
print(f"converting {pdf_path}")
for engine in ["easyocr", "tesserocr"]:
print(f"Converting with ocr_engine: {engine}")
converter = get_converter(engine)
for pdf_path in pdf_paths:
print(f"converting {pdf_path}")
doc_result: ConversionResult = converter.convert_single(pdf_path)
doc_result: ConversionResult = converter.convert_single(pdf_path)
# Debug
verify_conversion_result(
input_path=pdf_path, doc_result=doc_result, generate=GENERATE
)
# # Save conversions
# save_output(pdf_path, doc_result, engine)
# Debug
verify_conversion_result(
input_path=pdf_path,
doc_result=doc_result,
generate=GENERATE,
ocr_engine=engine,
)
# if __name__ == "__main__":
# test_e2e_conversions()

View File

@ -127,7 +127,10 @@ def verify_dt(doc_pred_dt, doc_true_dt):
def verify_conversion_result(
input_path: Path, doc_result: ConversionResult, generate=False
input_path: Path,
doc_result: ConversionResult,
generate=False,
ocr_engine=None,
):
PageList = TypeAdapter(List[Page])
@ -140,10 +143,16 @@ def verify_conversion_result(
doc_pred_md = doc_result.render_as_markdown()
doc_pred_dt = doc_result.render_as_doctags()
pages_path = input_path.with_suffix(".pages.json")
json_path = input_path.with_suffix(".json")
md_path = input_path.with_suffix(".md")
dt_path = input_path.with_suffix(".doctags.txt")
# pages_path = input_path.with_suffix(".pages.json")
# json_path = input_path.with_suffix(".json")
# md_path = input_path.with_suffix(".md")
# dt_path = input_path.with_suffix(".doctags.txt")
engine_suffix = "" if ocr_engine is None else f".{ocr_engine}"
pages_path = input_path.with_suffix(f"{engine_suffix}.pages.json")
json_path = input_path.with_suffix(f"{engine_suffix}.json")
md_path = input_path.with_suffix(f"{engine_suffix}.md")
dt_path = input_path.with_suffix(f"{engine_suffix}.doctags.txt")
if generate: # only used when re-generating truth
with open(pages_path, "w") as fw: